
   

 

www.melodic.cloud 

laIle 

  

 

 Title: 

Platform prototype release 
 
Abstract 

This document presents the process of testing Melodic Release 2.0. 
Software  testing  is  an  activity  aimed  at evaluating the quality  of  
a  program,  and improve it by identifying any defects and potential 
problems. Melodic is a framework that supports automated 
deployment of both data and the applications processing the data, 
based on the constraints set by the organisation owning the data 
and the application. 
 
This deliverable accompanies the second release of the integrated 
MELODIC framework, including the security and DLMS technical 
components. It incorporates the feedback from the testing of 
release 1.0 and release 1.5. In addition, the deliverable reports on 
integration and technical testing activities (regression, 
functionality, performance and security tests) for release 2.0, based 
on the test strategy and plan described in D5.06 “Test Strategy and 
Environment” [4]. 
 
 
 

 

Multi-cloud Execution-ware 

for Large-scale Optimized 

Data-Intensive Computing 

 

 

H2020-ICT-2016-2017  

Leadership in Enabling and 
Industrial Technologies; 
Information and 
Communication Technologies 

Grant Agreement No.: 

731664 
 
Duration: 

1 December 2016 
30 November 2019 
 
www.melodic.cloud 
 
Deliverable reference: 

5.08 
 
Date: 

31 March 2018 
 
Responsible partner: 

7bulls 
 
Editor(s): 

Edyta Bańkowska 
 
Author(s) 

Edyta Bańkowska 
 
Approved by: 

Ernst Gunnar Gran 

 
 
ISBN number: 

N/A 
 
Document URL: 
http://www.melodic.cloud/deliverables/
D5.08 Platform prototype release.pdf  

 
 
 
 
 
 
 

  

This project has received funding from  
the European Union’s Horizon 2020 research  
and innovation programme under grant agreement No 731664   

 
  

http://www.melodic.cloud/
http://www.melodic.cloud/
http://www.melodic.cloud/deliverables/D5.08%20Platform%20prototype%20release.pdf
http://www.melodic.cloud/deliverables/D5.08%20Platform%20prototype%20release.pdf


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    2 

 

Document 
Period Covered  M6-18 

Deliverable No.  D5.08 

Deliverable Title  Platform prototype release 

Editor(s)  Edyta Bańkowska 

Author(s)  Edyta Bańkowska  

Reviewer(s)  Amir Taherkordi, Ernst Gunnar Gran 

Work Package No.  5 

Work Package Title  Integration and security 

Lead Beneficiary  7bulls 

Distribution  PU  

Version  1.0 

Draft/Final  Final   

Total No. of Pages  34 + One Appendix 

 

  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    3 

Table of Contents 

1         Introduction ................................................................................................................................................................ 5 

1.1 Release 2.0 ............................................................................................................................................................ 5 

1.2 Structure of the document ............................................................................................................................ 6 

2         Components – The Melodic Architecture .....................................................................................................6 

2.1 Software Components ..................................................................................................................................... 8 

3         Testing environments .......................................................................................................................................... 9 

3.1 Environments used during release 2.0 ................................................................................................... 10 

4         The Melodic 2.0 installation guide.................................................................................................................. 11 

4.1 Requirements for Melodic's machine ...................................................................................................... 11 

4.2 Melodic installation steps............................................................................................................................. 12 

4.3           Useful aliases ..................................................................................................................................................... 14 

5         Testing Guide........................................................................................................................................................... 15 

5.1 How to execute Test Cases with attached CAMEL Models ............................................................. 15 

6         Test Cases ................................................................................................................................................................. 17 

6.1 New Test Cases created during Release 2.0 .......................................................................................... 17 

6.2 Status of Test Cases executed during Release 2.0 ..............................................................................18 

6.3 Regression Tests ............................................................................................................................................. 24 

7         Bugs ............................................................................................................................................................................ 25 

7.1 Reported bugs ................................................................................................................................................... 25 

8         Summary .................................................................................................................................................................. 34 

9         References ............................................................................................................................................................... 34 

Appendix A – Test Cases Release 2.0 ....................................................................................................................... 35 

 

 

 

 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    4 

Index of Tables 
Table 1: Main components used in the Melodic software, with particular relevance to testing ......... 8 

Table 2: Specification of the environments ........................................................................................................... 10 

Table 3: Requirements for Melodic's machine ....................................................................................................... 11 

Table 4: Open port numbers required by Melodic ................................................................................................. 11 

Table 5: Categories of new test cases in release 2.0 ............................................................................................. 17 

Table 6: List of all executed Test Cases in release 2.0 .........................................................................................18 

Table 7: Status of regression tests executed during release 2.0 ..................................................................... 24 

Table 8: List of bugs reported in release 2.0............................................................................................................ 25 

Table 9: List of bugs reported during previous releases and resolved in release 2.0 ............................. 33 

 

Index of Figures 

Figure 1: Overview of the Melodic architecture ...................................................................................................... 7 

Figure 2: Overview of the Upperware Components .............................................................................................. 7 

Figure 3: High-level Executionware Architecture…………………………………………………………………………………………… 8 

 

  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    5 

1  Introduction 

This document presents information about the testing process of Melodic release 2.0, and 
describes the corresponding new testing environments, the processes of testing, and new test 
cases for the new components in release 2.0. This work has been done during a six months 
period of the project and briefly shows the steps of the test process in the project.  

New test cases include functional testing of new components and features, not used in previous 
releases, like: Cloudiator 2.0 with Spark, Data Life-cycle Management System (DLMS), Function-
as-a-Service (FaaS) and dockerized applications. Apart from the functional requirements, non-
functional features are also tested in order to verify proper implementation in the Melodic. The 
non-functional features tested in this time period is related to security. For more details on the 
security implementation of Melodic, we refer to “D5.03 Security requirements & design” [2].  

This document starts with an overview of the Melodic software components, including the new 
features and components used in release 2.0. Next, the new configurations of our University of 
Oslo (UiO) and Ulm University (UULM) Openstack environments are described, followed by an 
installation guide, a testing guide and a description of executed Test Cases.  

1.1  Release 2.0 

For the Melodic project, as presented by the Melodic Project Proposal, three main releases were 
planned: 

 Release 1 – planned for 30 November 2017 
 Release 2 – planned for 30 November 2018 
 Release 3 – planned for 30 November 2019 

 
The aim of Release 1 was to integrate underlying frameworks without changing their features. To 
make it possible to fully evaluate the Melodic use case applications after the first release, an 
additional release 1.5 was introduced with a set of new features and improvements. After release 
1.5, the scope of release 2.0 includes the following: 
 

 CAMEL 2.0 models 
 Spark deployment 
 Component dockerized – Docker image built from repository 
 Reconfiguration 
 Cloudiator 2.0 (Upperware integration) 
 Authorization service 
 DLMS integration with Melodic platform 
 EMS integration  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    6 

1.2 Structure of the document 

This deliverable is structured into the following chapters: 

 Chapter 2, ‘Components – The Melodic Architecture’: A brief summary of the Melodic 
architecture along with the release 2.0 components.  

 Chapter 3, ‘Testing environments’: Information about the testing environments currently 
used in the project. 

 Chapter 4 ‘The Melodic 2.0 installation guide’: Requirements and steps on how to install  
release 2.0 of the Melodic platform. 

 Chapter 5, ‘Testing Guide’:  Detailed instructions on how to execute the Test Cases. 
 Chapter 6, ‘Test Cases’: A comparison of all executed Test Cases in release 2.0, detailed in  

Appendix A, ‘Test Cases Release 2.0’. 
 Chapter 7, ‘Bugs’: An overview of all reported bugs in release 2.0 and their status. 
 Chapter 8, ‘Summary’: The deliverable ends with a short summary. 

 

2  Components – The Melodic Architecture 

Figure 1 presents an overview of the Melodic architecture. The figure also shows the high-level 
interaction between the main Melodic components, while a detailed architecture is presented in 
“D2.2 Architecture and initial feature definitions” [1]. The main Melodic sub-systems are:  

● Upperware: Applications and data models created through the modelling interfaces in the 
form of CAMEL, are provided as input to the Melodic Upperware. The job of the Upperware 
is to calculate optimal data placements and application deployments on dynamically 
acquired Cross-Cloud resources in accordance with the specified application and data 
models in CAMEL, as well as in consideration to the current Cloud performance, workload 
situation, and costs. An overview of the Upperware Components is shown in Figure 2, with 
further details in [1]. 

● Executionware: The Executionware is responsible for the actual deployment of the Cloud 
application and its monitoring infrastructure, as well as the corresponding publishing of 
measurement information to the Upperware. An overview of the Executionware 
Components is shown in Figure 3. 

● Integration layer: The components of the Melodic platform are integrated through two 
separate integration layers: the Control Plane and the Monitoring Plane (blue boxes in 
Figure 1), each bringing its own set of unique requirements. 
 
  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    7 

 
Figure 1: Overview of the Melodic architecture 

 

 

 
Figure 2: Overview of the Upperware Components 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    8 

 

Figure 3: High-level Executionware Architecture 

2.1 Software Components 

Table 1 lists the key components in Melodic for release 2.0, including their key features and the 
sub-systems they belong to. Further details are provided in D2.2 [1]. 

 

Table 1: Main components used in the Melodic software, with particular relevance to testing 
Component Description, key features Sub-system Framework 

CP Generator 
Profiling of the application and preparation of the 

constraint programming (CP) model 
Upperware PaaSage 

CP Solver Solving all types of problems encoded in the CP 
model using a gradient descent approach. 

Upperware PaaSage 

Solver-To-
Deployment 

Transforming CP models encompassing the 
solution produced by solvers to a provider-specific 

deployment model. 
Upperware PaaSage 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    9 

Adapter Deployment control and adaptation of multi-cloud 
applications 

Upperware PaaSage 

Cloudiator1 

Cloudiator 
(server part) 

Deploying an application and 
infrastructure to the Cloud 

Providers. 
Executionware 

Cloudiator is 
a result of the 

PaaSage 
project and 

was extended 
in the Cactos 

project. 

Cloudiator 
(VM part) 

Components deployed on the 
created Virtual Machines (VMs) 

Camunda2 with 
status/event 

service 

Camunda is an open-source workflow engine 
written in Java that can execute business 

processes 

Integration 
layer 

Melodic 

ESB 
Ensure communication between all components 

(The exception is CDO [1]) 
Integration 

layer 
Melodic 

EMS Gathering metrics Upperware Melodic 

DLMS Enables holistic management of the data    
lifecycle in Cross-Cloud environments 

Upperware Melodic 

Utility Generator 

An object acting on behalf of the application 
owner in the system, used to assign a utility value 
to a given deployment configuration proposed by 

the solver 

Upperware Melodic 

3  Testing environments  

A testing environment is a setup of software and hardware on which the testing team performs 
the testing of the software product. This setup consists of the physical setup which includes 
hardware, and a logical setup which may include a server operating system, a client operating 
system, a database server, a front end running environment, a browser (if we are referring to a 
web application), an IIS (version on server side) or any other software components required to run 
the software product. This testing setup is to be built on both ends, i.e. at the server side and at 
the client side. 

We used a total of four different testing environments for release 2.0, located at UiO and UULM. 
The corresponding parameters of the testing environments are provided in Section 3, Table 2. 
Non-functional and functional tests were executed on the same set of environments.  

                                                        
1 http://cloudiator.org/  

2 https://camunda.com/  

http://www.melodic.cloud/
https://en.wikipedia.org/wiki/Workflow_engine
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Business_process
https://en.wikipedia.org/wiki/Business_process
http://cloudiator.org/
https://camunda.com/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    10 

3.1 Environments used during release 2.0 

For Melodic release 2.0, we used eight virtual machines (VMs) for testing on which we installed 
the Melodic platform and the Cloudiator component. The specifications for the four different 
environments are provided in Table 2. 

Table 2: Specification of the environments 

Environment 
name 

Installed 
platform/compo

nent 
Machine name IP Details 

qb1 

Melodic qb1 158.39.75.33 
4CPU, 16GB of 

RAM, UiO 
Openstack 

Cloudiator bravo 158.37.63.149 
4CPU, 16GB of 

RAM, UiO 
Openstack 

qb2 

Melodic qb2 134.60.64.238 
4CPU, 16GB of 
RAM, UULM 
Openstack 

Cloudiator delta 134.60.64.104 
4CPU, 16GB of 
RAM, UULM 
Openstack 

qb3 

Melodic qb3 158.39.75.236 
4CPU, 16GB of 

RAM, UiO 
Openstack 

Cloudiator charlie 134.60.64.125 
4CPU, 16GB of 
RAM, UULM 
Openstack 

mel1 

Melodic mel1 158.39.75.140 
4CPU, 16GB of 

RAM, UiO 
Openstack 

Cloudiator echo 158.37.63.167 
4CPU, 16GB of 

RAM, UiO 
Openstack 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    11 

4  The Melodic 2.0 installation guide 

This section details the hardware and operating systems requirements for Melodic release 2.0, 
and describes how to install the framework. 

4.1 Requirements for Melodic's machine 

Table 3 details the hardware and operating system requirements for the current Melodic 
software, while Table 4 specifies the port numbers being used by Melodic. 

 

Table 3: Requirements for Melodic's machine 

OS Memory Storage 

Ubuntu 16.04 RAM: 32GB+ 60GB+ 
 

 
Table 4: Open port numbers required by Melodic 

Port Number Protocol Component Purpose 

22 TCP SSH Console 

8080-8099 TCP Components 

REST endpoints of Melodic 
components (generator, cp-solver, 
solver2deployment, adapter, esb, 
process) 

9001-10000 TCP   

2036, 3306 TCP CDO MySQL database 

80 TCP UI Cloudiator's web interface 

4001 TCP Lance etcd registry 

9000 TCP Cloudiator V2 components Cloudiator's REST API 

8080 TCP Axe Time-series database 

33034 TCP Lance rmi registry 

2222 TCP VMS Discovery Server  

3308 TCP DBAuth  

61616 TCP Esper sending metrics to JMS Queue 

443, 6443 TCP JWT Server authentication of users 

11211 TCP Memcache  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    12 

20000 TCP   

5005 TCP components connection from debugger 

2037 TCP   

389, 636 TCP ldap server managing users 

4.2 Melodic installation steps 

A full installation of Melodic involves installing both the Upperware and the Executionware 
components of Melodic. The following sections details two alternative ways of installing the two 
components. The first alternative describes how to install both components on the same virtal 
machine, while the second alternative describes how to install the two components on separate 
virtual machines. 

1. Installation of Upperware and Executionware components on the same virtual 

machine: 

- Login to the created virtual machine, for example using:   ssh username @<VM's IP > 
- Run the following command to download the installation files from the bitbucket repository 
(set branch to release 2.0): 

git clone https://bitbucket.7bulls.eu/scm/mel/utils.git 

cd ~/utils  

git checkout RC2.0 
 
- Run Melodic’s installation script: 

sudo ~/utils/melodic_installation/installMelodic.sh install_melodic_with_cloudiator 

 

- After installation, a new ".profile" is created in the home directory of the user. Load it by 
executing the following: 

cd ~/ 

 .   .profile 

 
- Now, the machine is ready to download and run the latest docker images from the Melodic 
and Cloudiator artefact repository. To download and start the components, run the following: 

drestart 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    13 

- Running this for the first time can take some time as Docker Swarm is being initialised. After 
the above command, components should be started. You can check the status by running the 
following two commands: 

dps 

mping 

 

The screenshot below shows part of the output after executing the dps and mping commands: 

 

In order to manage Melodic users, you will need to create a new Idap user by following the 
instructions at: https://confluence.7bulls.eu/display/MEL/Managing+of+users+in+Melodic. 

The credentials of your new user will be used in deploy requests to Mule.  

The process GUI should now be available at: 

http://{PUBLIC_MELODIC_IP}:8095      (admin:admin) 

2. Installation of Upperware and Executionware components on the separate virtual 

machines: 

- For the Upperware installation, please follow the same installation guide as provided above, 
with just one change: please replace the installation script parameter with the following (the 
third step): 

sudo ~/utils/melodic_installation/installMelodic.sh install_melodic 

 

http://www.melodic.cloud/
https://confluence.7bulls.eu/display/MEL/Managing+of+users+in+Melodic


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    14 

 

      - For the Executionware installation, please follow these instructions: 

Installation of Cloudiator using Docker (docker-compose).    

 install Docker: https://docs.docker.com/install/ 

 install docker-compose: https://docs.docker.com/compose/install/ 

 install git 

 git clone the repository:  
          git clone --recurse-submodules https://github.com/cloudiator/docker.git 

 edit the env-template to e.g. use own API-Key-Token 

 cp the env-template to .env: cp env-template .env 

 run docker-compose up 

Use: 

 REST-Server automatically starts on port 9000. 

 edit env-template 

if auth.mode=testmode: 

user 'testuser' will be generated in userDB and [auth.token] will be its valid Token 

 
    

4.3 Useful aliases 

Below you find some useful commands to manage Melodic components. 

   Commands: 

dps  – displays running Docker containers (an alias for sudo Docker images) 

mping  – tests connections to each of the components 

drestart  – stops and then starts all the Melodic's components 

dundeploy  – stops all components 

ddeploy  – starts all components 

~/logs$ tail -300f <component_name>.log        – displays the log of the selected component 

sudo docker stop <component_ID>          – stops the selected component 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    15 

5  Testing Guide 

This section describes the procedures for performing all activities within the testing processes.  
Each Test Case has an attached CAMEL model. Every created and included model specifies the 
testing application, including requirements, topology, metrics and credentials. 

5.1 How to execute Test Cases with attached CAMEL Models 

This section presents the Quality Assurance guide of testing Test Cases with attached CAMEL 
models. 

1. Login to the machine with the Melodic platform and the Cloudiator component installed 
2. Download the jar file from:   

https://s3.console.aws.amazon.com/s3/object/melodic.testing.data/cdo-uploader-

1.0.1SNAPSHOT-jar-with-dependencies.jar 

Download cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar 

a. In "/home/user/", create the hidden directory ".paasage" and put into this directory 
the configuration file for CDO named eu.paasage.mddb.cdo.client.properties which 
can be downloaded from: 
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/?region=us-east-

1&tab=overview 
b. In the eu.paasage.mddb.cdo.client.properties configuration file, change the IP 

address to the one of your virtual machine for the "host" property  
c. Run the jar file:  cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar 

       
3. Create the directory "models" in "/home/user” 
4. Download the respective CAMEL model needed for a test case from 

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data  (the required CAMEL 
Model is always attached in Test Case) 

5. Move the downloaded CAMEL model (having a .xmi postfix) into the "/home/user/models" 
directory 

6. By using the tools SoapUI or Postman execute the following steps: 
a. Create new REST project with URL 

              http://<VM's IP>:8088/api/frontend/deploymentProcess and body: 
 
 
 
 
 

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/object/melodic.testing.data/cdo-uploader-1.0.1SNAPSHOT-jar-with-dependencies.jar
https://s3.console.aws.amazon.com/s3/object/melodic.testing.data/cdo-uploader-1.0.1SNAPSHOT-jar-with-dependencies.jar
http://cdo-uploader-1.0.0-snapshot-jar-with-dependencies.jar/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/?region=us-east-1&tab=overview
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/?region=us-east-1&tab=overview
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    16 

Sample body 

# In "CamelModelName" user can use for example "TwoComponentApp" 

# Rest of the body doesn't need to be changed 

 

{ "applicationId": "CamelModelName",         "watermark": { 

             "user": "User-Test", 

         "system": "UI", 

         "date": "2016-02-28T16:41:41+0000", 

         "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002671" 

    } 

}  

 
b. Using the POST method, start the process of deploying an application using the 

selected provider. For example, if we use the website:   
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-
1#Instances:sort=launchTime we can check the created instances.  

c. For OneComponentApp, we copy the public URL of the created virtual machine and 
copy it to a new window in our browser. Then the AWS web page should be 
displayed. The AWS installation is included in the AmazonEC2.xmi Provider Model. 
We do not have to install it manually.  

d. Check that TwoComponentApp is created and installed on one provider (i.e. AWS). 
One virtual machine is created for the database and a second virtual machine is 
created for an application. We can open the AWS web page (as before), copy the IP 
of the application VM, and enhance it as follows: 
http://Virtual_machine_IP:9999/demo/all. If we open this URL on another web 
browser tab, the application website should be displayed. 

e. For the Test Cases where the user selects two different providers, one virtual 
machine is created on one provider and a second virtual machine on another 
provider. We can use for example AWS as the first provider, and Omistack as the 
second provider: https://omistack.e-technik.uni-ulm.de/dashboard/auth/login/. 
Then we can use the link: http://Virtual_machine_IP:9999/demo/all (as before) to 
deploy. 

 
 

http://www.melodic.cloud/
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#Instances:sort=launchTime
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#Instances:sort=launchTime


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    17 

6  Test Cases 

The test process starts at the very beginning of a project life cycle. During the Analysis and 
Design phase, the test team starts producing a Test Plan, as this should be prepared as early as 
possible. A Test Plan contains test cases, which are described in detail in the “D5.10 Quality 
Assurance Guide” deliverable [3]. 

A Test Case describes how to perform a specific test. The Test Case includes a set of test data, 
pre-conditions, expected results and post-conditions targeting a certain implementation, 
developed for a specific purpose or for the condition mapping to the test such as the execution of 
a program path, or to verify compliance with a specific requirement. Test Cases are created by 
the test team; either its members or the test leader. 

The Test Plan should also explicate the dependencies between the Test Cases (if needed), by 
clarifying which Test Cases should be executed before others. This whole exercise has three 
main benefits:  

● It allows the test team to understand the system to be developed  
● It serves as a review of the system specifications and requirements  
● It eases solving issues, as all parties (the test team and the development teams) have the 

same base data (the test data; input parameters for test cases, necessary to execute test 
cases and to reproduce bugs, if occurring during test case execution).   

6.1 New Test Cases created during Release 2.0 

In total, for release 2.0, 72 new Test Cases were created. Every Test Case was categorised into a 
particular non-functional or functional group according to the component’s functionality, as 
shown in Table 5. The groups not specific to a use case, are further described below the table. 
 
Table 5: Categories of new test cases in release 2.0 

Functional Test Cases groups Group ID 
Test Cases created during 

release 2.0 (summary) 

Cloudiator/Spark CLDTR 20 

DLMS DLMS 11 

CAS - use case application CAS 9 

Initial deployment INIT 3 

CE-Traffic – use case application CET 8 

Global reconfiguration GLOB 6 

Total  57 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    18 

Non-functional Test Cases groups   

Security – access control rules 

verification 
SEC 15 

 

● Cloudiator/Spark – This group contains all test cases related to Cloudiator V2 and Spark, 
including node candidates fetching, creation of VMs, Spark framework creation, Docker 
Container deployment, and BYO node creation. 

● DLMS – Test cases in this group include DLMS metrics gathering, CAMEL-DLMS data 
registration, Data life-cycle events, unified namespace, and utility value calculation.  

● Security (Access control rules verification) – Test cases referring to selective restrictions 
of access to a place or resource. Verification of authentication and authorization. 

● Initial deployment – This group contains all test cases related to the initial deployment of 
an application in the Melodic platform. 

● Global reconfiguration – Global reconfiguration refers to the reconfiguration of the  
application at  a  global  scope, where  a  new  solution  is  applied  globally  for  the  whole  
application, and not only on its specific parts (in contrast to local reconfiguration). Global 
reconfiguration test cases also verify the functionality of the EMS component. The role of 
EMS is to properly deliver events (produced according to Camel model specifications) to 
the Metasolver. 

6.2 Status of Test Cases executed during Release 2.0 

Table 6 lists the new executed Test Cases for Release 2.0, including a summary of each test case 
(where ‘T’ equals True/A Positive Test Case, and ‘F’ equals False/A Negative Test Case) in terms of 
its task corresponding identifier and name, as well as its execution status. 

 
Table 6: List of all executed Test Cases in release 2.0 

ID Summary Type Group Status 

UC-
CAS-8 

[T] Deployment According To 
Security Rule/s 

Non-
Functional 

CAS Passed 

UC-
CAS-7 

[T] Application Is Deployed Cross-
Cloud 

Functional CAS Passed 

UC-
CAS-6 

[T] Application Is Deployed On 1&1 
IONOS 

Functional CAS Passed 

UC-
CAS-5 

[T] Application Is Deployed On 
NordicStack 

Functional CAS 
Moved to 

Release 2.5 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    19 

UC-
CAS-4 [T] Application Is Deployed On OMI Functional CAS Passed 

UC-
CAS-3 [T] Application Is Deployed On AWS Functional CAS Passed 

UC-
CAS-2 

[T] Reconfiguration Happens 
Within Bounds Based On SLOs and 

UF 

Functional CAS Passed 

UC-
CAS-1 

[T] Multi-Component App Is 
Initially Correctly Deployed 

Functional CAS Passed 

UC-
CET-8 

[F] Deploy pySpark app on AWS and 
download packages via pip 

Functional CET In progress 

UC-
CET-7 

[F] Deploy pySpark app on AWS 
with additional compiled libraries 

for different platform 

Functional CET In progress 

UC-
CET-6 

[T] Deploy pySpark app on AWS 
with additional compiled libraries 

Functional CET In progress 

UC-
CET-5 

[T] Deploy pySpark app on AWS 
with additional libraries 

Functional CET In progress 

UC-
CET-4 [T] Deploy Spark app on AWS Functional CET In progress 

UC-
CET-3 

[T] Deploy instance with                  
GB RAM >= 8 

Functional CET In progress 

UC-
CET-2 

[T] Deploy app on AWS in United 
Kingdom 

Functional CET In progress 

UC-
CET-1 

[F] Request VM with exactly 3 cores 
at AWS 

Functional CET In progress 

BD5 [T] Execute Java based Spark Job Functional CLDTR Passed 

BD4 [T] Execute Python based Spark Job Functional CLDTR Passed 

BD3 [T] Use maximum resources 
available for Spark Job 

Functional CLDTR Passed 

BD2 [T] Execute Spark Job with 
concrete Spark Job requirements 

Functional CLDTR Passed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    20 

BD1 [T] Deploy Spark Cluster for 2 Spark 
Workers 

Functional CLDTR Passed 

VM3 [T] Create VM over two different 
provider's resources 

Functional CLDTR 
Moved to 

Release 2.5 

VM2 [T] Create VM on UULM OpenStack 
resource 

Functional CLDTR Passed 

VM1 [T] Create VM on ProfitBricks 
resource 

Functional CLDTR 
Moved to 

Release 2.5 

NC3 [T] Successfully retrieve Node 
Candidates for ProfitBricks 

Functional CLDTR 
Moved to 

Release 2.5 

NC2 
[F] Assure that wrong cloud 

configuration forbids retrieval of 
Node Candidates 

Functional CLDTR Passed 

NC1 [T] Successfully retrieve Node 
Candidates for UULM OpenStack 

Functional CLDTR Passed 

AC-13 
[F] At least one node of Deployment 
Instance Model (given to Adapter) 

has less than 16 GB RAM 

Non-
functional 

SEC Passed 

AC-12 
[T] The nodes of Deployment 

Instance Model (given to Adapter) 
have 16 GB RAM or more (each) 

Non-
functional 

SEC Passed 

AC-11 

[F] Deployment Instance Model 
(given to Adapter) has a total 
number of GB RAM (across all 

nodes) higher than 64 

Non-
functional 

SEC Passed 

AC-10 

[T] Deployment Instance Model 
(given to Adapter) has a total 
number of GB RAM (across all 
nodes) lower or equal than 64 

Non-
functional 

SEC Passed 

AC-9 

[F] Deployment Instance Model 
(given to Adapter) contains at least 

one node with NO location 
information 

Non-
functional 

SEC Passed 

AC-8 
[F] Deployment Instance Model 

(given to Adapter) contains at least 
one node NOT located in DE 

Non-
functional 

SEC Passed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    21 

AC-7 
[T] Deployment Instance Model 

(given to Adapter) contains node 
located in DE (all of them) 

Non-
functional 

SEC Passed 

AC-6 
[F] At least one node of Deployment 
Instance Model (given to Adapter) 

has exactly 1 core 

Non-
functional 

SEC Passed 

AC-5 
[T] The nodes of Deployment 

Instance Model (given to Adapter) 
have more than 1 core (each) 

Non-
functional 

SEC Passed 

AC-4 

[F] Deployment Instance Model 
(given to Adapter) has a total 

number of cores (across all nodes) 
higher than 4 

Non-
functional 

SEC Passed 

AC-3 

[T] Deployment Instance Model 
(given to Adapter) has a total 

number of cores (across all nodes) 
lower or equal than 4 

Non-
functional 

SEC Passed 

AC-2 
[F] Successfully connect to 

Authorization Server and get a 
Negative response 

Non-
functional 

SEC Passed 

AC-1 
[T] Successfully connect to 

Authorization Server and get a 
Positive response 

Non-
functional 

SEC Passed 

T7.4 [F] New plan deployment 
authorisation 

Non-
functional 

SEC Passed 

T7.3 [T] New plan deployment 
authorisation 

Non-
functional 

SEC Passed 

T7.2 [F] ESB Authentication 
Non-

functional 
SEC Passed 

T7.1 [T] ESB Authentication 
Non-

functional 
SEC Passed 

T6.6 [T] Dynamic scalability (using a 
single public Cloud location) 

Non-
functional 

Performance3 Passed 

                                                        
3 Scenario group from JIRA, as used for Release 1.0/1.5 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    22 

T6.3 [T] Temporary unavailability of 
Cloud Provider 

Non-
functional 

Fault handling3 
Moved to 

Release 2.5 

T1.5b 

[T] Installation and deployment of 
FCR application, where one 

component is installed in a Docker 
container and another on a normal 

VM on two different Cloud 
Providers 

Functional INIT 
Moved to 

Release 2.5 

T1.5a 

[T] Installation and deployment of 
FCR application in Docker 

containers on two different Cloud 
Providers 

Functional INIT 
Moved to 

Release 2.5 

T1.4 
[T] Installation and deployment of 

FCR application in Docker 
container on one Cloud Provider 

Functional INIT 
Moved to 

Release 2.5 

T4.9  [T]Global reconfiguration - FCR, 
time > 3600s 

Functional GLOB Passed 

T4.8 [T]Global reconfiguration - FCR, 
time < 3600s 

Functional GLOB Passed 

T4.7 [T]Global reconfiguration - 
GenomWithSpark, time < 3600s 

Functional GLOB Passed 

T4.6 [T]Global reconfiguration - 
GenomWithSpark, time > 3600s 

Functional GLOB Passed 

T4.5 
[T]Global reconfiguration - 

GenomWithSpark deployed on 
OpenStack Cloud Provider 

Functional GLOB Passed 

T4.4 
[T] Global reconfiguration - 

GenomWithSpark deployed on 
AWS Cloud Provider 

Functional GLOB Passed 

U.5 
[T] Successfully retrieve utility 

value at utility generator based on 
cost algorithm 

Functional DLMS In progress 

U.4 
[T] Successfully retrieve utility 

value at utility generator based on 
total utility 

Functional DLMS In progress 

U.3 
[T] Successfully retrieve utility 

value at utility generator based on 
data-aware algorithm 

Functional DLMS In progress 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    23 

U.2 
[T] Successfully retrieve utility 

value at utility generator based on 
dc-aware algorithm 

Functional DLMS In progress 

U.1 
[T] Successfully retrieve utility 

value at utility generator based on 
affinity-aware algorithm 

Functional DLMS In progress 

N.1 [T] Successfully mount data 
sources under alluxio cluster 

Functional DLMS Passed 

M.3 
[T] Successfully read DataModel 
from CAMEL and register data 

sources in the DLMS 

Functional DLMS Passed 

M.2[ 

[T] Successfully retrieve data 
metrics from configured mysql 

data source in the DLMS 
algorithms 

Functional DLMS In progress 

M.1 

[T] Successfully retrieve data 
metrics from configured alluxio 

data sources in the DLMS 
algorithms 

Functional DLMS In progress 

DLMS1 [T] Deploy working DLMS Agent Functional DLMS In progress 

DL.1 
[T] Successfully execute data life-
cycle event using DLMS Agent on 

the nodes 

Functional DLMS In progress 

DEP4 [T] Deploy dockerized application 
from private registry 

Functional CLDTR Passed 

DEP3 [T] Deploy application with native 
and dockerized component 

Functional CLDTR Passed 

DEP2 [T] Deploy dockerized application Functional CLDTR Passed 

DEP1 [T] Deploy native application Functional CLDTR Passed 

 

The whole content of the executed Test Cases during release 2.0 can be found in Appendix A, 
‘Test Cases Release 2.0’. 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    24 

6.3 Regression Tests 

Regression testing is the process of testing changes to computer programs to make sure that 
previously developed and tested parts of the program still works after the newly added changes. 
Regression testing is a normal part of the program development process and, in larger 
companies, it is done by code testing specialists. Test department coders develop code test 
scenarios and exercises that will test new units of code after they have been written. These test 
cases form what becomes the test bucket. Before a new version of a software product is released, 
the old test cases are run against the new version to make sure that all the old features still work.  

Regression tests for Melodic release 2.0 were executed for those components of the Melodic 
platform in which the most substantial changes have been implemented. Parts of the old test 
cases were archived due to obsolete features, and new test cases referring to new functionality 
have been created. Table 7 provides a status overview of the regression tests of release 2.0. 

 
Table 7: Status of regression tests executed during release 2.0 

Summary Type Group Status 

Regression (release 2.0) : TwoComponentApp 
deployment on One Cloud Provider 

Functional Initial Deployment Passed 

Regression (release 2.0) : TwoComponentApp 
deployment on Two different Cloud Providers 

Functional Initial Deployment Passed 

Regression (release 2.0) : Utility function FCR Functional Reasoning Related Passed 

Regression (release 2.0) : Custom raw metric - 
FCR 

Functional Metric Management Passed 

Regression (release 2.0) : Temporary 
unavailability of BPM 

Non-
functional 

Fault Handling Passed 

Regression (release 2.0) : Temporary 
unavailability of particular components 

Non-
functional 

Fault Handling Passed 

Regression (release 2.0) : High Availability 
Component configuration 

Non-
functional 

Fault Handling Passed 

Regression (release 2.0) : Global 
reconfiguration - FCR, time=3600s 

Functional 
Global 

Reconfiguration 
Passed 

Regression (release 2.0) : Counting Resource 
Overhead of Melodic instance introduced 
over its host 

Non-
functional 

Performance Passed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    25 

7  Bugs 

In Software testing, when the expected and the actual behavior is not matching, an incident will 
be raised. An incident may be a bug. It is a programmer's fault when a programmer intended to 
implement a certain behavior, but the code fails to correctly conform to this behavior because of 
incorrect implementation. It is also known as a defect.  

7.1 Reported bugs 

During release 2.0, 140 new bugs were reported. Table 8 shows the latest status of the 
corresponding bugs. 
 

Table 8: List of bugs reported in release 2.0 

Components Summary Priority Status 

Adapter Missing "Authorization" header error when 
security is turned off 

Highest Closed 

Adapter NullPointer during adding Process: Response code 
400 mapped as failure 

High Closed 

Adapter Job was not configured in Colosseum - schedule 
cannot be created 

Medium Closed 

Adapter NullPointer after successful deployment (Adapter) Medium Closed 

Adapter ApplySolution not received High Closed 

Adapter Runtime Exception in MonitorConverter in Adapter Medium Closed 

Adapter Error in Adapter while extracting response for 
monitors 

Medium Closed 

Adapter Wrong applicationId in adapter Medium Closed 

Adapter Pre-authorization : 'Adapter' cannot 'DEPLOY' 
resource 'deployment-model' 

High Closed 

Adapter Error in Adapter during reconfiguration - trying to 
create new machine instead of deleting 

Medium Closed 

Adapter Problem with creating ProcessTask for node in 
Adapter 

Medium Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    26 

Adapter NPE in the Adapter during deleting monitors Medium Closed 

Adapter Error after reconfiguration Highest Closed 

Adapter Adapter is continuously waiting for result from 
queue 

Medium Closed 

Adapter No such vertex exception during reconfiguration Highest Closed 

Adapter Wrong adapter task order Medium Closed 

Camel editor location.camel is not linked in the camel model Medium Closed 

Camel editor, 
CP Generator 

Add environment support (support missing) Medium Closed 

Camel editor Error by using new Camel - class 
OCLinEcoreEObjectValidator not found 

High Closed 

CDO Server Error during uploading xmi files (camel version 2) Medium Closed 

CDO Server CDO image not pullable High Closed 

CDO Server CDO NPE when scaling was triggered Medium Closed 

CDO Server CDO NPE Medium Closed 

CDO Server ‘The string resource_ UI duplicate” cloud not 
located error 

Medium Closed 

CDO Server, 
CP Generator 

CDO Server error - "Too many tables; MySQL can 
only use 61 tables in a join" 

High Closed 

Cloudiator Unable to create a VM with specified number of 
disk storage 

Medium Won’t Fix 

Cloudiator Docker-compose.yml file update error High Closed 

Cloudiator Lance agent fail to deploy Low Closed 

Cloudiator Error during deleting Node: compute service not 
found 

Medium Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    27 

Cloudiator Error during reading metric in visor High In progress 

Cloudiator Openstack: error during connection Medium Closed 

Cloudiator MySQL’s image problem during docker deployment Lowest Postponed 

Cloudiator NPE in monitoring-agent High Closed 

Cloudiator Failure during deletion of node Low In Progress 

Cloudiator Spark deployment - Duplicate entry 'spark-
dummy-id' 

Medium Closed 

Cloudiator FaaS agent compile errors due to changes in 
common 

Medium Closed 

Cloudiator Cloudiator 2 - Error when retrieving Node 
Candidates 

Medium Closed 

Cloudiator Checking queue status – wrong process id High Closed 

Cloudiator Process ids do not match with corresponding ids 
from queues 

High Closed 

Cloudiator Unexpected error while processing request userId: 
"admin" 

High Closed 

Cloudiator Queue status not refreshed for GET /queue Medium Closed 

Cloudiator nodeGroups incorrectly updated High Closed 

Cloudiator Improper LB comunication (FCRnew application) High Closed 

Cloudiator Error sending message on topic 
NodeCandidateRequestResponse 

High Closed 

Cloudiator Node candidate query - RecordTooLargeException High Closed 

Cloudiator preInstallCommand doesn’t work High Closed 

Cloudiator RequirementAttribute in findNodeCandidate 
method doesn’t respond 

High Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    28 

Cloudiator Various locations for Node Candidates in 
Cloudiator2 needs to be added 

Medium Closed 

Cloudiator Cannot determine model class of name: <SINGLE> High Closed 

Cloudiator Failure during installation of Cloudiator tools Medium Closed 

Cloudiator 
Deployment of docker process fails: "Container 
reached illegal state CREATION_FAILED while 
waiting for state READY" 

High Closed 

Cloudiator Cannot deploy docker components: invalid publish 
opts format 

Medium Closed 

Cloudiator 
Cannot create Docker Job - "Unknown entity: 
io.github.cloudiator.persistance.DockerTaskInterfa
ceModel" 

High Closed 

Cloudiator Node-agent: receiving new node request - 
NullPointer 

Medium Closed 

Cloudiator Error during starting node – impossible to set up 
nodes 

Highest Closed 

Cloudiator Docker deployment - unable to resolve host High Closed 

Cloudiator Spark arguments deployment – improper naming 
of parameters 

Medium Closed 

Cloudiator Openstack instance doesn't work properly Medium Closed 

Cloudiator Exception during installing Docker Interface High Closed 

Cloudiator Spark deployment - application arguments 
incorrect order 

High Closed 

Cloudiator External IP during starting Node doesn’t work High Closed 

Cloudiator Dynamic ENV variables not set High Closed 

Cloudiator Cloud with id {ID} was not found High Closed 

Cloudiator Spark deployment - unknown host exception High Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    29 

Cloudiator 
Script configuration application: error during 
performing install command - E: dpkg was 
interrupted 

High Closed 

Cloudiator Unable to install application on Amazon image High Closed 

Cloudiator Error during execution of virtual machine creation Medium Closed 

Cloudiator Spark application doesn’t work with 1,2G data Medium Closed 

Cloudiator Security group doesn’t open port 80 Medium Closed 

Cloudiator Error creating lifecycle client - "Connection 
refused" 

Highest Closed 

Cloudiator NPE in lance - IMPORTANT Highest Closed 

Cloudiator Monitors - unable to get High Closed 

Cloudiator Exception Could not deploy task TaskImpl for 
Spark 

High Closed 

Cloudiator Cloudiator v0.2.0 error during deploying an 
application 

High Closed 

Cloudiator 
Error during 
applicationDeploymentNotificationRequest on 
OpenStack 

Medium Closed 

Cloudiator Incorrect value of cores reported by the Cloudiator 
2.0 discovery service 

Lowest Postponed 

Cloudiator Spark deployment - multiple application added for 
N-workers deployment 

Medium In Progress 

Cloudiator Public-private IPs issue when deploying from UiO 
to AWS 

Highest Closed 

Cloudiator JMS needs to be added as a different value Highest Closed 

Cloudiator Spark app deployment issue Medium Closed 

Cloudiator Native application deployment – spark doesn’t 
work correctly 

Medium Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    30 

Cloudiator Docker installation process hangs on 
docker_retry.sh script 

Lowest Postponed 

Cloudiator Port 8998 is not listen for Spark-agent High Closed 

Cloudiator Exception during process removing High Closed 

Cloudiator UpdateAction not executed High Closed 

Cloudiator Error during creating node lambda – improper 
naming 

Medium Closed 

Cloudiator Cloudiator 2 default logging causes huge memory 
usage on hard disk 

Medium Closed 

Cloudiator NodeType is null Medium Closed 

Cloudiator Missing notification after removing process High Closed 

Cloudiator AddMonitor for the same metric on different 
process fails 

Highest Closed 

Cloudiator Lance app – improper version in scheduler-agent High Closed 

Cloudiator NPE in node-agent Medium Closed 

Cloudiator Livy can’t deploy pySpark app Medium Closed 

Cloudiator Error by killing the process High Closed 

Cloudiator Spark-master container not started Medium Closed 

Cloudiator Failure during deployment on OpenStack Medium Closed 

Cloudiator Installation fails on nodes Low Closed 

Cloudiator Error during creating lifecycle client Medium Closed 

Cloudiator Creation and updates on nodes very slow High Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    31 

Cloudiator Lance agent doesn’t execute preInstall script Medium Closed 

Cloudiator Cross cloud deployment incorrect value Medium Closed 

Cloudiator No communication is attached to this port thus the 
req is never fulfilled 

Medium Closed 

Cloudiator SQL Constraint Exception with Monitors in 
monitoring-agent 

Highest Closed 

Cloudiator Instance error (docker container failed) not 
propagated 

Medium New 

Cloudiator Baguette client is sometimes installed on only one 
of two instances 

Medium Closed 

Cloudiator Cloudiator doesn’t start with initial drestart after 
fresh installation 

Medium Closed 

Cloudiator Cloudiator first run fails iflux container Low Closed 

CP Solver,    
CP Generator 

Segmentation fault in CPSolver Highest Closed 

CP Generator NullPointer when Camel Model has no application 
model 

Low Closed 

CP Generator NPE during creation a constraint Medium Closed 

CP Generator Error during creating image (docker requirements) 
- ExampleWithDocker 

Medium Closed 

CP Solver CpSolver crashes High Reopen 

CP Solver NullPointer exception during finding the cheapest 
Node Candidate 

High Closed 

CP Solver Exception in CPSolver when Metric Model is 
missing 

Medium Closed 

DLMS CDO doesn’t see xmi files when DLMS component 
is integrated 

Medium Closed 

DLMS 404 Error during sending notification High Closed 

DLMS NullPointerException in DlmsDiffBundle class Medium Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    32 

DLMS Incorrect dataModelNotification in the DLMS Medium Closed 

DLMS DLMSUtility does not return the utility value during 
the initial deployment 

Medium Closed 

DLMS Alluxio fails to register S3 data source Medium Closed 

EMS Deserializing MonitorsDataResponseImpl object – 
new value is needed 

High Closed 

EMS ActiveMQ – could not connect to broker URL Medium Closed 

EMS Metrics not received at deployed machine’s EMS Medium Closed 

EMS EMS does not take metrics from the last interval Medium Closed 

EMS NPE in EMS logs Medium Closed 

EMS Eu.melodic.event.translate.analyze.Model is not 
implemented 

Medium Closed 

SolverTo 
Deployment 

Solver2DDeployment has wrong locale/format Medium Closed 

EMS Missing header with token in request with metric 
to Metasolver 

Medium Closed 

Environment Paused Servers on OpenStack Highest Closed 

Environment Connection reset by peer Low In progress 

Environment Empty NC exception with AWS Medium Closed 

Meta Solver ActiveMQSession in Metasolver is closed Medium Closed 

Meta Solver NPE in Metasolver during updating metric values Medium Closed 

Meta Solver Metasolver does not update all needed metric 
values in CP model 

High Closed 

Spark Postman (Spark sample collation) - requests 
update 

Low Closed 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    33 

Spark UiO dualstack network configuration Medium Closed 

Utility 
Generator 

NullPointerException in DLMSConverter class Medium Closed 

JIRA Jira’s workflow incomplete High Closed 

Mule Mule exception “UnresolvedAddressException” Medium Closed 

Camel Editor Camel new-oxygen build failed Medium Closed 

OpenStack Issue during deployment on Openstack – improper 
credentials 

Medium Closed 

 
 
Table 9 lists bugs reported during earlier releases of Melodic (release 1.0 and release 1.5) and their 
current statuses as of Melodic Release 2.0. 
 

Table 9: List of bugs reported during previous releases and resolved in release 2.0 

Components Summary Priority Status 

Meta Solver Meta solver TimeoutException Highest Closed 

Cloudiator Incorrect value of cores reported by the 
Cloudiator 2.0 discovery service 

Medium Closed 

Cloudiator Unable to create a VM with specified number of 
disk storage 

Medium Won’t fix 

Esper Unable to fully deploy applications on t2.micro 
machine types 

Medium Closed 

 
 
 
 
 
 
 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    34 

8  Summary 

This deliverable presents the Melodic Release 2.0 and the corresponding new test cases for the 
release. The following information has been provided in the document:  

1. An introduction to Melodic release 2.0 
2. A high-level overview of the Melodic architecture 
3. The testing environments for Melodic release 2.0 
4. A Melodic platform installation guide 
5. Testing guides on how to execute Test Cases with attached CAMEL Models 
6. Test Cases executed for Melodic release 2.0 
7. Reported bugs in release 2.0 and regression tests 

 

 

 

 

 

 

 

 

 

 

9  References 

[1]   F. Zahid et al., "D2.2 Architecture and initial feature definitions", The Melodic H2020 Project 
Deliverable D2.2, 2018.  

[2]   P. Skrzypek et al., "D5.03 Security requirements & design", The Melodic H2020 Project 
Deliverable D5.03, 2018.  

[3]   M. Jakubczyk et al., "D5.10 Quality Assurance Guide", The Melodic H2020 Project Deliverable 
D5.10, 2017 

[4]   K. Materka et al., “D5.06 Test strategy and Environnment”, The Melodic H2020 Project 
Deliverable D5.06, 2018 

  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    35 

Appendix A – Test Cases Release 2.0 

DL.1 [T] Successfully execute data life-cycle event using DLMS Agent on the nodes 

Input Conditions: 

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one data source registered in the DLMS. 
3. At least one component-data source relation is defined. 
4. At least one life-cycle event registered in the DLMS agent. 

Steps To Complete: 

1. Login to the machine with installed MELODIC. 
2. Register an event using the REST interface of the DLMS agent on a commissioned 

VM.  

Expected results: 

1. Script defined in the life-cycle event executed. 

U.5 [T] Successfully retrieve utility value at utility generator based on cost algorithm 

Input Conditions: 

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least two cloud providers used in the deployment. 
3. At least one data source registered in the DLMS. 
4. At least one component-data source relation is defined. 

Steps To Complete: 

1. Login to the machine with installed MELODIC. 

Expected results: 

1. A double value representing the utility received. 

U.4 [T] Successfully retrieve utility value at utility generator based on total utility 

Input Conditions: 

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least five historical deployments. 
3. Total utility metric configured. 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-156


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    36 

Steps To Complete: 

1. Login to the machine with installed MELODIC. 

Expected results: 

1. A double value representing the utility received. 

U.3 [T] Successfully retrieve utility value at utility generator based on data-aware 
algorithm  

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one data source registered in the DLMS 
3. At least one component-data source relation is defined 
4. Dynamic data size using CAMEL / Metadata schema 

Steps To Complete:  

1. Login to the machine with installed MELODIC 
2. Deploy PeopleFlow.xmi (attached) 

Expected results:  

1. A double value representing the utility received 

U.2 [T] Successfully retrieve utility value at utility generator based on dc-aware algorithm 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least two locations used in the deployment. 

Steps To Complete: 

1. Login to the machine with installed MELODIC. 

Expected results: 

1. A double value representing the utility received. 

 

 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-153
https://jira.7bulls.eu/browse/MT-153
https://jira.7bulls.eu/browse/MT-152


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    37 

U.1 [T] Successfully retrieve utility value at utility generator based on affinity-aware 
algorithm 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one data source registered in the DLMS. 
3. At least one component-data source relation is defined. 

Steps To Complete:  

1. Login to the machine with installed MELODIC. 
2. Deploy PeopleFlow.xmi (attached). 

Expected results:  

1. A double value representing the utility received. 

 

N.1 [T]  Successfully mount data sources under alluxio cluster 

Input Conditions: 

1. Melodic Configured and Running. 
2. At least one data source registered in the DLMS. 
3. Alluxio has the directory melodic. Otherwise, create it with command:=> alluxio fs mkdir 

/melodic. 

Steps To Complete:  

1. Login to the machine with installed MELODIC. 
2. Deploy PeopleFlow.xmi (attached). 

Expected results:  

1. The data source is successfully mounted. 
2. Log has the following information: Mounted s3a://datasourcetest at 

/melodic/S3BucketData 
3. The command "alluxio fs ls /melodic/S3BucketData" shows the following: 

DIR /melodic/S3BucketData/test 

 

 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-151
https://jira.7bulls.eu/browse/MT-151
https://jira.7bulls.eu/browse/MT-150


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    38 

M.3[T] Successfully read DataModel from CAMEL and register data sources in the DLMS 

Input Conditions: 

1. Melodic Configured and Running. 
2. At least one data source registered in the DLMS. 
3. Alluxio has the directory melodic. Otherwise, create it with command:=> alluxio fs mkdir 

/melodic. 

Steps To Complete:  

1. Login to the machine with installed MELODIC. 
2. Deploy the attached PeopleFlow2.xmi. 
3. Use the following URL to check the list of stored data sources:  <url>/ds 

 
Expected results:  

1. The data source is successfully mounted. 
2. Log has the following information: Mounted s3a://datasourcetest at 

/melodic/S3BucketData 
 

DEP4 [T] Deploy dockerized application from private registry 

Input Conditions:  

1. Image in private registry present. 

Steps To Complete:  

1. Create a Job with the Docker-Interface and specify the private registry with valid 
credentials to retrieve image. 

Expected results:  

1. Application successfully deployed from private registry, running and usable. 

 

DEP3 [T] Deploy application with native and dockerized component 

Input Conditions:  

1. Scripts present. 
2. Image present. 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-149
https://jira.7bulls.eu/browse/MT-145
https://jira.7bulls.eu/browse/MT-144


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    39 

Steps To Complete:  

1. Create a job which contains a task based on the LanceInterface and a second component 
based on the  DockerInterface. 

2. Check DEP1 and DEP2 for examples. 

Expected results:  

1. Application and both components successfully deployed, running and usable 
 

DEP2 [T] Deploy dockerized application 

Input Conditions:  

1. Image present in public Docker repository.  

Steps To Complete:  

1. Create a Job with the DockerInterface, examples need to be added. 
             http://cloudiator.org/rest-swagger/#operation/addJob 

 

Sample body  
// job 

 

{ 

    "name": "TwoCompDocker_JOB", 

    "tasks": [{ 

            "name": "Component_MySql", 

            "executionEnvironment": "DOCKER", 

            "taskType": "SERVICE", 

            "ports": [ 

                    { 

                        "port":3306, 

                        "type":"PortProvided", 

                        "name":"ComponentMySqlPort" 

                    } 

                ], 

            "interfaces": [{ 

                    "type": "DockerInterface", 

                    "dockerImage": "mariadb", 

                    "environment":{ 

                        "MYSQL_ROOT_PASSWORD": "admin", 

                        "MYSQL_USER": "melodic", 

                        "MYSQL_PASSWORD": "testpwd", 

                        "MYSQL_DATABASE": "wordpress", 

                        "port": "3306:3306" 

                    } 

                } 

            ] 

        }, 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-143
http://cloudiator.org/rest-swagger/#operation/addJob


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    40 

        { 

            "name": "Component_Wordpress", 

            "executionEnvironment": "DOCKER", 

            "taskType": "SERVICE", 

            "ports": [ 

                    { 

                        "isMandatory":true, 

                        "type":"PortRequired", 

                        "name":"DBRequiredPort" 

                    }, 

                    { 

                        "port":80, 

                        "type":"PortProvided", 

                        "name":"ComponentWordpressPort" 

                    } 

                ], 

            "interfaces": [{ 

                    "type": "DockerInterface", 

                    "dockerImage": "wordpress", 

                    "environment":{ 

                        "WORDPRESS_DB_HOST": 

"$PUBLIC_DBRequiredPort", 

                        "WORDPRESS_DB_USER": "melodic", 

                        "WORDPRESS_DB_PASSWORD": "testpwd", 

                        "WORDPRESS_DB_NAME": "wordpress", 

                        "port":"80:80" 

                    } 

                } 

            ] 

        } 

    ], 

    "communications": [ 

        { 

            "portRequired":"DBRequiredPort", 

            "portProvided":"ComponentMySqlPort" 

        } 

 

 ] 

}             
 

Expected results:  

1. Application successfully deployed, running and usable. 

 

 

 

 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    41 

DEP1 [T] Deploy native application 

Input Conditions:  

1. UULM OpenStack configured as Cloud. 
2. Node Candidates retrieved successfully. 
3. Scripts present. 

 
Steps To Complete: 

1. Create (native) job via LanceInterface. 

Sample body  
{ 
  "name":"mediawiki", 
  "tasks":[ { 
    "name":"loadbalancer", 
    "executionEnvironment":"SPARK", 
    "taskType":"SERVICE", 
    "ports":[ { 
      "type":"PortProvided", 
      "name":"LBPROV", 
      "port":80 
      }, 
      { 
      "type":"PortRequired", 
      "name":"LOADBALANCERREQWIKI", 
      "isMandatory":"false", 
      "updateAction":"./mediawiki-tutorial/scripts/lance/nginx.sh configure" 
      } 
    ], 
    "interfaces":[ { 
      "containerType":"DOCKER", 
      "type":"LanceInterface", 
      "preInstall":"sudo apt-get -y update && sudo apt-get -y install git && git clone 
https://github.com/dbaur/mediawiki-tutorial.git", 
      "install":"./mediawiki-tutorial/scripts/lance/nginx.sh install", 
      "start":"./mediawiki-tutorial/scripts/lance/nginx.sh startBlocking" 
      } 
    ], 
    "requirements":[ { 
      "constraint":"nodes->forAll(hardware.cores <= 2)", 
      "type":"OclRequirement" 
     }, 
     { 
      "constraint":"nodes->forAll(hardware.ram <= 2048)", 
      "type":"OclRequirement" 
     } 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-142


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    42 

   ] }, 
  { 
    "name":"wiki", 
    "executionEnvironment":"SPARK", 
    "taskType":"SERVICE", 
    "ports":[ { 
      "type":"PortRequired", 
      "name":"WIKIREQMARIADB", 
      "isMandatory":"true" 
      }, 
      { 
      "type":"PortProvided", 
      "name":"WIKIPROV", 
      "port":80 
    } ], 
    "interfaces":[ { 
      "type":"LanceInterface", 
      "containerType":"DOCKER", 
      "preInstall":"sudo apt-get -y update && sudo apt-get -y install git && git clone 
https://github.com/dbaur/mediawiki-tutorial.git", 
      "install":"./mediawiki-tutorial/scripts/lance/mediawiki.sh install", 
      "postInstall":"./mediawiki-tutorial/scripts/lance/mediawiki.sh configure", 
      "start":"./mediawiki-tutorial/scripts/lance/mediawiki.sh startBlocking" 
    } ], 
    "requirements":[ { 
      "constraint":"nodes->size() >= 5", 
      "type":"OclRequirement" 
      }, 
      { 
      "constraint":"nodes->forAll(hardware.cores <= 2)", 
      "type":"OclRequirement" 
      }, 
      { 
      "constraint":"nodes->forAll(hardware.ram <= 2048)", 
      "type":"OclRequirement" 
    } ] 
  }, 
  { 
    "name":"wordCount", 
    "executionEnvironment":"SPARK", 
    "taskType":"SERVICE", 
    "ports":[ { 
      "type":"PortRequired", 
      "name":"SPARKREQMARIADB", 
      "isMandatory":"true" 
    } ], 
    "interfaces":[ { 
      "type":"SparkInterface", 
      "file":"http://example.com", 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    43 

      "className":"MainClass" 
    } ], 
    "requirements":[ { 
      "constraint":"nodes->forAll(hardware.cores <= 2)", 
      "type":"OclRequirement" 
      }, 
      { 
      "constraint":"nodes->forAll(hardware.ram <= 2048)", 
      "type":"OclRequirement" 
    } ] 
    }, { 
    "name":"database", 
    "executionEnvironment":"SPARK", 
    "taskType":"SERVICE", 
    "ports":[ { 
      "type":"PortProvided", 
      "name":"MARIADBPROV", 
      "port":3306 
    } ], 
    "interfaces":[ { 
      "type":"LanceInterface", 
      "containerType":"DOCKER", 
      "preInstall":"sudo apt-get -y update && sudo apt-get -y install git && git clone 
https://github.com/dbaur/mediawiki-tutorial.git", 
      "install":"./mediawiki-tutorial/scripts/lance/mariaDB.sh install", 
      "postInstall":"./mediawiki-tutorial/scripts/lance/mariaDB.sh configure", 
      "start":"./mediawiki-tutorial/scripts/lance/mariaDB.sh startBlocking" 
    } ], 
    "requirements":[ { 
      "constraint":"nodes->forAll(hardware.cores <= 2)", 
      "type":"OclRequirement" 
      }, { 
      "constraint":"nodes->forAll(hardware.ram <= 2048)", 
      "type":"OclRequirement" 
    } ] 
  } ], 
  "communications":[ { 
    "portRequired":"WIKIREQMARIADB", 
    "portProvided":"MARIADBPROV" 
    }, { 
    "portRequired":"LOADBALANCERREQWIKI", 
    "portProvided":"WIKIPROV" 
    }, { 
    "portRequired":"SPARKREQMARIADB", 
    "portProvided":"WIKIPROV" 
  } ] 
} 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    44 

Expected results:  

1. Application successfully deployed, running and usable. 

 

DLMS1 [T] Deploy working DLMS Agent  

Input Conditions:  

1. Node was created (see VM creation). 

Steps To Complete:  

1. Trigger DLMS Agent installation for the created node via                 
http://cloudiator.org/rest-swagger/#operation/installTools   

Expected results:  

1. SSH into node and verify that DLMS agent is running. 

 

BD5 [T] Execute Java based Spark Job 

Input Conditions:  

1. UULM OpenStack configured as Cloud. 
2. Node Candidates retrieved successfully. 
3. Node Candidates are configured via API for the use with Spark. 

Steps To Complete: 

1. Execute Java create job: 
 

Sample body  
// Java - create job 
{ 
    "name": "JAVA_JOB", 
    "tasks": [{ 
            "name": "Component_Worker", 
            "executionEnvironment": "SPARK", 
            "taskType": "BATCH", 
            "ports": [], 
            "interfaces": [{ 
                    "type": "SparkInterface", 
                    "file": "https://s3-eu-west-
1.amazonaws.com/melodic.testing.data/mdfs/spark_java/SparkPi/sparkpi_2.10-1.0.jar", 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-141
http://cloudiator.org/rest-swagger/#operation/installTools
https://jira.7bulls.eu/browse/MT-138


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    45 

                    "className": "SparkPi", 
                    "arguments": [10], 
                    "sparkArguments":{}, 
                    "sparkConfiguration":{} 
                } 
            ] 
        } 
    ], 
    "communications": [  
  ] 
} 

 

Expected results:  

1. Java app successfully executed, which can be verified in the Spark Master dashboard at:  
http://MELODIC_PLATFORM_IP:8181 and Livy Server  http://MELODIC_PLATFORM_IP:8998  
 

VM3 [T] Create VM over two different provider's resources 

Input Conditions:  

1. Profitbricks configured as Cloud. 
2. Node Candidates retrieved successfully. 
3. UULM OpenStack configured as Cloud. 
4. Node Candidates retrieved successfully. 

Steps To Complete: 

1. Deploy application, for example FCRnew.xmi or TwoComponentApp.xmi, using two Cloud 
Providers: OpenStack and Profitbricks. 

Expected results:  

1. Two VMs are successfully created and available. 

 

VM2 [T] Create VM on UULM OpenStack resource 

Input Conditions:  

1. UULM OpenStack configured as Cloud 
2. Node Candidates retrieved successfully 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-137
https://jira.7bulls.eu/browse/MT-136


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    46 

Steps To complete: 

1. Deploy application using OpenStack Cloud Provider, for example FCRnew.xmi or 
TwoComponentAppnew.xmi. 

Expected results:  

1. VM is successfully created and available. 

 

BD4 [T] Execute Python based Spark Job 

Input Conditions:  

1. UULM OpenStack configured as Cloud 
2. Node Candidates retrieved successfully 
3. Node Candidates are configured via API for the use with Spark 

Steps To Complete:  

1. Execute Python based Spark Job: 
 

Sample body  
// pi.py 
{ 
    "name": "PI_JOB", 
    "tasks": [{ 
            "name": "Component_Worker", 
            "executionEnvironment": "SPARK", 
            "taskType": "BATCH", 
            "ports": [], 
            "interfaces": [{ 
                    "type": "SparkInterface", 
                    "file": "https://s3-eu-west-1.amazonaws.com/melodic.testing.data/mdfs/pi.py", 
                    "className": "", 
                    "arguments": ["10"], 
                    "sparkArguments":{}, 
                    "sparkConfiguration":{} 
                } 
            ] 
        } 
    ], 
    "communications": [ 
     
  ] 
} 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-135


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    47 

Expected results:  

1. Python app successfully executed, which can be verified in the Spark Master dashboard at  
http://MELODIC_PLATFORM_IP:8181 and Livy Server: http://MELODIC_PLATFORM_IP:8998  
 

VM1 [T] Create VM on ProfitBricks resource 

Input Conditions:  

1. Profitbricks configured as Cloud 
2. Node Candidates retrieved successfully 

Steps To Complete: 

1. Deploy application, for example FCRnew.xmi or TwoComponentApp.xmi, using 
Profitbricks Cloud Provider.  

Expected results:  

1. VM is successfully created and available. 
 

NC3 [T] Successfully retrieve Node Candidates for ProfitBricks 

Input Conditions:  

1. ProfitBricks Cloud configured. 

Steps To Complete:  

1. Configure Profitbricks Cloud with credentials against $IP:9000/clouds: 

Sample body  
{ 
 "cloudType": "PUBLIC", 
 "api": { 
  "providerName": "profitbricks-rest" 
 }, 
 "credential": { 
  "user": "censoredUser", 
  "secret": "censoredPassword" 
 }, 
 "cloudConfiguration": { 
  "nodeGroup": "cloudiator", 
  "properties": null 
 } 
} 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-134
https://jira.7bulls.eu/browse/MT-130


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    48 

2. Retrieve configured clouds that match the previously configured one. 
3. Retrieve node candidates with constraints: 

Sample body  
[ 
    { 
      "constraint": "nodes->forAll(hardware.cores >= 2)", 
      "type": "OclRequirement" 
    }, 
    { 
      "constraint": "nodes->forAll(hardware.cores <= 4)", 
      "type": "OclRequirement" 
    }, 
    { 
      "constraint": "nodes->forAll(hardware.ram = 2048)", 
      "type": "OclRequirement" 
    } 
] 

 

4. Verify that no node candidates are returned. 

Expected results:  

1. A list of nodes for the provided identity is returned. 

 

NC2 [F] Assure that wrong cloud configuration forbids retrieval of Node Candidates 

Input Conditions:  

1. UULM OpenStack Cloud configured with wrong password. 

Steps To Complete: 

1. Configure erroneous cloud with credentials against $IP:9000/clouds: 

Sample body  
{ 
 "endpoint": "https://omistack.e-technik.uni-ulm.de:5000/v3/", 
 "cloudType": "PRIVATE", 
 "api": { 
  "providerName": "openstack4j" 
 }, 
 "credential": { 
  "user": "default:74f1d8b1b33c413faca7603c83362a74:doe", 
  "secret": "347232" 
 }, 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-129


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    49 

 "cloudConfiguration": { 
  "nodeGroup": "cloudiator", 
  "properties": null 
 }, 
 "id": "91e344c475c8173749952538b544e213" 
} 

 
2. Retrieve configured clouds that match the previously configured one.  
3. Retrieve node candidates with constraints: 

Sample body  
[ 
 { 
       "constraint": "nodes->forAll(hardware.cores >= 2)", 
       "type": "OclRequirement" 
 }, 
 { 
       "constraint": "nodes->forAll(hardware.ram >= 2048)", 
       "type": "OclRequirement" 
 } 
] 

 

4. Verify that no node candidates are returned. 
 

Expected results:  

1. Empty result list. 
 

NC1 [T] Successfully retrieve Node Candidates for UULM OpenStack 

Input Conditions:  

1. UULM OpenStack Cloud configured. 

Steps To Complete:  

1. Configure UULM OpenStack with credentials against $IP:9000/clouds.  
2. Retrieve configured clouds that match the previously configured one. 
3. Retrieve node candidates with constraints: 

 
 
 
 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-128


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    50 

Sample body  
[ 
 { 
       "constraint": "nodes->forAll(hardware.cores >= 2)", 
       "type": "OclRequirement" 
 }, 
 { 
       "constraint": "nodes->forAll(hardware.ram >= 2048)", 
       "type": "OclRequirement" 
 } 
] 

 

4. Verify that the returned node candidates meet constraints. 

Expected results:  

1. A list of nodes for the provided identity is returned. 

 

BD3 [T] Use maximum resources available for Spark Job 

Input Conditions:  

1. UULM OpenStack configured as Cloud. 
2. Node Candidates retrieved successfully. 
3. Node Candidates are configured via API for use with Spark. 

Steps To Complete:  

1. Execute Spark Job with no specific resource requirements, e.g: 
 

Sample body  
{ 
    "name": "pi","executionEnvironment": "SPARK","taskType": "BATCH",  
    "ports": [ 
    ], 
    "interfaces": [ { 
       "type": "SparkInterface", 
       "file": "https://omi-gitlab.e-technik.uni-ulm.de/cloudiator/apache-livy-
container/raw/master/examples/pi.py", 
       "className": "bla", "arguments": ["10"], "sparkArguments":{ 
        }, 
       "sparkConfiguration":{ } 
    } ], 
} 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-127


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    51 

Expected results:  

1. Spark job was successfully executed and Spark Master UI shows the usage of the 
maximum available resources at: http://MELODIC_PLATFORM_IP:8181 
 

BD2 [T] Execute Spark Job with concrete Spark Job requirements  

Input Conditions:  

1. UULM OpenStack configured as Cloud. 
2. Node Candidates retrieved successfully. 
3. Node Candidates are configured via API for the use with Spark. 

Steps To Complete:  

1. Create Spark Process Request: http://cloudiator.org/rest-
swagger/#operation/createProcess  with concrete requirements, e.g. 

Sample body  
{ 
   "name": "pi", 
   "executionEnvironment": "SPARK", 
   "taskType": "BATCH", 
   "ports": [ 
   ], 
   "interfaces": [ { 
     "type": "SparkInterface", 
     "file": "https://omi-gitlab.e-technik.uni-ulm.de/cloudiator/apache-livy-
container/raw/master/examples/pi.py", 
     "className": "bla", 
     "arguments": ["10"], 
     "sparkArguments":{ 
       "driverCores" : "1", 
       "numExecutors": "1"}, 
     "sparkConfiguration":{} 
   } ], 
} 

2. Get queued task: http://cloudiator.org/restswagger/#operation/getQueuedTasks  
3. Create Schedule: http://cloudiator.org/rest-swagger/#operation/addSchedule 

Expected results:  

1. Spark job was successfully executed and Spark Master UI shows the correct resources at: 
http://MELODIC_PLATFORM_IP:8181 
 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-126
http://cloudiator.org/rest-swagger/#operation/createProcess
http://cloudiator.org/rest-swagger/#operation/createProcess
http://cloudiator.org/restswagger/#operation/getQueuedTasks
http://cloudiator.org/rest-swagger/#operation/addSchedule


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    52 

BD1 [T] Deploy Spark Cluster for 2 Spark Workers 

Input Conditions:  

1. UULM OpenStack configured as Cloud. 
2. Node Candidates retrieved successfully. 
3. Node Candidates are configured via API for the use with Spark. 

Steps To Complete:  

1. Create Spark Process Request: http://cloudiator.org/rest-
swagger/#operation/createProcess  

Sample body  
{ 
   "name": "spark-conf-test-5", 
   "tasks": [ { 
     "name": "pi", 
     "executionEnvironment": "SPARK", 
     "taskType": "BATCH", 
     "ports": [ 
     ], 
     "interfaces": [ { 
       "type": "SparkInterface", 
       "file": "https://omi-gitlab.e-technik.uni-ulm.de/cloudiator/apache-livy-
container/raw/master/examples/pi.py", 
       "className": "bla", 
       "arguments": ["10"], 
       "sparkArguments":{ 
           "driverCores" : "1", 
           "numExecutors": "1" }, 
       "sparkConfiguration":{} 
     } ], 
     "requirements": [ { 
       "constraint": "nodes->forAll(hardware.providerId = 'df09fccf-1a81-42ab-b16b-
6932f371a1c8')", 
       "type": "OclRequirement" 
       }, { 
       "constraint": "nodes->forAll(location.providerId = 'nova')", 
       "type": "OclRequirement" 
       }, { 
       "constraint": "nodes->forAll(image.providerId = 'f688f98d-7e62-4404-a672-
1fc054fcfa6c')", 
       "type": "OclRequirement" 
     } ] 
   } ], 
   "communications": [ 
   ] 
} 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-125
http://cloudiator.org/rest-swagger/#operation/createProcess
http://cloudiator.org/rest-swagger/#operation/createProcess


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    53 

2. Get queued task: http://cloudiator.org/rest-swagger/#operation/getQueuedTasks  
3. Create Schedule: http://cloudiator.org/rest-swagger/#operation/addSchedule  

Expected results:  

1. Spark Cluster is available and accessible via the Spark Master Dashboard which shows the 
two worker nodes at: http://MELODIC_PLATFORM_IP:8181 
 

AC-13[F] At least one node of Deployment Instance Model (given to Adapter) has less than 
16 GB RAM 

Input Conditions:  

1. Upperware installed and configured. 
2. CAMEL model for a 2-component app, including a constraint that a VM has a maximum of 

8 GB RAM. 
3. Pre-authorization Policy that permits models where each node has >16 GB RAM. 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-12+13.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Rejected. 

 

AC-12[T] The nodes of Deployment Instance Model (given to Adapter) have 16 GB RAM or 
more (each)  

Input Conditions:  

1. Upperware installed and configured. 
2. CAMEL model for a 2-component app, including a constraint that every VM has at least 16 

GB RAM. 
3. Pre-authorization Policy that permits models where each node has >16 GB RAM. 

 

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/getQueuedTasks
http://cloudiator.org/rest-swagger/#operation/addSchedule
https://jira.7bulls.eu/browse/MT-124
https://jira.7bulls.eu/browse/MT-124
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-12+13.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-12+13.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-123
https://jira.7bulls.eu/browse/MT-123


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    54 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-12+13.xml?at=RC2.0  

3. Upload model of 2-component app to CDO. 
4. Start deployment process. 

Expected results:  

1. Deployment plan being Accepted. 

 

AC-11[F] Deployment Instance Model (given to Adapter) has a total number of GB RAM 
(across all nodes) higher than 64 

Input Conditions:  

1. Upperware installed and configured. 
2. CAMEL model for a 2-component app, including a constraint that there will be at least 2 

VM instances per component and every VM instance has at least 32 GB RAM. 
3. Pre-authorization Policy that permits models where total RAM sums up to 64 GB RAM. 

Steps To Complete:  

1. Login to the machine with installed Melodic. 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-10+11.xml?at=RC2.0  

3. Upload model of 2-component app to CDO. 
4. Start deployment proces. 

Expected results:  

1. Deployment plan being Rejected. 

 

AC-10[T] Deployment Instance Model (given to Adapter) has a total number of GB RAM 
(across all nodes) lower or equal than 64 

Input Conditions:  

1. Upperware installed and configured. 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-12+13.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-12+13.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-122
https://jira.7bulls.eu/browse/MT-122
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-10+11.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-10+11.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-121
https://jira.7bulls.eu/browse/MT-121


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    55 

2. CAMEL model for a 2-component app. 
3. Pre-authorization Policy that permits models where total RAM sums up to 64 GB RAM. 

Steps To Complete:  

1. Login to the machine with installed Melodic. 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-10+11.xml?at=RC2.0  

3. Upload model of 2-component app to CDO. 
4. Start deployment process. 

Expected results:  

1. Deployment plan being Accepted. 

 

AC-9[F] Deployment Instance Model (given to Adapter) contains at least one node with 
NO location information 

Input Conditions:  

1. Upperware installed and configured. 
2. CAMEL model for a 2-component app: 

(1) with no location constraints 
(2) with such a constraint that it will lead to selecting a node candidate that (we know) 

has no location information (eg. BYON candidate). 
3. Pre-authorization Policy that permits models where all nodes are located in DE. 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-
07+08+09.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Rejected. 

 

 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-10+11.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-10+11.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-120
https://jira.7bulls.eu/browse/MT-120
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    56 

AC-8[F] Deployment Instance Model (given to Adapter) contains at least one node NOT 
located in DE 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app, including a constraint requiring that at least one 

VM is NOT located in DE 
3. Pre-authorization Policy that permits models where all nodes are located in DE 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-
07+08+09.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Rejected 

 

AC-7[T] Deployment Instance Model (given to Adapter) contains node located in DE (all of 
them) 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app, including constraints requiring that every VM is 

located in DE 
3. Pre-authorization Policy that permits models where all nodes are located in DE 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-
07+08+09.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-119
https://jira.7bulls.eu/browse/MT-119
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-118
https://jira.7bulls.eu/browse/MT-118
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-07+08+09.xml?at=RC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    57 

Expected results:  

1. Deployment plan being Accepted 

 

AC-6[F] At least one node of Deployment Instance Model (given to Adapter) has exactly 1 
core 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app, including a constraint that every VM has 1 core 
3. Pre-authorization Policy that permits models where all nodes have >1 cores each 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-05+06.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Rejected 

 

AC-5[T] The nodes of Deployment Instance Model (given to Adapter) have more than 1 
cores (each) 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app, including a constraint that every VM has at least 2 

cores 
3. Pre-authorization Policy that permits models where all nodes have >1 cores each 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-05+06.xml?at=RC2.0  

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-117
https://jira.7bulls.eu/browse/MT-117
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-05+06.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-05+06.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-116
https://jira.7bulls.eu/browse/MT-116
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-05+06.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-05+06.xml?at=RC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    58 

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Accepted 

 

AC-4[F] Deployment Instance Model (given to Adapter) has a total number of cores 
(across all nodes) higher than 4. 

Input Conditions:  

1. Melodic installed and configured 
2. CAMEL model for a 2-component app, including a constraint that every VM has at least 3 

cores 
3. Pre-authorization Policy that permits models where total number of cores is lower or 

equal to 4 cores 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-03+04.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Rejected 

 

AC-3[T] Deployment Instance Model (given to Adapter) has a total number of cores 
(across all nodes) lower or equal than 4 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app 
3. Pre-authorization Policy that permits models where total number of cores sums up to 4 

cores 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-115
https://jira.7bulls.eu/browse/MT-115
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-03+04.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-03+04.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-114
https://jira.7bulls.eu/browse/MT-114


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    59 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-03+04.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. Deployment plan being Accepted 

 

AC-2[F] Successfully connect to Authorization Server and get a Negative response 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app 
3. Pre-authorization Policy that permits all requests 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-02.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. See log of authorization server that deployment plan being Rejected (i.e. get a negative 
response) 

 

AC-1[T] Successfully connect to Authorization Server and get a Positive response 

Input Conditions:  

1. Upperware installed and configured 
2. CAMEL model for a 2-component app 
3. Pre-authorization Policy that permits all requests 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-03+04.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-03+04.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-113
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-02.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-02.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-112


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    60 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Apply pre-authorization policy from link: 

https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-
service/server/src/main/resources/config/policies/test-cases/tc-ac-01.xml?at=RC2.0  

3. Upload model of 2-component app to CDO 
4. Start deployment process 

Expected results:  

1. See log of authorization server that deployment plan being Pre-authorized (i.e. get a 
positive response) 

 

T1.5a[T] Installation and deployment of FCR application in Docker containers on two 
different Cloud Providers 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least two cloud providers integrated with the Melodic platform, where the user has 

provided his/her own credentials for both of them (included in the CAMEL model cloud 
credentials). 

3. Meta solver configured to use CP Solver for that case. 
4. Cloudiator properly connected to the given Cloud Providers. 
5. Complete CAMEL model of the FCR application (which includes the definition of these two 

components and their installation/maintenance scripts). The two components are 
installed as Docker containers in two VM instances of different VM offerings. 

6. FCR CAMEL model can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2
Fheads%2FRC2.0  

7. There should be a requirement in the application to use different Cloud Providers (e.g., a 
location requirement in the virtual machine requirement set in the user CAMEL model). 

Steps To Complete:  

1. Login to the machine with installed MELODIC platform 
2. Upload models into "models" directory 
3. Upload Camel model FCR.xmi into "models" directory 
4. Using SoapUI tool execute following steps: 
5. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
6. Using POST method start process 
7. Start deploying of application 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-01.xml?at=RC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/security/browse/authorization-service/server/src/main/resources/config/policies/test-cases/tc-ac-01.xml?at=RC2.0
https://jira.7bulls.eu/browse/MT-111
https://jira.7bulls.eu/browse/MT-111
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    61 

       For each step, the status of the executed action should be positive. 

Expected results:  

1. Two VM instances should be created using the selected Cloud Provider. 
2. The application should be installed on those VM instances (where each application 

component is deployed and installed on a different VM instance). 
3. The application should be run properly (The login page of DAM application should be 

displayed properly). 

 

T1.5b[T] Installation and deployment of FCR application, where one component is 
installed in a Docker container and another on a normal VM on two different Cloud 
Providers 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one cloud provider integrated with the Melodic platform, where the user has 

provided his/her own credentials for this provider (included in CAMEL model cloud 
credentials). 

3. Meta solver configured to use CP solver for that case. 
4. Cloudiator properly connected to given Cloud Providers. 
5. Complete CAMEL model of FCR application (which includes the definition of just one 

component along with its installation/management scripts).  One application container 
will be installed as a Docker container, another as a unix process. Each component is to be 
deployed on different cloud providers. 

6. FCR CAMEL model can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2
Fheads%2FRC2.0  

7. There should be a proper configuration of the virtual machine both in the CAMEL 
Providers model and on the Cloud Providers sides. 

Steps To Complete:  

1. Login to the machine with installed MELODIC platform 
2. Upload models into "models" directory 
3. Upload Camel model FCR.xmi into "models" directory 
4. Using SoapUI tool execute following steps: 
5. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
6. Using POST method start process 
7. Start deploying of application 

For each step, the status of the executed action should be positive. 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-110
https://jira.7bulls.eu/browse/MT-110
https://jira.7bulls.eu/browse/MT-110
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    62 

Expected results:  

1. Two virtual machine instances should be created, one instance per Cloud Provider. 
2. The application should be installed on those VM instances (the instance of the first 

component should be installed on one VM instance and the instance of the second to the 
other VM instance). 

3. The application should be run properly (The login page of the DAM application should be 
displayed). 

4. The specific feature defined in the input CAMEL model is properly applied. 

 

T1.4[T] Installation and deployment of FCR application in Docker container on one Cloud 
Provider 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one cloud provider integrated with the Melodic platform, where the user has 

provided his/her own credentials for this provider (included in CAMEL model cloud 
credentials). 

3. Meta solver configured to use CP solver for that case. 
4. Cloudiator properly connected to given Cloud Providers. 
5. Complete CAMEL model of FCR application (which includes the definition of just one 

component along with its installation/management scripts).  
6. FCR CAMEL model can be downloaded from: 

https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2
Fheads%2FRC2.0  

 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Upload models into "models" directory 
3. Upload Camel model FCR.xmi into "models" directory 
4. Using SoapUI tool execute following steps: 
5. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
6. Using POST method start process 
7. Start deploying of application 

For each step, the status of the executed action should be positive. 

 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-109
https://jira.7bulls.eu/browse/MT-109
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    63 

Expected results:  

1. Virtual machine on the selected Cloud Provider should be created. 
2. FCR application should be installed on that machine. 
3. The application should be run properly (Website should be displayed properly). 

 

T7.2[F] ESB Authentication 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. ESB configuration to require authentication (e.g. oAuth2.0) 
3. ESB connected to a properly configured directory service (e.g. OpenLDAP) 
4. All Melodic components (connecting to ESB) should be configured to provide the 

appropriate credentials to ESB (the first time they connect)  
5. Provisioned credentials for Adapter should be invalid 
6. At least one cloud provider integrated with the Melodic platform; the user credentials for 

this provider should have also been supplied (included in the CAMEL model cloud 
credentials). 

7. Meta solver configured to use CP solver for that case. 
8. Cloudiator properly connected to the given Cloud Provider. 
9. Complete CAMEL model of two component application (which includes the definition of 

the application components and their installation/maintenance scripts). CAMEL model of 
two component application can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponen
tApp?at=refs%2Fheads%2FRC2.0  

7. CAMEL model of given Cloud Provider prepared and registered in the Melodic platform 
with at least one virtual machine offer provided. 

10. There should be a proper configuration of the virtual machine both in the CAMEL Provider 
model and on the Cloud Provider side. The configurations should be aligned. 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from: 

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/  
3. Upload Camel model Two_ComponentApp.xmi_ into the "/home/models" directory 
4. Using SoapUI tool execute following steps: 
5. Create new REST project with URL: 

http://5.249.145.169:8088/api/frontend/deploymentProcess 
6. Using POST method start process 
7. Receive authentication failure when adapter will try to connect to ESB 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-71
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    64 

For each step, the corresponding components should be successfully authenticated (up to 
Adapter) and the status of the executed action should be positive. At Adapter, the 
authentication to ESB fails and the workflow terminates after having reported the failure. 

Expected results:  

1. Authentication success per component (until Adapter) is logged 
2. Authentication failure for Adapter is logged 
3. No virtual machine should be created 

 

T7.1[T] ESB Authentication 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. ESB configuration to require authentication (e.g. oAuth2.0) 
3. ESB connected to a properly configured directory service (e.g. OpenLDAP) 
4. All Melodic components (connecting to ESB) should be configured to provide the 

appropriate credentials to ESB (the first time they connect)  
5. Provisioned credentials for Adapter should be valid 
6. At least one cloud provider integrated with the Melodic platform; the user credentials for 

this provider should have also been supplied (included in the CAMEL model cloud 
credentials). 

7. Meta solver configured to use CP solver for that case. 
8. Cloudiator properly connected to the given Cloud Provider. 
9. Complete CAMEL model of two component application (which includes the definition of 

the application components and their installation/maintenance scripts). CAMEL model of 
two component application can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponen
tApp?at=refs%2Fheads%2FRC2.0  

5. CAMEL model of given Cloud Provider prepared and registered in the Melodic platform 
with at least one virtual machine offer provided. 

10. There should be a proper configuration of the virtual machine both in the CAMEL Provider 
model and on the Cloud Provider side. The configurations should be aligned. 

Steps To Complete:  

1. Login to the machine with installed Melodic  
2. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from: 

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/  
3. Upload Camel model TwoComponentAppnew.xmi_ into "/home/models" directory 
4. Using SoapUI tool execute following steps: 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-70
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    65 

5. Create new REST project with URL: http://<VM's IP>:8088/api/frontend/deploymentProcess 
6. Using POST method start process 
7. Start deploying of application 

Sample body  
 "applicationId": "TwoComponentAppnew", 
 "username": "user1", 
 "password":"melodic", 
 "cloudDefinitions": 

 

For each step, the corresponding component should be successfully authenticated and the 
status of the executed action should be positive. 

Expected results:  

1. Virtual machine on the selected Cloud Provider should be created. 
2. Authentication success per component is logged. 
3. The component of the application should be installed on the machine. 
4. The application should run properly (Apache web page is properly displayed). 

 

T7.4[F] New plan deployment authorisation 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one cloud provider has been integrated with the Melodic platform; the user 

credentials for this provider should also have been supplied. 
3. Cloudiator properly connected to the relevant Cloud Providers 
4. Complete CAMEL model of FCR application. The CAMEL model  can be downloaded from: 

https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases 
5. Pre-authorization Policy that permits models where total cores sums <= 2 

This can be changed in: ~/conf/policies$ vi sample-PREAUTHORIZATION-policy.xml 
 
<!-- ... ... total-number-of-cores <= 2--> 

                <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:any-of"> 
                <xacml3:Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than"/> 
                <xacml3:AttributeValue  
           DataType="http://www.w3.org/2001/XMLSchema#integer">2</xacml3:AttributeValue> 
                <xacml3:AttributeDesignator AttributeId="total-number-of-cores" 
  Category="urn:oasis:names:tc:xacml:3.0:attribute-category:environment" 
  DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true"/> 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-69
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    66 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Proceed to the ~/conf/policies and edit sample-PREAUTHORIZATION-policy.xml_OFF 

change name of sample-PREAUTHORIZATION-policy.xml_OFF to sample-
PREAUTHORIZATION-policy.xml 

3. Upload model of FCRnew.xmi app to CDO 
4. Start deployment process 
5. Check adapter.log 

For each step, the status of the executed action should be positive except from the authorization 
step. 

Expected results:  

1. DENY decision is logged. 
2. An authorization deny event is sent to ESB. 
3. No virtual machine should be created. 

 

T7.3[T] New plan deployment authorisation 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. At least one cloud provider has been integrated with the Melodic platform; the user 

credentials for this provider should have also been supplied. 
3. Cloudiator properly connected to the relevant Cloud Providers. 
4. Complete CAMEL model of FCR application. 
5. CAMEL model can be downloaded from: 

https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponen
tApp?at=refs%2Fheads%2FRC2.0  

6. Pre-authorization Policy that permits models where total cores  <= 3 
This can be changed in: ~/conf/policies$ vi sample-PREAUTHORIZATION-policy.xml 

<!-- ... ... total-number-of-cores <= 3--> 
                <xacml3:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:any-of"> 
                    <xacml3:Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than"/> 
                    <xacml3:AttributeValue 

    DataType="http://www.w3.org/2001/XMLSchema#integer">3</xacml3:AttributeValue> 
                    <xacml3:AttributeDesignator AttributeId="total-number-of-cores" 

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:environment" 
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true"/> 

 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-68
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/TwoComponentApp?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    67 

Steps To Complete:  

1. Login to the machine with installed Melodic 
2. Proceed to the ~/conf/policies and edit sample-PREAUTHORIZATION-policy.xml_OFF 

change name of sample-PREAUTHORIZATION-policy.xml_OFF to sample-
PREAUTHORIZATION-policy.xml 

3. Upload model of FCRnew.xmi app to CDO 
4. Start deployment process 
5. Check adapter.log 

       For each step, the status of the executed action should be positive. 

Expected results:  

1. PERMIT authorization decision is logged. 
2. An authorization permit event is sent to ESB. 
3. A certain virtual machine on the selected Cloud Provider should be created. 
4. Two component application should be installed on that virtual machine. 
5. The application should run properly (web page is properly displayed). 

 

 

T6.6[T] Dynamic scalability (using a single public Cloud location) 

 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. Each of the following components should be installed with single instances:  

CP Generator, CDO Server, Meta solver, CP Solver, Solver to deployment and Adapter. 
3. At least one Cloud provider integrated with the Melodic platform; the user credentials for 

this provider should have also been supplied (included in the CAMEL model Cloud 
credentials). 

4. Meta solver configured to use CP solver for that case. 
5. Cloudiator properly connected to a given Cloud Provider. 
6. Complete CAMEL model of an application which increases or decreases it's VM 

requirements (randomly). Such an application does not only change the VM number but 
also the types. 

7. CAMEL model of given Cloud provider prepared with the number of VM offerings included. 
8. CAMEL model of given Cloud Provider prepared and registered in the Melodic platform 

with at least one virtual machine offer provided. There should be a proper configuration of 
the virtual machine both in the CAMEL Provider model and on the Cloud Provider side. 
The configurations should be aligned. 
 

http://www.melodic.cloud/
https://jira.7bulls.eu/browse/MT-46


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    68 

Steps To Complete:  

1. The goal of the Test Case is to verify the execution times of each component while scaling 
the application within one Cloud Provider. 

2. Login to the machine with installed Melodic by using: ssh melodic@<VM's IP> 
3. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from: 

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/  
4. Upload the models: cpGenerator-functionTypes.xmi, cpGenerator-locations.xmi, 

cpGenerator-providerTypes.xmi, cpGenerator-operatingSystems.xmi into 
"/home/user/models" directory 

5. Upload Provider AmazonEC2.xmi into the "/home/models/upperware-models/fms" 
directory 

6. Upload Camel model OneComponentApp.xmi into the "/home/models" directory 
7. Using SoapUI tool execute following steps: 
8. Create new REST project with URL: http://<VM's IP>:8088/api/frontend/deploymentProcess 
9. Using POST method start process 
10. Start deploying of application 
11. Check solver logs 

For each step, the status of the executed action should be positive. 

Expected results:  

1. The virtual machines on the selected Cloud Provider should be created. 
2. The sole component of the simple application should be installed on that machine. 
3. Correctly installed and working application. 
4. The application should run properly. 
5. Error messages due to component inaccessibility or any other issues should be logged. 
6. Another log file storing the list of scaled up and down VMs (including their IP, trigger time 

and also total boot time (time taken by Cloud service provider to start a VM)). 

 

 

T6.3[T] Temporary unavailability of Cloud Provider 

 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 
2. One cloud provider has been integrated with the Melodic platform, while the user has 

supplied his/her credentials for this provider. 
3. Meta solver configured to use CP solver for that case. 
4. Cloudiator properly configured with given Cloud Provider 

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    69 

5. No network connection to the Cloud Provider - the lack of network connection will be 
simulated by changes of routing table or firewall rules configuration on the machine when 
Cloudiator is installed. 

6. Complete CAMEL model of a TwoComponentApp. 
7. CAMEL model of given Cloud Provider prepared with at least one virtual machine offer 

included. 
8. There should be a proper configuration of the virtual machine both in the CAMEL Provider 

model (see step 2) and on the Cloud Provider side. The configurations should be aligned. 

Steps To Complete:  

1. Login to the machine with installed Melodic by using: ssh melodic@<IP VM> 
2. Upload models into the "models" directory 
3. Upload Cloud Provider into the "models/upperware-models/fms" directory 
4. Upload Camel model "TwoComponentApp.xmi into the "models" directory 
5. Using SoapUI tool execute following steps: 
6. Create new REST project with URL: http://<IP VM>:8088/api/frontend/deploymentProcess 
7. Using POST method start process 
8. Check in logs that Adapter starts to invoke Executionware 
9. Resume the network connection to the Cloud Provider after first deployment attempt on 

the cloud of this provider has failed 

For each step, the status of the executed action should be positive. 

Expected results:  

1. Proper error message with information about Cloud Provider inaccessibility should be 
logged. 

2. A VM (instance) on the selected Cloud Provider should be created. 
3. The simple application should be installed on that VM (instance). 
4. The application should be run properly (Apache web server's web page should be 

displayed properly). 

 

 

 

T4.9[T]Global reconfiguration - FCR, time > 3600s 

 

Input Conditions: 

1. Installed and configured Melodic platform without any application related artefacts. 
2. At least one cloud provider integrated with the Melodic platform for which the respective 

user credentials have been supplied. 
3. Cloudiator properly connected to given Cloud Providers. 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    70 

4. There exists at least one cloud provider with at least two offering satisfying the 
requirements posed by the user. 

5. Complete CAMEL model of an FCRnew application. The CAMEL model should include 
definition of events and metrics needed to execute the particular test case, parameter of 
time > 3600s. The model .xmi can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/ 

Steps To Complete: 

1. Login to the machine with installed Melodic by using: ssh melodic@<VM IP> 
2. Upload Camel model FCRnew.xmi into "models" directory 
3. Using SoapUI tool execute following steps: 
4. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
5. Using POST method start process 
6. Deploy application 

For each step, the status of the executed action should be positive. 

Expected results: 

1. Application should be reconfigured according to defined SLOs. 
Time > 3600s there should be less workers deployed. 

slo NotFinished constraint FCRConstraintModel.NotFinishedOnTime 
constraint model FCRConstraintModel{ 
       variable constraint WorkerCoresGreaterThanMinimumCores :  
           FCRMetricModel.WorkerCoresGreaterThanMinimumCores > 0.0 
       metric constraint NotFinishedOnTime :     
           [FCRMetricModel.NotFinishedOnTimeContext] >= 0.0 
} 

2. Application should work properly; this means that its web page should be properly 
displayed (continuing the previous example with an Apache web server). 

 

 

T4.8[T] Global reconfiguration - FCR, time < 3600s 

 
Input Conditions: 

1. Installed and configured Melodic platform without any application related artefacts. 
2. At least one cloud provider integrated with the Melodic platform for which the respective 

user credentials have been supplied. 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    71 

3. Cloudiator properly connected to given Cloud Providers. 
4. There exists at least one cloud provider with at least two offering satisfying the 

requirements posed by the user. 
5. Complete CAMEL model of a FCRnew application. The CAMEL model should include 

definition of events and metrics needed to execute the particular test case, parameter of 
time < 3600s. Model .xmi can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/ 

Steps To Complete:  

1. Login to the machine with installed Melodic by using: ssh melodic@<VM IP> 
2. Upload the Camel model FCRnew.xmi into the "models" directory 
3. Using SoapUI tool execute following steps: 
4. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
5. Using POST method start process 
6. Deploy application 

For each step, the status of the executed action should be positive. 

Expected results:  

1. Application should be reconfigured according to the defined SLOs. 
Time < 3600s there should be more workers deployed. 

slo NotFinished constraint FCRConstraintModel.NotFinishedOnTime 
constraint model FCRConstraintModel{ 
       variable constraint WorkerCoresGreaterThanMinimumCores : 
           FCRMetricModel.WorkerCoresGreaterThanMinimumCores > 0.0 
       metric constraint NotFinishedOnTime : 
           [FCRMetricModel.NotFinishedOnTimeContext] >= 0.0 
} 

2. Application should work properly; this means that its web page should be properly 
displayed (continuing the previous example with an Apache web server).  

 

 

T4.6[T] Global reconfiguration - GenomWithSpark, time < 3600s 

 

Input Conditions: 

1. Installed and configured Melodic platform, without any application related artefacts. 
2. AWS Cloud Provider integrated with the Melodic platform for which the respective user 

credentials have been supplied. 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    72 

3. Cloudiator properly connected to given Cloud Providers. 
4. Complete CAMEL model of a GenomWithSpark application. The CAMEL model should 

include definition of events and metrics needed to execute the particular test case, 
parameter of time should be < 3600s. 

5. Model .xmi can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/ 

Steps to complete: 

1. Login to machine with installed Melodic 
2. Upload Camel model GenomWithSpark.xmi into the "models" directory 
3. Using the Postman tool execute the following steps: 
4. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
5. Using POST method start process 

 

Sample body  
//GenomWithSpark AWS body deployment 
{ 
 "applicationId": "GenomWithSpark", 
 "username": "user1", 
 "password":"melodic", 
 "cloudDefinitions": 
 [ { 
       "endpoint": "", 
       "cloudType": "PUBLIC", 
       "api": { "providerName": "aws-ec2" }, 
       "credential": { 
           "user": "", //add user 
           "secret": "" //add password }, 
       "cloudConfiguration": { 
         "nodeGroup": "edyta", 
         "properties": 
         {  "sword.ec2.ami.cc.query": "image-id=ami-08a0a7bee3f024aeb", 
             "sword.ec2.ami.query": "image-id=ami-08a0a7bee3f024aeb"     
         } 
       } 
 } ], 
 "watermark": { 
     "user": "edyta", 
     "system": "UI", 
     "date": "2016-02-28T16:41:41+0000", 
     "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002AAA" 
 } 
} 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    73 

6. Deploy application 
7. Check metasolver/ems logs 
8. Check VM instances (should appear in cloud provider console) 

For each step, the status of the executed action should be positive. 

 
Expected results: 

1. Application should be reconfigured according to defined SLOs.  
For time < 3600s more workers should be deployed.  

2. EMS properly delivers events to Metasolver (produced according to CAMEL model 
specifications). 

3. Application should work properly; this means that its web page should be properly 
displayed (continuing the previous example with an Apache web server). 

 

 

T4.5[T] Global reconfiguration - GenomWithSpark, time > 3600s 

 

Input Conditions: 

1. Installed and configured Melodic platform without any application related artefacts. 
2. At least one cloud provider integrated with the Melodic platform for which the respective 

user credentials have been supplied. 
3. Cloudiator properly connected to given Cloud Providers. 
4. There exists at least one cloud provider with at least two offering satisfying the 

requirements posed by the user. 
5. Complete CAMEL model of a GenomWithSpark application. The CAMEL model should 

include definition of events and metrics needed to execute the particular test case, 
parameter of time > 3600s. Model .xmi can be downloaded from 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/ 

Steps to complete: 

1. Login to the machine with installed Melodic by using: ssh melodic@<VM IP> 
2. Upload the Camel model GenomWithSpark.xmi_ into the "models" directory 
3. Using the SoapUI tool execute the following steps: 
4. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 
5. Using POST method start process 
6. Deploy application 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/Genom/GenomWithSpark.xmi?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    74 

For each step, the status of the executed action should be positive. 

Expected results: 

1. Application should be reconfigured according to the defined SLOs.  
For time > 3600s there should be less workers deployed.  

slo NotFinished constraint GenomConstraintModel.NotFinishedOnTime 
constraint model GenomConstraintModel{ 
       variable constraint WorkerCoresGreaterThanMinimumCores :  
           GenomMetricModel.WorkerCoresGreaterThanMinimumCores > 0.0 
       metric constraint NotFinishedOnTime :  
           [GenomMetricModel.NotFinishedOnTimeContext] >= 0.0 
} 

2. Application should work properly; this means that its web page should be properly 
displayed (continuing the previous example with an Apache web server). 

 

 

T4.4b[T] Global reconfiguration - GenomWithSpark deployed on OpenStack Cloud 
Provider 

 

Input Conditions: 

1. Installed and configured Melodic platform without any application related artefacts. 
2. OpenStack cloud provider integrated with the Melodic platform for which the respective 

user credentials have been supplied. 
3. Cloudiator properly connected to given Cloud Providers. 
4. There exists at least one cloud provider with at least two offering satisfying the 

requirements posed by the user. 
5. Complete CAMEL model of a GenomWithSpark application. The CAMEL model should 

include definition of events and metrics needed to execute the particular test case, 
parameter of time = 3600s. Model .xmi can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/  

Steps to complete: 

1. Login to the machine with installed Melodic by using: ssh melodic@<VM IP> 
2. Upload Camel model GenomWithSpark.xmi_ into the "models" directory 
3. Using SoapUI tool execute following steps: 
4. Create new REST project with URL:  

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    75 

http://<VM IP>:8088/api/frontend/deploymentProcess 
5. Using POST method start process 
6. Deploy application 

For each step, the status of the executed action should be positive. 

Expected results: 

1. Application should be reconfigured according to the defined SLOs.  
One worker created at first, then a second one should be added. 

slo NotFinished constraint GenomConstraintModel.NotFinishedOnTime 
constraint model GenomConstraintModel{ 
       variable constraint WorkerCoresGreaterThanMinimumCores : 
           GenomMetricModel.WorkerCoresGreaterThanMinimumCores > 0.0 
       metric constraint NotFinishedOnTime :  
           [GenomMetricModel.NotFinishedOnTimeContext] >= 0.0 
} 

2. Application should work properly; this means that its web page should be properly 
displayed (continuing the previous example with an Apache web server).  

 

 

T4.4a[T] Global reconfiguration - GenomWithSpark deployed on AWS Cloud Provider 

 

Input Conditions: 

1. Installed and configured Melodic platform without any application related artefacts. 
2. AWS Cloud Provider integrated with the Melodic platform for which the respective user 

credentials have been supplied. 
3. Cloudiator properly connected to given Cloud Providers. 
4. Complete CAMEL model of a GenomWithSpark application. The CAMEL model should 

include definition of events and metrics needed to execute the particular test case; 
parameter of time should be = 3600s. Model .xmi can be downloaded from: 
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/ 

Steps to complete: 

1. Login to the machine with installed Melodic 
2. Upload Camel model GenomWithSpark.xmi into "models" directory 
3. Using the Postman tool execute the following steps: 
4. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess 

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/Genom/GenomWithSpark.xmi?at=refs%2Fheads%2FRC2.0


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    76 

5. Using POST method start process 

Sample body  
//GenomWithSpark AWS body deployment 
{ 
 "applicationId": "GenomWithSpark", 
 "username": "user1", 
 "password":"melodic", 
 "cloudDefinitions": 
 [ 
       { 
       "endpoint": "", 
         "cloudType": "PUBLIC", 
         "api": { 
             "providerName": "aws-ec2" 
         }, 
         "credential": { 
             "user": "", //add user 
             "secret": "" //add password 
       }, 
       "cloudConfiguration": { 
           "nodeGroup": "edyta", 
           "properties": 
           { 
               "sword.ec2.ami.cc.query": "image-id=ami-08a0a7bee3f024aeb", 
               "sword.ec2.ami.query": "image-id=ami-08a0a7bee3f024aeb"     
           } 
       } 
   } 
 ], 
 "watermark": { 
     "user": "edyta", 
     "system": "UI", 
     "date": "2016-02-28T16:41:41+0000", 
     "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002AAA" 
      
 } 
} 

6. Deploy application 
7. Check Metasolver/ems logs 
8. Check VM instances (should appear in cloud provider console) 

For each step, the status of the executed action should be positive 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    77 

Expected results: 

1. Application should be reconfigured according to defined SLOs; 
Have an additional application VM deployed, i.e. two or more VM active at the same time 
(Again a record of the new VM must appear in cloud provider console, and an Apache web 
server will respond at the corresponding IP address). 

2. EMS properly delivers events (produced according to CAMEL model specifications) to 
Metasolver. 

3. Application should work properly; this means that its web page should be properly 
displayed (continuing the previous example with an Apache web server). 

 

UC-CAS-9 [T] Reconfiguration Correctly Handles Load Balancer Configuration When 
Removing Instance(s) 

 

Input Conditions: 

1. Deployed and functional application 'SmartWe'. 

Steps to complete: 

1. Login to both components of 'SmartDesign' via ssh 
2. Increase RAM load to 80% with 'createRamLoad.sh' on both instances of component 

'SmartDesign'  
     
    total=$(free | awk '{print $2}'| head -2| tail -1); echo "Free:"$total; 
    used=$(free | awk '{print $3}'| head -2| tail -1); echo "Used:"$used; 
    avail=$(free | awk '{print $7}'| head -2| tail -1); echo "Avail"$avail; 

    target=$((total / 100 * $1)); 
    echo "Targeted:"$target; 
    target_n=$((target - used)); 
    target_m=$((target_n/1000)) 
    echo "Targeted_MB:"$target_m 

    if [[ $target_m =~ ^[\-0-9]+$ ]] && (( $target_m > 0)); then 
      stress --vm-bytes "$target_m"M --vm-keep -m 1 
    else 
      echo "Memory load already higher than "$1"%" 
    fi 

3. Wait until three or more instances were added by reconfiguration mechanism of MELODIC 
4. Assure newly added instance is available  

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    78 

5. Direct access to VM IP on SmartDesign port 
6. Assure configuration of HA Proxy contains newly added machine 
7. Stop script 'createRamLoad.sh' 

Expected results: 

1. Newly added instance is removed 
2. Direct access to VM IP on SmartDesign port is not working any longer 
3. Configuration of HA Proxy does not contain IP anymore 

UC-CAS-8 [F] Deployment According To Scurity Rule/s 

Input Conditions: 

1. Installed and configured Melodic platform without any application related artefacts. 

Steps to complete: 

1. Have application's CAMEL model file 'smartwe-docker.xmi' ready  
2. change model in a way that causes deployment of one or more components outside of 

Europe 
3. Upload CAMEL model file to CDO MELODIC (CDO Server) 
4. Initiate deployment by POST to deploymentProcess endpoint with valid credentials for 

AWS provider 

Expected results:  

1. Deployment fails due to violation of security rule. 

UC-CAS-6 [T] Application Is Deployed On 1&1 IONOS 

Input Conditions: 

1. Available MELODIC platform and valid credentials for 1&1 IONOS (formerly ProfitBricks) 

Steps To Complete: 

1. Upload application's CAMEL model 'smartwe-docker.xmi' to MELODIC 
2. Issue deployment on endpoint by providing application name and credentials for provider 

Expected results: 

1. Application and all components are available and functional. 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    79 

UC-CAS-5 [T] Application Is Deployed On NordicStack 

Input Conditions:  

1. Available MELODIC platform and valid credentials for NordicStack 

Steps To Complete:  

1. Upload application's CAMEL model 'smartwe-docker.xmi' to MELODIC 
2. Issue deployment on endpoint by providing application name and credentials for provider 

Expected results:  

1. Application and all components are available and functional. 

UC-CAS-4 [T] Application Is Deployed On OMI 

Input Conditions: 

1. Available MELODIC platform and valid credentials for OMI 

Steps To Complete: 

1. Upload application's CAMEL model 'smartwe-docker.xmi' to MELODIC 
2. Issue deployment on endpoint by providing application name and credentials for provider 

Expected results: 

1. Application and all components are available and functional. 

UC-CAS-3 [T] Application Is Deployed On AWS 

Input Conditions: 

1. Available MELODIC platform and valid credentials for Amazon AWS 

Steps To Complete: 

2. Upload application's CAMEL model 'smartwe-docker.xmi' to MELODIC 
3. Issue deployment on endpoint by providing application name and credentials for provider 

Expected results: 

1. Application and all components are available and functional. 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    80 

UC-CAS-2 [T] Reconfiguration Happens Within Bounds Based On SLOs and UF 

Input Conditions:  

1. Deployed and functional application 'SmartWe'. 

Steps To Complete:  

1. Login to both components of 'SmartDesign' via ssh 
2. Increase RAM load to 80% with 'createRamLoad.sh' on both instances of component 

'SmartDesign'  

Sample body  
 
total=$(free | awk '{print $2}'| head -2| tail -1); echo "Free:"$total; 
used=$(free | awk '{print $3}'| head -2| tail -1); echo "Used:"$used; 
avail=$(free | awk '{print $7}'| head -2| tail -1); echo "Avail"$avail; 
 
target=$((total / 100 * $1)); 
echo "Targeted:"$target; 
 
target_n=$((target - used)); 
target_m=$((target_n/1000)) 
echo "Targeted_MB:"$target_m 
 
if [[ $target_m =~ ^[\-0-9]+$ ]] && (( $target_m > 0)); then 
  stress --vm-bytes "$target_m"M --vm-keep -m 1 
else 
  echo "Memory load already higher than "$1"%" 
fi 
 

 

Expected results: 

1. Melodic performed a reconfiguration and added one or more instances of the component 
'SmartDesign' 

2. The new instance of 'SmartDesign' was made available in the LoadBalancer component 
and is used for new sessions (configuration file contains IP ad new node) 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    81 

UC-CAS-1 [T] Multi-Component App Is Initially Correctly Deployed on OMI Stack 

Input Conditions:  

1. Installed and configured Melodic platform, without any application related artefacts. 

Steps To Complete:  

1. Have application's CAMEL model file 'smartwe-docker.xmi' ready 
2. Upload CAMEL model file to CDO MELODIC (CDO Server) 
3. Initiate deployment by POST to deploymentProcess endpoint with valid credentials for the 

OMI stack provider 

Expected results:  

1. All components are deployed and functional and within the range of their initial instance 
count. 

UC-CET-8 [F] Deploy pySpark app on AWS and download packages via pip 

Input Conditions:  

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model 

Steps To Complete:  

1. Upload CAMEL model with pyFiles argument for Livy server  
- pyFiles is missing some packages 
- Missing packages are downloaded via pip 

1. Import pip 
2. pip.main() 

2. Trigger deployment 

Expected results:  

1. Instance is deployed, however Livy server fails to deliver desired output, because Livy 
can’t utilize ex-post downloaded packages. 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    82 

UC-CET-7 [F] Deploy pySpark app on AWS with additional compiled libraries for different 
platform 

Input Conditions:  

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model 

Steps To Complete:  

1. Upload CAMEL model with pyFiles argument for Livy server. pyFiles include compiled 
packages like numpy/pandas precompiled to different platform as requested for Spark 
workers  

1. Workers: Ubuntu 16.04 
2. pyFiles package precompiled for Windows 

2. Trigger deployment 

Expected results:  

1. Instance is deployed, however Livy server fails to deliver desired output. 

UC-CET-6 [T] Deploy pySpark app on AWS with additional compiled libraries 

Input Conditions:  

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model 

Steps To Complete:  

1. Upload CAMEL model with pyFiles argument for Livy server. pyFiles include compiled 
packages like numpy/pandas precompiled to same platform as requested for Spark 
workers (both Ubuntu) 

2. Trigger deployment 

Expected results:  

1. Instance is deployed. Livy server serves stdout with results. 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    83 

UC-CET-5 [T] Deploy pySpark app on AWS with additional libraries 

Input Conditions:  

1. Available and tested Melodic platform 
3. Valid credentials for AWS 
4. CAMEL model 

Steps To Complete:  

1. Upload CAMEL model with pyFiles argument for Livy server 
2. Trigger deployment 

Expected results:  

1. Instance is deployed. Livy server serves stdout with results. 

UC-CET-4 [T] Deploy Spark app on AWS 

Input Conditions:  

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model 

Steps To Complete:  

1. Upload CAMEL model 
2. Trigger deployment 

Expected results:  

1. Instance is deployed. Livy server serves stdout with results. 

UC-CET-3 [T] Deploy instance with GB RAM >= 8 

Input Conditions:  

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model where we request 8 or more GB of RAM 

 

http://www.melodic.cloud/


Editor(s):  
Edyta Bańkowska 

Deliverable reference:  
D5.08 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 731664  

 

 

www.melodic.cloud    84 

Steps To Complete:  

1. Upload CAMEL model 
2. Trigger deployment 

Expected results: 

1. Instance is deployed with 8+ GB RAM 

UC-CET-2 [T] Deploy app on AWS in United Kingdom 

Input Conditions: 

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model where we request deployment in UK 

Steps To Complete: 

1. Upload CAMEL model 
2. Trigger deployment 

Expected results: 

1. Instance is deployed in UK on AWS 

UC-CET-1 [F] Request VM with exactly 3 cores at AWS 

Input Conditions: 

1. Available and tested Melodic platform 
2. Valid credentials for AWS 
3. CAMEL model with cores = 3 

Steps To Complete: 

1. Upload CAMEL model where we request 3 cores 
2. Trigger deployment 

Expected results: 

1. Deployment fails as of today (2019-02-13) there are no EC2 VMs with 3 cores. 

 

http://www.melodic.cloud/

