
Resource Requirements
Software application components (see class) in CAMEL have their deployment regulated through their association to a set of SoftwareComponent
requirements (see class). Such a set includes requirements of different types, like location, provider, OS and resource requirements. The RequirementSet
latter form of requirements (see class) is essential for both the filtering of the provider/offering space as well as the actual Resource Requirement
deployment reasoning. It maps to the supply of requirements over infrastructural resources like VMs.

In the previous version of CAMEL, resource requirements were supplied in the form of constraints over fixed parameters mapping to the respective VM
characteristics. In particular, only the VM’s CPU frequency and number of cores, main memory size and storage size were considered and the constraints
posed on them could include both upper and lower bounds on their values. For instance, in order to pose a constraint over the minimum and maximum
number of cores, the following requirement specification could be specified in the textual syntax of the previous version of CAMEL:

quantitative hardware CoreIntensive {

 core: 8..32

}

However, the previous form of requirements posing was too restrictive and did not enable to specify constraints over additional characteristics of a VM or
its components. It could also not enable to specify constraints over other kinds of infrastructural components, like Containers. In this respect, in order to
extend the current way CAMEL enables the specification of resource requirements, the mechanisms employed for extending CAMEL in order to properly
capture the data aspect were exploited. This means that instead of respective values that can be supplied for fixed VM characteristics, now the modeller
can specify attributes which refer to the meta-data schema and which are mapped to various kinds of infrastructural components. In addition, in order to
distinguish between those attributes that map to the same entity (e.g., VM), these attributes can be grouped into the notion of a feature. In other words, we
can group attributes via features and such attributes specify constraints over the respective entities represented by that features like infrastructural entities.
Based on the previous example, it is better now to showcase how the respective resource requirement could be specified via the textual syntax of the new
version of CAMEL:

resource requirement ResourceReq{

feature cpu{

 [MetaDataModel.MELODICMetadataSchema.ApplicationPlacementModel.IaaS.Processing.CPU]

 attribute mincores [MetaDataModel.MELODICMetadataSchema.ApplicationPlacementModel.IaaS.Processing.CPU.
hasMinNumberofCores] : double 8.0 UnitTemplateCamelModel.UnitTemplateModel.Cores

 attribute maxcores [MetaDataModel.MELODICMetadataSchema.ApplicationPlacementModel.IaaS.Processing.CPU.
hasMaxNumberofCores] : double 32.0 UnitTemplateCamelModel.UnitTemplateModel.Cores

 }
}

In this resource requirement specification, we have the feature of CPU, i.e., of a certain sub-component of an IaaS service/offering. This can be
understood from the annotation of that feature which points first to the IaaS concept in the meta-data schema and finally to the CPU concept. From the
annotation, we can actually see the whole branch of the meta-data schema that points to the right notion/concept that should be used for the annotation. In
this feature, we have specified two attributes which have the same unit mapping to the number of cores which has been drawn from the UnitTemplate
CAMEL model (see examples directory in CAMEL's git repository), which is a CAMEL model in which we have included some unit templates that can be
reused for the specification of various CAMEL elements, including attributes. These two attributes actually represent the minimum and maximum bounds
over the number of cores characteristic of the CPU infrastructural component. In this respect, by supplying values to these attributes, it is like providing
constraints over the range of values that the respective CPU characteristic can take.

Based on the above example, it is apparent that every characteristic of an infrastructural component should be specified in the form of two attributes which
represent the two bounds that this characteristic can take. As such, it is now imperative to explicate which are those infrastructural entities and respective
characteristics of them which can be exploited by the modellers in their specification of the resource requirements of their software components. To this
end, we need to have a walkthrough over the content of the related Meta-data schema part (and especially concept’s Application Placement Model IaaS
sub-hierarchy). In such a walkthrough, apart from marking down both the infrastructural entity and its characteristics, we also explicate the possibility that
such elements is meaningful to be exploited for the filtering of the provider space as well as the application deployment reasoning. In this respect, we
attempt to make a best effort in enumerating all these elements as well as denoting their actual appropriateness in the Melodic platform based on its
current development status, its main goals as well as the current setting in the cloud world (e.g., what can be actually represented/advertised by the cloud
providers in terms of their infrastructural offerings). Please note that characteristics/attributes mapping to metrics have been intentionally left out from the
analysis as they would require to be supplied in SLOs instead.

Feature Attribute(s) F
il
t.

R
e
a
s.

Notes Upperware Cl
o
u
di
at
or

CPU

hasMinNumberofC
ores,

hasMaxNumberof
Cores

~ Need to have sth like total number of cores to potentially use in opt. objectives. But
logically speaking, should be involved in the CP model.

SUPPORTED (used in resource
requirements and then to filter
the Node Candidates)

hasFrequency - Better to have max and min attributes for the filtering

hasMFLOPs,
hasMIPs

~ ~ Need to get this from manufacturer of CPU. This is not provided by the cloud
provider normally.

hasManufacturer* - - Questionable if every cloud provider literally provides this for every offering, if not
at all. Further, not sure whether this will be exploited by users, esp. for public
clouds.

Not the attribute, but the feature itself (CPU) is used to indicate the type of the
variable.

SUPPORTED (type of the
Constraint Problem Variable -
CORES used in the reasoning
process)

RAM.
TotalMemory

totalMemoryHasMi
n,
totalMemoryHasM
ax

~ Same as in number of cores. SUPPORTED (used in resource
requirements and then to filter
the Node Candidates)

totaMemoryHasUnit - - Not needed as the unit is provided in the attribute specification in CAMEL

RAM RAMhasManufactu
rer*

- - Same as in case of CPU

Not the attribute, but the feature itself (RAM) is used to indicate the type of the
variable.

SUPPORTED (type of the
Constraint Problem Variable -
RAM used in the reasoning

)process

GPU

hasMemoryBandwi
dth

~ - Questionnable if a provider advertises this. Should get GPU’s model name and
then search manufacture’s site for this.

hasWarpSize - - Not clear if this is advertised by manufacturers

GPUhasMFLOPs ~ ~ Same as in CPU. Need to get this from manufacturer

hasMaxConcurrent
WorkGroups

- - Not clear if this is advertised by manufacturers

hasClockSpeed ~ - Could be used for filtering but not usually supplied by the cloud provider. Further,
we need min and max values here.

GPUhasManufactu
rer*

- - Same as in case of CPU

hasPEperCUs - - Not clear if this is advertised by manufacturers

GPUhasMaxNumb
erofCores,
GPUhasMinNumb
erofCores

~ Same as in case of CPU

Processing hasPowerConsum
ption

~ ~ This is valid for all processing elements. However, not clear whether this is
advertised by cloud providers. Need to be obtained from manufacturer. More
meaningful though for private clouds

Storage hasSolidStateDrive - Logically speaking, most cloud providers indicate this

hasWriteThroughp
ut,
hasReadThroughp
ut

~ - Not clear if this is advertised by cloud provider

isPersistent - Logically, this is indicated by a cloud provider. Question is if there is a way to
retrieve this automatically, possibly from the type of the storage.

Not the attribute, but the feature itself (Storage) is used to indicate the type of the
variable.

SUPPORTED (type of the
Constraint Problem Variable -
STORAGE used in the

)reasoning process

Storage.
Capacity

hasMin, hasMax ~ Questionnable if we need to have an optimisation objective on this. But it should
participate in the CP model.

SUPPORTED (used in resource
requirements and then to filter
the Node Candidates)

hasUnit - - This is specified in the attribute specification in CAMEL

On-Instance
Storage, Off-
Instance
Storage

 ~ - Better to have here a storageType attribute in Storage class which could map to
these classes or to their sub-classes

Network hasBandwidth - Can be included also in the CP model but not clear if it can participate in
optimisation objective. Possibly also we need min and max attributes for it

IPType,
Version(*)

 - Could be used for filtering but we need to define respective attributes for them.
Potentially, we could think of whether we need to extend the members/sub-
concepts of these concepts or we should have a N multiplicity of the respective
attributes

A special remark needs to be supplied here for those components which map/manage data sources. For such components, apart from CPU/RAM
requirements, we definitely need to supply also Storage-based requirements. We have designated more or less the attributes relevant for the latter
requirements. It is be now appropriate to check which from those attributes can be really supported by the platform and how. The same question, of
course, goes to other infrastructural components and their attributes. The consortium’s technical experts need to join forces in order to decide about this.

* Attributes marked with the asterisk seem to have N multiplicity. In CAMEL, this could be supported in two possible ways: (a) provide all the values in the
form of a single string, e.g., “val1,val2, ..., valN”; (b) provide the attribute as many times as the values that are needed. I would prefer the first choice which
seems more neat and leads to less lengthier models. Anyway, both ways are possible in CAMEL’s textual (and abstract) syntax. So, here there is also a
small technical decision to take.

	Resource Requirements

