
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 1

 Title:

Security requirements & design

Executive summary

Although cloud computing is a fascinating path leading to
multiple facilities and tangible benefits for companies, it, at the
same time, is very difficult to manage from a security point of
view. The list of the main risks associated with clouds is very
long, and even longer for multi-clouds; the assumptions of the
Melodic project are focused on the following – the most
important from the project's point of view – risks: improper
identity management, credentials and access, and unsecured
interfaces and APIs. Of course, the number of ways to deal with
these problems is no shorter. Every customer that plans to
implement cloud solutions needs to remember to use
simultaneously a proper set of tools which addresses those risks,
e.g.: data encryption tools, management of processing
operations, identity and access, virtual firewalls and other
virtualisation management tools, data loss prevention etc.

While designing Melodic, all above mentioned issues have been
taken into consideration thus our project, from the beginning,
addresses possible security problems that may occur during
usage. We had to be aware that the security risks may be
completely different for various sectors, like industry, public
administration or financial. Moreover, there is a need to answer
different type of questions from companies representatives, for
a Financial Director might have other priorities than a
Technical Director.

Multi-cloud Execution-ware for
Large-scale Optimized Data-
Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and Communication
Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D5.03

Date:

30 June 2018

Responsible partner:

7bulls

Editor(s):

Paweł Skrzypek

Author(s)

Paweł Skrzypek, Yiannis
Verginadis, Ioannis Patiniotakis,
Christos Chalaris

Approved by:

Keith Jeffery

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/deliverables/D5.03 Security Requirements & Design

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

http://www.melodic.cloud/
http://www.melodic.cloud/
http://www.melodic.cloud/deliverables/D5.03%20Security%20Requirements%20&%20Design

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 2

Document

Period Covered M12-18

Deliverable No. D5.03

Deliverable Title D5.03 Security requirements & design

Editor(s) Paweł Skrzypek

Author(s) Ioannis Patiniotakis, Paweł Skrzypek, Yiannis Verginadis,
Christos Chalaris

Reviewer(s) Jörg Domaschka

Work Package No. 5

Work Package Title Integration and security

Lead Beneficiary 7bulls

Distribution PU

Version Final

Draft/Final Final

Total No. of Pages 41 + Appendices

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 3

Table of Content

1 Introduction ... 6

2 Structure of the document ... 7

3 Security requirements for Melodic platform .. 7

3.1 Cloud providers' credentials security.. 8

3.2 User and component authentication .. 8

3.3 Access Control .. 8

4 Conceptual overview of security in the Melodic architecture .. 9

5 Melodic Authorization Service .. 10

5.1 Melodic Authorization Service Requirements .. 10

5.1.1 “Access Control” to Melodic platform components use-case 11

5.1.2 Pre-authorisation of Application deployment & Data placement (plans) use-case
 12

5.1.3 Requirements for Authorisation Service ... 13

5.2 Related work on Access Control.. 17

5.3 Authorisation Service Design ... 18

5.3.1 Attribute-Based Access Control (ABAC) model .. 21

5.3.2 XACML model .. 22

5.3.3 Use of Aspect and Aspect-Oriented Programming ... 25

5.3.4 Use of Request Interceptor for Spring-boot based components 27

5.4 Authorisation Service Architecture .. 28

5.4.1 Attributes in Authorisation Service .. 29

5.4.2 Authorisation Service Architecture .. 29

6 User Authentication Service ...33

6.1 User Authentication Service Requirements ...33

6.2 Related work on user authentication ... 34

6.2.1 Monolithic applications ... 34

6.2.2 Distributed Session Management .. 35

6.2.3 Token-Based Authentication ... 35

6.3 User Authentication Service Design Decisions ... 36

6.3.1 User credentials store .. 36

6.3.2 Authentication mechanism – token-based .. 36

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 4

6.3.3 Changes in process flow ..37

6.3.4 Changes in components’ methods invocation ...37

6.4 User Authentication Service Architecture ..37

7 Cloud providers' credentials security... 38

7.1 Cloud providers' credentials security requirements .. 38

7.2 Cloud providers' credentials security design decisions ... 39

8 Summary ... 40

9 References .. 41

Appendix A: Assessing the Melodic Security Services via External Security Experts ... 42

A.1 Summary of the external experts’ assessment .. 43

A.1.1 Positive highlights ... 43

A.1.2 Recommendations for enhancement .. 44

A.2 Next steps for the Melodic security services enhancement .. 48

Appendix B: Security Audit Report by Prof. Antonis Michalas .. 52

Appendix C: Security Audit Report by SIDIO Sp. z o.o. ... 73

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 5

Index of Figures

Figure 1: Access Control use case diagram .. 12
Figure 2: Deployment plan Pre-authorisation use case diagram .. 13
Figure 3: XACML Flow & Architectural Components ...23
Figure 4: Aspect-Oriented Programming ...26
Figure 5: Tomcat request processing cycle ... 28
Figure 6: Attribute flow in Melodic Authorisation service .. 29
Figure 7: Authorisation Service architecture ... 30
Figure 8: Authorisation service within Melodic platform architecture32
Figure 9: The authentication flow of operations ... 36
Figure 10: Cloud Providers credentials flow .. 40

Index of Tables

Table 1: Use case to Authorisation Requirements mapping .. 17
Table 2: Use case to Authorisation Requirements mapping ... 18
Table 3: Java-based, open source, XACML tools .. 24
Table 4: User authentication security requirements ... 34
Table 5: Cloud providers' credentials security requirements .. 39
Table 6: Consolidated details of the recommendations provided by Prof. Michalas 44
Table 7: Consolidated details of the recommendations provided by the SIDIO experts . 46
Table 8: Related recommendations .. 48
Table 9: Addressing the experts’ recommendations ... 48

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 6

1 Introduction

Security is one of the most crucial elements of cloud solutions. Based on the cloud
adoption survey1, it is one of the most important obstacles towards migration to the
cloud. That is the reason why several tasks in the Melodic project are dedicated to the
topic. The results of the work performed over these tasks are reported in this deliverable.

There are many security topics related to the Melodic project: The first one concerns the
security of user-provided cloud provider credentials (access and storage). Based on the
underlying frameworks (PaaSage), the security of these credentials has been increased.
In particular, cloud providers’ credentials are now stored in a secure way. Further, they
are stored in only one component of the platform (Cloudiator), i.e., in the exact place
where they will be also used.

The second element related to security concerns user and component/external system
authentication. To achieve this, a state-of-the-art solution based on SAML22 and LDAP3
has been implemented. The authentication is based on generated tokens, valid for a
certain period of time, instead of communicating the user/password credentials in a
non-secure and textual manner in each method invocation.

Finally, an advanced authorisation module using the XACML4 standard and WSO 2
Balan5 authorisation platform has been designed, implemented and integrated in the
Melodic platform. Thanks to that, a very high level of security control has been achieved,
with the ability to configure a very flexible and complex set of security rules for
authorisation of the selected operations.

In this way, the described security enhancement of the Melodic platform leads to a
significantly better security level with respect to the one exhibited by the underlying
frameworks that are utilised, like PaaSage.

1 https://www.forbes.com/sites/louiscolumbus/2017/04/23/2017-state-of-cloud-adoption-and-
security/#657fdbe21848
2 https://access.redhat.com/documentation/en-
US/Red_Hat_JBoss_Portal/6.1/html/Administration_and_Configuration_Guide/chap-
Security_Assertion_Markup_Language_SAML2.html
3 https://ldap.com/
4 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
5 http://xacmlinfo.org/category/balana/

http://www.melodic.cloud/
https://www.forbes.com/sites/louiscolumbus/2017/04/23/2017-state-of-cloud-adoption-and-security/#657fdbe21848
https://www.forbes.com/sites/louiscolumbus/2017/04/23/2017-state-of-cloud-adoption-and-security/#657fdbe21848
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Portal/6.1/html/Administration_and_Configuration_Guide/chap-Security_Assertion_Markup_Language_SAML2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Portal/6.1/html/Administration_and_Configuration_Guide/chap-Security_Assertion_Markup_Language_SAML2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Portal/6.1/html/Administration_and_Configuration_Guide/chap-Security_Assertion_Markup_Language_SAML2.html
https://ldap.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://xacmlinfo.org/category/balana/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 7

2 Structure of the document

The structure of this document is as follows:

Chapter 3: Security requirements for Melodic platform – general overview of security
requirements for the Melodic platform.

Chapter 4: Conceptual overview of security in the Melodic architecture – general
overview of security related elements in the Melodic architecture.

Chapter 5: Melodic Authorization Service – Requirements, architecture and design
decisions related to the Authorisation Service in Melodic.

Chapter 6: User Authentication Service – Requirements for the User Authentication
Service as an important component of the Melodic platform that allows, together with
the authorisation service, accessing and operating the Melodic platform system.

Chapter 7: Cloud providers' credentials security – Requirements and design decisions
related to cloud provider's credentials security in Melodic.

Chapter 8: Summary – summary of the document with conclusions and future work
directions.

Appendix A: Assessing the Melodic Securit Services via External Security Experts – an
introduction to and a summary of an assessment of the security mechanisms of the
Melodic platform conducted by external security experts.

Appendix B: Security Audit Report by Prof. Antonis Michalas

Appendix C: Security Audit Report by SIDIO Sp. z o. o.

In the document there are references to the Melodic architecture which is described in
detail in the D2.2 deliverable “Architecture and initial feature definition” [1].

The target audience of this deliverable are technical partners involved in development
of the Melodic platform. Also, the requirements and security capability of the platform
would be beneficial for use case partners and all users of Melodic.

3 Security requirements for Melodic platform

This section presents key security requirements for the Melodic platform, based on the
experience from the PaaSage project, the Melodic project's Description of Action,
requirements from use cases applications and the general experience of developing and
maintenance of Cloud Computing based applications and IT systems.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 8

3.1 Cloud providers' credentials security

Based on experiences from underlying frameworks (mostly the PaaSage framework), the
security of cloud providers' credentials needed to be improved. The credentials should
not be stored in plain text, but in an encrypted form. The credentials should be stored in
an encrypted form, using a symmetrical method of encryption with a secret key. The
secret key used to encrypt a password should be known only to platform administrators.
Also, the credentials should be stored in just one place in the system, the place where
they are really needed to be used. Users should provide his/her credentials only once, in
the initial stage of application deployment before the deployment process starts.

3.2 User and component authentication

The Melodic platform should use a unified method for user and component
authentication at the platform/system level. Each operation originated by a user, a
component or an external system should be properly authenticated, using the proven
method for that purpose. It should also be as secure as possible. In particular,
authentication should be based on username and password, but user and component
credentials should be stored in one place, not spread across many components.
Authentication per method invocation should be based on tokens, using industry proven
security standards like SAML2. Using token-based authentication does not require to
pass the user credentials each time, for each operation invocation and improves the
security level.

3.3 Access Control

The Melodic platform should also use a unified method for user and component
authorisation at the platform level. Authorisation ensures that only eligible entities
(users or components) can access protected platform resources and apply certain
operations on them. Each access attempt to a resource is checked against a set of access
control policies, captured using the XACML language, which is the de facto standard.
During authorisation checking, various stated and contextual information should be
used; this information relates to the requestor (user or component), the resource being
accessed (data, methods etc.), the attempted operation as well as other environment data
(date/time, Upperware operational status, etc.).

Beyond access control, the authorisation infrastructure should be consulted on whether
a given application deployment plan, generated by the Upperware, complies to a set of
deployment policies. Such policies may encompass constraints and limitations
referring to application deployment (for instance total cost or number of virtual
machines deployed).

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 9

4 Conceptual overview of security in the Melodic

architecture

Melodic, as its significant part is an integration of the underlying frameworks, needs to
address security concerns which have been raised based on exploitation of these
frameworks. Also, the introduction of new components requires additional security
enhancements.

The most important shortcomings related to the security of underlying frameworks are
listed below:

1. Cloud providers' credentials passed and stored in plain text, without encryption;
2. Lack of centralized user authentication;
3. Missing centralized inter-component authentication;
4. Lack of possibility for creation of advanced authorization rules.

The work related to security in Melodic has been conducted in the three directions listed
further in this chapter. All these directions are based on the requirements described in
chapter 3.

There are three main security elements covered in Melodic:

1. Cloud providers' credentials security – handled by the BPM process and
Cloudiator. This element of security is analysed in chapter 7.

2. User authentication service – handled by the JWT and SAML2 tokens
component. It is used for each method invocation. This component of security is
detailed in chapter 6.

3. Access control authorization – handled by XACML and Balana server. This
element of security is analysed in chapter 5.

Each above-mentioned security element is presented in a different section of the
deliverable. Due to the different nature and specificities of these components, the
content and structure of these sections are slightly different.

In the Melodic platform the above security elements have been implemented and
harmonized together, to address security shortcomings from previous projects and
achieve as good results in terms of security as possible.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 10

5 Melodic Authorization Service

This chapter documents the Melodic's Authorisation Service. Authorisation refers to a
security mechanism that determines and enforces access privileges of a requesting
entity, related to resources and application features. In Melodic, this service materialises
two objectives. First, the supply of a security-by-design access control framework for
Melodic platform components, which enables the adequate protection of sensitive
platform resources (such as services, components, workflows, and data), both from
unauthorised access attempts as well as from compromised or misbehaving platform
parts.

The second objective relates to the enforcement of policies and limitations regarding the
deployment of Melodic applications and their data in cloud providers. Normally, the
Melodic reasoner will produce correct deployment plans conforming to any given
constraints and limitations. However, a compromised, due to a cyber-attack, Upperware
component could possibly yield invalid deployment plans. Therefore, a precautionary
validation step, before the actual deployment, would reduce the likelihood of deploying
an application in a non-conformant manner. We refer to this step as pre-authorisation.
The enforced limitations can be regulatory, corporate, as well as budget-, resource- or
security-related.

These two objectives are quite different in their business purpose and involve different
authorisation rules. However, the same authorisation capabilities and toolset can be
used in order to achieve both of them.

This chapter is structured as follows. In subsection 5.1 the requirements for the Melodic
Authorisation Service are extracted on the basis of two use cases, related to the two
aforementioned objectives. Subsection 5.2 gives a brief overview of the most frequently
used access control models introduced in the literature. Based on the information from
the first two subsections, the Authorisation Service design decisions are given in
subsection 5.3. Eventually, subsection 5.4 presents and details the Authorisation
Service's architecture and implementation.

5.1 Melodic Authorization Service Requirements

Authorisation in the context of the Melodic project is seen from two different
perspectives, based on two use cases corresponding to the two objectives mentioned
above; namely, the “access control” to various Melodic platform components, and the
“pre-authorisation” of application deployment and data placement plans in cloud
providers. In the former use case, authorisation capabilities are considered to be
responsible for protecting the platform itself from illegal access attempts and

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 11

interference with its normal operation. In the latter case, authorisation capabilities refer
to the pre-authorisation of application deployment and data placement plans, produced
by Melodic Upperware, considering given set of policies, constraints or limitations. Each
use case is discussed in more detail to help identify the relevant requirements for the
Authorisation Service.

5.1.1 “Access Control” to Melodic platform components use-case

The Melodic platform comprises a set of network-connected micro-services, distributed
over an intranet or a (virtual) private network. Despite the significant advantages of this
approach, certain attack vectors exploiting the networked and distributed nature of the
platform are possible. In order to ensure a sufficient level of security, it is necessary to
protect platform components (micro-services) from unauthorised access attempts
(either from within the platform or the outside world) and isolate those that have been
compromised. However, detecting a hacked component cannot solely rely on presenting
valid credentials, since they might be leaked, or a hacker might take control of a
component requesting access or even pretending to be a platform component. For this
reason, additional parameters must be taken into account; for instance, the components’
previous behaviour (recorded in logs), the origin and time of an access request, or the
current state and environment of the platform. Such information is usually termed as
context. Dey and Abowd [2] define context as “any information that can be used to
characterise the situation of an entity”. Contextual information can be of various types
and originate from diverse sources. Moreover, it might vary among Melodic adopters and
applications. The Melodic Metadata Schema (introduced in deliverable D2.4 [3]) provides
a classification of these information types, in its Context-aware Security model. This
classification acts as a common vocabulary (between the components) for collecting,
storing and leveraging information for authorisation purposes.

Access request data (data included and explicitly stated in an access request) and
contextual information need to be combined and correlated in order to conclude
whether an access attempt is legal or not, for instance checking whether an access
request is part of the regular workflow (of Upperware) or an out-of-band access attempt.
Another check is whether access is attempted at the right time and sequence (i.e., after
prerequisite steps have been taken). Checks might combine information including the
requestor identity, location, privileges, the resource identity and state, the intended
operation (on the resource), as well as the time frame or other contextual information. It
is also noteworthy that authorisation rules might change over time to satisfy new needs
or fix problems that have been identified. Subsequently, the information needed and the
way it is combined need to change accordingly. Figure 1 provides the use case diagram
of the access control use case. Access control involves the collection of request data,
contextual information and the use of access control policies.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 12

Figure 1: Access Control use case diagram

As already mentioned, several of the Melodic platform components need to be protected
from unauthorised access. Since the platform is distributed (components might be
installed in separate physical or virtual hosts), the authorisation capabilities must be
present in every component that needs to be protected.

5.1.2 Pre-authorisation of Application deployment & Data placement (plans) use-

case

Application deployment and data placement plans typically encompass information
and instructions about the number and type of application components, the distribution
of application dataset in VMs, the selected cloud providers, VM and data requirements
(including security) and various setup procedures. Executing these plans leads to the
deployment of operational multi-cloud applications. However, limitations and
constraints might occur affecting the way an application must be deployed, operated
and how data must be stored and processed. These limitations may vary between
different geographical or logical regions and evolve. An example is the General Data
Protection Regulation (GDPR)6, which is put into effect in EU on the 25th of May 2018.
Apart from regulatory and legal constraints, corporate standards and policies may also
apply, as well as particular budget and resource constraints or rules of usage (e.g., the
number of deployed VMs per cloud provider, cost of deployed VMs and stored data).

6 https://www.eugdpr.org/the-regulation.html

http://www.melodic.cloud/
https://www.eugdpr.org/the-regulation.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 13

As a consequence, a variety of information is required to ensure whether any given
application deployment and data placement plans abide by a set of established policies
(regulations, rules, constraints, and limitations). As in the “access control” use case,
information needs to be combined to conclude whether a given plan satisfies the
relevant policies. Furthermore, such information might change over time. The context
classification and related concepts included in Melodic's Metadata Schema can also be
used for application deployment plan pre-authorisation. Figure 2 provides the use case
diagram of the pre-authorization use case. Pre-authorization pertains to Adapter and
DLMS components of the Melodic platform. It involves the collection of request data,
contextual information and the use of access control policies.

Figure 2: Deployment plan Pre-authorisation use case diagram

A pre-authorization policy could for example pose a limit on the number of virtual
machines deployed on a cloud provider, or require the storage of data of a certain type to
be stored in nodes located in EU.

5.1.3 Requirements for Authorisation Service

Melodic's authorisation service requirements have resulted mainly from three sources:

1. the two objectives presented above and the needs of the corresponding use cases,
2. the Melodic platform generalised requirements presented in deliverable D2.1 [4],

especially those relating to privacy & confidentiality, and
3. the interaction with consortium partners (use case and technical partners).

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 14

In order to satisfy the aforementioned objectives, generalised requirements and needs,
the Melodic's authorisation service must exhibit specific capabilities and meet specific
requirements, which are detailed in the following paragraphs. These requirements
further elaborate on those specified in D2.1 [4] or are implied from the aforementioned
use cases.

[R1] Support for multiple information types and sources. As already discussed,
the identity, role, and credentials (user/password, clearance level or security
labels) of the entity attempting to access a resource, are not adequate to
determine whether such an access request is legal or not. The same holds
for pre-authorising application deployment plans. In fact, a multitude of
information is required, which either might be stated with the access
request or derived or acquired from the context (for instance access time,
requestor IP address or state of the resource). This information can be
considered being in the form of attributes that characterise the entity
attempting the access, the resource being accessed, the requested operation
on the resource, the request object itself, or any other platform or
environment entity that might affect the decision to allow or block the
access attempt.

[R2] Support for multiple authorisation check points. Since the Melodic platform
comprises several components, it is necessary to introduce access control
checks at several points, where critical operations take place or sensitive
data are stored or processed. Such points are the Upperware Control Plane,
the Adapter and the DLMS components (which jointly implement the
application and data deployment plans).

[R3] Minimal changes to pre-existing platform code. In order to enhance the
usability of the authorisation service, it is essential to require minimal code
changes when incorporating such security capabilities.

[R4] User-defined and flexible authorisation. The authorisation requirements
may significantly vary between different Melodic platform installations,
both regarding access control as well as regarding application deployment
policies. It becomes apparent that the Melodic platform adopters must have
tools at their disposal for capturing these requirements (as policies and
rules). For this reason, a suitable language, capable of expressing complex
relations between the various access request artifacts and their attributes,
must be chosen. Additionally, a desirable (but not required) feature would be
the ability to modify access control and pre-authorisation rules at runtime,
without needing to restart the Melodic platform or its authorisation service.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 15

[R5] Authorisation rules decoupled from code. Access control and pre-

authorisation rules may significantly vary. Furthermore, they might evolve
over time. For this reason, they must not be hard-wired or tightly coupled
with the platform code to avoid the need to update, compile and re-deploy
the Melodic platform every time a rule changes.

[R6] Leverage Melodic Metadata Schema. In deliverable D2.4 [3], we have
presented and detailed the Melodic's Metadata Schema, which serves as a
common, versatile vocabulary for all Melodic software components and
models. One of the constituting parts of the Metadata Schema is the
Context-Aware Security model, which captures in an extensible manner the
attributes of the notions involved in various access control and security
scenarios. These notions are: The Subject (entity attempting access), Object
(resource being accessed), Request (the access attempt artifact), Security
Context Element (any attribute, either stated or contextual), Handler
(attribute handling entities), Permission (rights to perform specific actions
on resources) and Context Pattern (for recurring and complex access
requests). In this respect, the Authorisation Service must take the Melodic's
Metadata Schema under consideration.

[R7] Availability and fault tolerance. Authorisation capabilities must always be
available for monitoring access attempts continuously and authorising only
the legitimate ones. They must also be able to cope with various types of
errors (including network errors) without going out of service or taking
wrong decisions. Especially, they should be able to rapidly recover from
faults and unexpected crashes.

The aforementioned requirements satisfy and further elaborate the “privacy and
security” requirements presented in deliverable “D2.1 System Specification” [4]. Namely:

i. Secure and context-aware data access control mechanism.
This is covered by requirement “[R1] Support for multiple information types and
sources” since it requires taking into consideration any type of information,
including contextual and environment information, during the authorisation
process. Moreover, “[R6] Leverage Melodic Metadata Schema” relates to this D2.1
requirement since it mandates the use of the Context-aware Security Model to
classify the information used for authorisation.

ii. Ability to accept user-defined data security and confidentiality requirements.
Requirement “[R5] Authorisation Rules decoupled from code” requires the
authorisation rules to be held separately from code (thus enabling their change
without modifying software) while requirement “[R4] User-defined and flexible
authorisation” specifies that authorisation rules can be user-defined and that a
language should be used for capturing them.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 16

The generic requirements stated in D2.1 may also apply to the authorisation service.

i. Stability.
The system should work in a stable manner.
Service stability should be ensured using suitable test cases.

ii. Error handling.
Functional and non-functional errors should be properly handled.
All service errors must lead to authorisation failures to ensure that anyone
accessing sensitive resources is always properly authorised to do so.

iii. Monitoring & traceability.
It should be possible to monitor and track all activities in the system.
Authorisation service should generate detailed audit trails to enable effective
monitoring and tracing.

iv. Ability to deploy applications based on a high availability/disaster recovery
configuration.
Authorisation service must be able to always respond under high load and also
work in disaster recovery (configuration) mode

v. Logging.
Support for unified logging of all components with configurable logging levels.
Services must follow the same logging approach and share the same logging
configuration with other Melodic platform components.

vi. Backup.
Support for backing up system databases and critical components.
It must be possible to backup authorisation rules and configurations.

The non-functional requirements presented in the same deliverable, D2.1 [4], are also
relevant. These requirements are Extensibility, Reusability, Documentation, Quality,
Fault Tolerance and Scalability. Authorisation service must be written in a modular way
and provide an extension framework, thus making it easily maintainable, extensible and
thus reusable. Additionally, it should be possible to use it in isolation from the rest of the
Melodic platform, hence strengthening its reusability. Documentation is also needed to
allow users and developers extend and configure the service for their own purposes.
Suitable tests are required to ensure its quality and stability during development, and
also for verifying a deployment in a production environment. Scalability should also be
considered in order to ensure the uninterruptible and performant operation of
authorisation service even with increased workload.

Eventually, the mapping of the two use cases (see subsections 5.1.1 and 5.1.2) onto the
authorisation service-specific requirements ([R1] to [R7]) is given. It is interesting to note
that the “access control” use case subsumes the “deployment plan pre-authorisation” use
case with regards to requirements, which is depicted in Table 1 below.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 17

Table 1: Use case to Authorisation Requirements mapping

Requirement Access Control
use case

Deployment Plan
Pre-

Authorisation
use case

[R1] Support for multiple information types and
sources

[R2] Support for multiple authorisation check
points

[R3] Minimal changes to pre-existing platform
code

[R4] User-defined and flexible authorisation

[R5] Authorisation Rules decoupled from code

[R6] Leverage Melodic Metadata Schema

[R7] Availability and fault tolerance

5.2 Related work on Access Control

Several access control models have been proposed in the literature and used in software
products. These models provide a framework and a method of how resources, requestors,
operations, and rules may be combined to produce and enforce an access control
decision. Each model has certain advantages and disadvantages. The most well-known
from these models are the following:

 Discretionary Access Control (DAC). In discretionary access control, the owner of
a resource specifies which entities can access the resource. Most operating
systems and file systems are based on this model kind. [5]

 Mandatory Access Control (MAC). In mandatory access control, all entities are
given a security clearance (for example top secret, secret, confidential,
unclassified), while also resources are given a security classification (top secret,
secret, confidential, unclassified). When a request to access a protected resource
arrives, the system checks if the clearance level of the requesting entity matches
or surpasses the classification level of the resource. [6]

 Identity-Based Access Control (IBAC). In identity-based access control,
mechanisms, such as Access Control Lists (ACLs), are used to capture the
identities of the entities having the permission to access specific resources. If a
requestor presents a credential matching an identity held in the ACL, he/she is
allowed to access the corresponding resource. Each resource needs its own ACL.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 18

Privilege sets must be assigned to each entity that needs to access a resource [6].
A disadvantage of the IBAC model is the increased effort required to create and
maintain the ACLs of resources. Failing to update privileges correctly may end up
with entities being able to access resources that they should not access.

 Role-Based Access Control (RBAC). It employs pre-defined roles associated with
specific privileges. Entities are then assigned to roles (e.g., the role of Manager) in
order to have access to resources. Resources require specific privileges (or roles)
in order to be accessed. When an access request is received, the access control
mechanism checks if one of the roles assigned to the entity requesting access
and the set of privileges that this role is carrying match the privileges required by
the resource being accessed. The RBAC model provides an easier and centralised
management of access control than IBAC and reduces the need for ACLs. [7]

 Attribute-Based Access Control (ABAC). It uses policies that comprise rules,
which in turn comprise logical conditions on many attributes. Typically, each rule
contains at least a condition (boolean expression) and a decision (permit or deny)
to take when the condition is true. Policies combine the outcomes of rules and
yield the final decision using certain outcome combination methods. Attributes
can be properties of the requesting entity, of the resource being accessed, of the
operation requested, or any other contextual information.

ABAC models require less effort to create and maintain than RBAC and ACLs do [7], since
they aggregate all authorisation rules in one place, i.e., the policy. When an access
request is made, an ABAC-compliant engine will make an access control decision based
on the available attributes and a given set of policies. Policies can be created and
managed without directly affecting entities and resources, while entities and resources
can be provisioned without affecting policies.

5.3 Authorisation Service Design

Using the requirements presented in subsection 5.1.3 as guidelines, we will subsequently
give the Authorisation Service design decisions and provide brief justifications for our
choices in Table 2 below.

Table 2: Use case to Authorisation Requirements mapping

Requirement Design Decision

[R1] Support for multiple
information types & sources

The ABAC model has been selected mainly due to its
generality and flexibility. Furthermore, it considers
multiple information types in the form of attributes as
well as multiple attribute sources (more information
in subsection 5.3.1)

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 19

[R2] Support for multiple
authorisation check points

A client-server architecture will be used in the
Authorisation Service. Authorisation clients will be
introduced at every point in the Melodic platform
requiring authorisation evaluation, contacting for this
purpose an authorisation server. This is in line with
the ABAC paradigm. It is expected that both clients
and the server will be on the same intranet or private
network. Therefore, communication will be fast and
more secure.

[R3] Minimal changes to pre-
existing platform code

Three approaches are considered. For each platform
component requiring authorization, the most suitable
from these three approaches should be selected.

 Use of an aspect-oriented technique to “inject”
the authorisation client at suitable annotated
code points. This approach enables the
development of secure-by-design software,
since it allows "tagging" the sensitive
operations with appropriate authorization
annotations. It requires relatively small code
updates and re-compilation. More information
will be given in subsection 5.3.3.

 Use of a web server interceptor to “intercept”
incoming HTTP requests and handle them to
the authorisation client before allowing their
normal processing. This approach does not
require code changes, but requires
reconfiguring the Tomcat server and updating
the software package appropriately. More
information will be given in subsection 5.3.4.

 Direct use of authorisation client objects. This
approach requires significant code additions
and re-compilation. It is suitable for particular
usages (for instance, writing a custom
authorisation client) or when the previous two
approaches are not applicable.

More details on the three approaches will be given in
the subsequent subsections.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 20

[R4] User-defined and
flexible authorisation

The use of the XACML7 language enables the
specification of user-defined authorisation policies, as
well as their maintenance and evolution, even at
runtime. Moreover, the ABAC model8 (followed by
XACML) enables the use of any kind of attributes,
acquired both from access requests as well as the
environment. This fact, combined with the capability
of the XACML language to capture complex attribute
expressions, gives great flexibility in defining
advanced authorisation rules and policies.

[R5] Authorisation rules
decoupled from code

No authorisation rules or policies will be part of
Melodic’s applications code. Instead, policies will be
captured separately (e.g., in one or more files). This is
in line with the ABAC model and the XACML reference
implementation.

[R6] Leverage Melodic
Metadata Schema

The Melodic’s Metadata Schema must be used as
background knowledge, capturing all authorisation
related attributes.

[R7] Availability and fault
tolerance

Authorisation server clustering and client-side load-
balancing; Server clustering will allow operating
several instances of the authorisation server thus
ensuring its high availability and continuity of
service. Load-balancing allows distributing the
service workload in several authorisation server
instances, thus achieving better performance and
lower response time.

Apart from the design decisions imposed by the requirements, a few more decisions
have been made regarding the (technical) structure of the service:

 Use of a modular software structure, with separation of concerns. It will allow
easier development and maintenance of service parts.

 Use of a plugin framework for introducing extension points and enabling the
addition of functionality that might vary between adopters (for example, custom
request data and context collection, environment context collection, and context
storage).

7 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
8 https://www.axiomatics.com/100-pure-xacml/

http://www.melodic.cloud/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.axiomatics.com/100-pure-xacml/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 21

 Use of configuration files for including, activating and setting up features, such

as plugins to use, security certificates for encrypted communication, database
and servers to communicate with, and load balancing.

 Use of a Spring-boot framework for the Authorisation Service implementation to
be in line with the rest of the Melodic Upperware components.

5.3.1 Attribute-Based Access Control (ABAC) model

In this subsection, we will justify our choice to use the ABAC model for the Authorisation
Service and specifically the XACML model and language. Moreover, we will select an
XACML-compatible engine to use in the Authorisation Service.

ABAC is an “access control method where subject requests to perform operations on
objects are granted or denied, based on assigned attributes of the subject, assigned
attributes of the object, environment conditions, and a set of policies that are specified
in terms of those attributes and conditions” [8]. For the sake of completeness and clarity,
the definitions of the terms “attribute,” “subject,” “object,” “operation,” “policy” and
“environment” are given below.

 Attributes are characteristics of the subject, object or environment. Attributes
contain information given in the form of name-value pairs.

 Subjects are human users or system entities, such as a device or piece of software,
which attempt to perform operations on objects. Subjects can have one or more
attributes.

 Objects are controlled system resources, such as devices, files, records, tables,
processes, programs, networks, or domains containing or receiving information
or being invoked in order to provide a service. In this sense, an object can be
anything upon which an operation may be requested and performed.

 Operations are executions of specific actions on objects at the request of a
subject. Operations include read, write, edit, delete, copy, and execute.

 Policies are sets of rules that enable determining whether an access request
should be allowed, based on the attribute values of the subject, the object,
operation and possibly the environment conditions.

 Environment represents the operational or situational context in which access
requests occur. Environment context are detectable environment characteristics
modelled as attributes. Environment characteristics are independent of the
subject or object and may include the current date/time, location of users or the
current system state.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 22

Any ABAC-compliant system must implement the following conceptual workflow:

 The subject performs an access request for a specific operation on a specific
target object,

 An ABAC-compliant engine retrieves policies from the policy repository and
obtains the attributes required,

 This ABAC-compliant engine retrieves attribute values from various sources
(including the access request itself), pertaining to the subject, object, operation,
and environment,

 The ABAC-compliant engine uses the attribute values to evaluate if the access
request complies with relevant policies and makes a decision on whether to
permit or deny the respective requested access.

5.3.2 XACML model

There are a few reference implementations of the ABAC model, but the most important
one is the eXtensible Access Control Markup Language (XACML) and Next Generation
Access Control (NGAC) [9]. XACML seems to be most widely used as it enjoys worldwide
industrial adoption in sectors like banking, healthcare, and insurance. Moreover, most
related products and vendors support it. As already stated, XACML has been selected for
the Melodic Authorisation Service.

XACML is an XML-based, open-standard language promoted by OASIS, for expressing
authorisation policies (as access control requirements) and querying access to
resources9. Along with the language an access control architecture and a processing
model is also proposed. Evaluating an access request to a resource, with regard to an
XACML policy, may result in one of these four values: Permit, Deny, Indeterminate (an
error occurred or needed values were missing) or Not Applicable (no related policy
found).

The XACML specification defines five main components (Figure 3) that handle access
decisions; namely Policy Enforcement Point (PEP), Policy Administration Point (PAP),
Policy Decision Point (PDP), Policy Information Point (PIP), and a Context Handler.

9 https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

http://www.melodic.cloud/
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 23

Source: OASIS10

Figure 3: XACML Flow & Architectural Components

Each of the depicted components has a certain purpose to serve:

 The Policy Administration Point (PAP) provides an interface or API to manage the
policies (that are stored in a repository) and provides the policies to the Policy
Decision Point (PDP).

 The Policy Enforcement Point (PEP) is the interface to the external world. It
receives application-specific access requests and translates them to XACML
access control requests. Subsequently, it denies or allows access, based on the
result returned by PDP.

 The Policy Decision Point (PDP) is the decision point for access requests. It
collects all necessary information from other actors and yields a decision.

10 https://www.researchgate.net/figure/XACML-context-and-data-flow-diagram-Committee-
2013_fig4_269986577

http://www.melodic.cloud/
https://www.researchgate.net/figure/XACML-context-and-data-flow-diagram-Committee-2013_fig4_269986577
https://www.researchgate.net/figure/XACML-context-and-data-flow-diagram-Committee-2013_fig4_269986577

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 24

 The Context Handler coordinates the attribute value retrieval between PDP and

PIPs, as well as the flow of access requests and responses between PDP and PEPs.
 The Policy Information Point (PIP) is where the necessary attributes for the policy

evaluation are retrieved from several external or internal sources, such as the
resource being accessed, the environment (for example, the time access request
received), the subjects and so forth.

For more information, the reader may refer to the OASIS XACML web page11.

Since XACML introduction (around 2003), several compliant tools, libraries, and
frameworks have been developed and offered, both as free/open source software as well
as commercial products. Some of the most well-known Java-based, open source tools
are given next in Table 3. The main aspects considered in this table are the current
version of each product (implying its maturity), its licensing model, and when its latest
stable version has been released (indicating if the product is still being supported and
maintained). Furthermore, brief comments have been added to highlight important facts
and advantages or disadvantages.

Table 3: Java-based open source XACML tools

Product/Vendor
XACML
Version

License
Latest
release

Notes

Balana (library)
WSO2

(https://github.com
/wso2/balana)

3.0, 2.0, 1.x Apache 2.0 Mar 2018 Based on Sun's XACML
Implementation

Seems to be the most used
XACML implementation

Previous experience from
PaaSword project exists

Authzforce CE
Thales & OW2

(https://github.com
/authzforce)

3.0 Apache 2.0 Apr 2018 Lack of clear
documentation for
developing extensions

Picketbox
JBoss

(http://picketbox.jb
oss.org/)

2.0 LGPL 2.1 Feb. 2011 Merged with Keycloak
project since 2015

11 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

http://www.melodic.cloud/
https://github.com/wso2/balana
https://github.com/wso2/balana
https://github.com/authzforce)
https://github.com/authzforce)
http://picketbox.jboss.org/
http://picketbox.jboss.org/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 25

Xacml4j

(https://github.com
/xacml4j-
opensource/xacml
4j.github.io)

3.0, 2.0 GPL 3.0 Jul. 2014 No activity in project
codebase at Github since
2014

XACML Light

(http://xacmllight.s
ourceforge.net/)

2.0 Unknown Unknown PDP & PAP only

Heras AF

University of
Applied science
Rapperswil,
Switzerland

(https://bitbucket.o
rg/herasaf/herasaf-
xacml-core)

2.0 Apache 2.0 Aug. 2016 It is an XACML 2.0
implementation

OpenAZ
Apache Incubator

(http://incubator.ap
ache.org/projects/o
penaz.html)

3.0 Apache 2.0 n/a Retired since Aug 2016

Sun's XACML
Sun Microsystems
Inc

(http://sunxacml.so
urceforge.net/)

2.0, 1.x Open
source

Dec. 2010 Too old. No active support
anymore

Based on the information included in Table 3 (and especially in the last column), we
opted to use WSO2 Balana engine for XACML 3.0 (latest). However, replacing it with
another alternative is expected to be a relatively straightforward task, since the XACML
policy engine resides inside the PDP component of the XACML architecture.
Furthermore, the pluggable design of the server will allow easy replacement of plugins
pertaining to the specific policy engine with new ones.

5.3.3 Use of Aspect and Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming approach for software
modularisation and separation of cross-cutting concerns [10]. This is achieved by adding
extra functionality (called Advice) to existing code without modifying the source code.

http://www.melodic.cloud/
https://github.com/xacml4j-opensource/xacml4j.github.io
https://github.com/xacml4j-opensource/xacml4j.github.io
https://github.com/xacml4j-opensource/xacml4j.github.io
https://github.com/xacml4j-opensource/xacml4j.github.io
http://xacmllight.sourceforge.net/
http://xacmllight.sourceforge.net/
https://bitbucket.org/herasaf/herasaf-xacml-core
https://bitbucket.org/herasaf/herasaf-xacml-core
https://bitbucket.org/herasaf/herasaf-xacml-core
http://incubator.apache.org/projects/openaz.html
http://incubator.apache.org/projects/openaz.html
http://incubator.apache.org/projects/openaz.html
http://sunxacml.sourceforge.net/
http://sunxacml.sourceforge.net/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 26

This addition typically occurs during the software building phase in a task called
weaving, which is undertaken by specialised tools called weavers. The code to be
modified is identified via pointcuts, which are specifications of those code artifacts
(typically class and method signatures) needing to be enhanced with advices. Pointcuts
can be external to the code or embedded as code metadata. Pointcuts also support
specific query expressions for matching the relevant code. An advice, along with the
pointcuts that specify the code it must be applied onto, is called an Aspect.

AOP allows the non-core functionality of a software component (for instance, logging of
code executions, measuring duration, and authentication/authorisation) to be moved
away from the code implementing the core business of the component. The non-core
functionality is added and interleaved with the core functionality during the software
build phase (via weaving). Thus, AOP enables the modularisation of functionalities into
isolated (at source code-level) modules; this is usually referred as separation of concerns.
Figure 4 depicts this concept; Methods A, B, and C implement the business logic, whereas
logging, performance tracing and authorization are implemented separately (from
Methods A, B, and C) and are weaved with them at compile time.

Figure 4: Aspect-Oriented Programming (Source [12])

Using this approach, the code implementing the core functionality is not cluttered with
code related to other concerns. AOP provides a generic mechanism of code
enhancement and extension which requires minimal or none at all modification of core
code (depending on the AOP framework used).

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 27

The Spring framework provides an AOP implementation12. Spring AOP is proxy-based,
meaning each code artifact that can be enhanced with advices will be wrapped by a
suitable proxy object that is actually invoked by the calling code. The proxy can
subsequently pass control to the actually requested code. Proxies are automatically
introduced at code-level (during weaving), while source code remains intact. Thus, this
process is transparent to the programmer.

Regarding the use of Aspects in the Authorisation Service, an authorisation aspect will
be introduced. The corresponding advice (i.e., the wrapping proxy code) will intercept
the code invocation in order to perform a series of authorisation related tasks; namely,
(a) create/reuse a PEP client object, (b) collect invocation information (i.e. method
signature and arguments), (c) connect to a PDP server and pass the collected
information, (d) receive the PDP server response (permit, deny, error), and (e) in case of
permit (subsequently) call the actual (wrapped) code, or raise an authorisation error,
otherwise. In the case where the wrapped code is a method of a Web or REST controller
class, and that method is mapped to a Web or REST URL, then the corresponding (HTTP)
request object is introspected to extract all HTTP related information.

5.3.4 Use of Request Interceptor for Spring-boot based components

Most Melodic Upperware components have been implemented as Spring-boot web
applications. This means that they embed a minimal Tomcat server in order to accept
incoming (HTTP) requests from other Melodic platform components, providing suitable
REST APIs. The code implementing the REST API and receiving the requests needs to be
protected with the Melodic Security services including the Authorisation Service.

One method for introducing the needed authorisation capabilities is by using Spring
AOP, as has been explained in subsection 5.3.3 above. An alternative approach is by
configuring the embedded Tomcat server (of the Spring-boot framework) to intercept the
incoming requests and pre-process them before they actually reach the code that serves
them. This is a standard step in the Tomcat HTTP request processing cycle and is
implemented by adding special filters called interceptors. Interceptors can be added in
Tomcat programmatically, during server initialisation.

Figure 5 depicts the interception process of an HTTP request by a Login Interceptor. The
interceptor is invoked three times: (a) Pre-Handle: before calling the code that is meant
to service the request (i.e. MainController), (b) Post-Handle: after the MainController
returns and before rendering the response, and (c) After-Completion: when response has
been sent back to the requestor.

12 https://docs.spring.io/spring/docs/2.5.x/reference/aop.html

http://www.melodic.cloud/
https://docs.spring.io/spring/docs/2.5.x/reference/aop.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 28

Figure 5: Tomcat request processing cycle13

Regarding Spring-boot web applications, interceptors can be added using an application
configuration class that implements the WebMvcConfigurer interface. There, all needed
interceptors can be added in the Tomcat interceptor registry, before the server starts.

This approach does not require any modification of application source code. Instead, a
new configuration class can be written to configure an authorisation interceptor. This
class must be packaged with existing code, and Spring-boot will take care of using it at
runtime. The downside of this method is that it applies only to Spring-boot web
applications with Tomcat server (Jetty is also possible). However, most Upperware
components are as such.

5.4 Authorisation Service Architecture

In the remaining subsections, the architecture and operation of the Melodic
Authorisation Service will be presented. This architecture follows the design decisions
discussed in section 5.3 to fulfil the requirements of section 5.1.

13 https://o7planning.org/en/11689/spring-boot-interceptors-tutorial

http://www.melodic.cloud/
https://o7planning.org/en/11689/spring-boot-interceptors-tutorial

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 29

5.4.1 Attributes in Authorisation Service

The attributes handled by the Authorisation Service can be of three types; (a) access
request-related attributes (e.g., requestor id, resource id), (b) request context attributes
(not stated in the access request, but acquired from other sources) (e.g., requestor
location and device), and (c) environment/platform-related context attributes (not
pertaining to a specific access request. E.g., operational status of a platform component).
The difference in the context in the two latter cases is that request context becomes
invalid when the request has been processed, whereas environment/platform context
evolves independently of the access requests. Figure 6 gives a high-level picture of the
attribute flow in the Authorisation Service.

Figure 6: Attribute flow in Melodic Authorisation service

5.4.2 Authorisation Service Architecture

Figure 7 depicts the architecture of Melodic's Authorisation Service. The server part of
the service in enclosed in a dashed box colored cyan. The main elements of the
architecture is further explained after the figure.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 30

Figure 7: Authorisation Service architecture

 Policy Enforcement Point (PEP). It is embedded within the Melodic platform
components that must be protected. This is where incoming access requests to
resources enter the platform. PEP intercepts requests and interrupts the normal
request flow, extracts request information and then contacts the Authorisation
Server passing the extracted information. If the server returns a positive decision,
the standard access request processing flow resumes. Otherwise, an error is
reported, and the access is prevented. PEP is provided as an authorisation service
client library, which is embedded in the platform components being guarded.
Communication with PDP is achieved using the REST API exposed by the
Authorisation Server, over an encrypted TLS connection.

 Policy Decision Point (PDP). It is a web service providing a RESTful API for
receiving access request information from PEPs, evaluating them against
policies and eventually authorising or declining access request. For this purpose,
PDP contains a policy evaluation engine, namely WSO2 Balana. Upon
configuration, PDP will first invoke Context Handler to collect additional
(contextual) information from the request or the environment, and then evaluate
the incoming request against policies. Several PDP nodes may coexist in a cluster
to achieve high availability, fault tolerance and fast response times. Typically, all
PDP nodes share the same configuration and the same policy repository.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 31

 PDP Load-Balancing. Conceptually, it stands between PEP clients and the PDP

nodes. It is implemented at PEP-side as a configured list of PDP endpoints that
are contacted either in successive order (round-robin) or selected randomly.
Moreover, it is also feasible to add (third-party) HTTP proxy or load-balance
server(s) and configure the PEP clients contacting it. The server(s) will in turn
dispatch requests to PDP cluster nodes.

 Context Handler (CH). It is a web-service embedded in the Authorisation Server.
Upon activation, it invokes the configured plugins to collect additional
information (as attributes) about the context of the request. This contextual
information is subsequently stored in a PIP (see below) in order to become
available during policy evaluation. Furthermore, the Context Handler receives
platform or environment-related context from Context Collectors (see below).

 Policy Administration Point (PAP). It is a simple PAP implemented as a directory
containing the authorisation policies as a set of XACML files. Since authorisation
service follows a centralised architecture, policies can be stored in a shared place
accessible by all PDPs. Therefore, this simple implementation approach is
adequate.

 Policy Information Point (PIP). The policy evaluation engine in a PDP, while
processing a request, might require attributes not contained in the request itself.
In this case, it invokes PIP plugins to retrieve the needed attributes. In XACML
they take the form of key-value pairs, where keys can be any valid Uniform
Resource Name (URN)14. PIPs are configured as plugins in the PDP configuration.

 Context Collector (CC). Context collectors are applications (or parts of
applications) independent of the authorisation service, aiming at continuously
collect information about the Melodic platform and its environment, and forward
it to the Context Handler. It is expected that different context information, and
thus context collectors, will be needed in different deployments of the Melodic
platform.

A mapping of the architecture above onto the Melodic platform architecture is given
next. Figure 8 gives the high-level architecture of the Melodic platform, where platform
components protected by Policy Enforcement Points are suitably marked with a
“security agent” figure. More information on the Melodic platform architecture can be
found in deliverable D2.2 [1].

14 Uniform Resource Name (URN) is a type of Uniform Resource Identifier (URI) used to identify
resources within specfic namespaces

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 32

Figure 8: Authorisation service within Melodic platform architecture

As shown in Figure 8 above, the following platform components are protected with PEPs:

 Business Process Management (BPM). It coordinates the Upperware components
and executes the workflow to generate and execute an application deployment
plan out of a CAMEL model. When necessary, it also repeats the whole process or
parts of it to introduce deployment plan updates, as a response to changes in
application demands or environment. For more information, please refer to
deliverable D2.2 [1], chapter 2, “Architecture Overview.”
During its operation, BPM contacts and is contacted by other Upperware
components. A PEP client has been embedded in BPM, in order to protect it as
well as other Upperware parts from a potentially compromised or malfunctioning
component, or from outside-world interactions. PEP examines the origin and
timeliness of the requests (which in this context are called from Upperware
components) and authorises them.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 33

 Adapter. It is an Upperware component responsible for taking an application

deployment plan and executing it by providing specific instructions to the
Executionware. In order to verify that a given deployment plan conforms to the
application deployment policies, a pre-authorisation step is taken. The plan
parameters are checked against the relevant policies, and if rendered as
conformant, the deployment starts. For this reason, the Adapter uses a PEP client
to contact PDP to evaluate the plan against the posed policies. Plan pre-
authorisation policies are different from access authorisation policies used for
checking the access to previous components.

 Data Lifecycle Management (DLM). Similarly, to Adapter, the DLM system can
also check a data placement and migration plan against relevant policies. For this
reason, it also includes a PEP client.

 Metadata Schema Editor (MuSE). It is used to create and maintain the Melodic
Metadata Schema and subsequently store it in the Melodic Model repository.
MuSE comprises two layers; the User Interface layer, which executes in user
browser, and the Backend, metadata management layer. The latter one also
communicates and interacts with the Models repository. For this reason, the
second layer includes a PEP client to protect itself from unauthorised access to
its functionality and data.

6 User Authentication Service

This chapter documents the User Authentication Service. The User Authentication
Service is an important component of the Melodic platform, as it allows, together with
the authorisation service, to control access to the Melodic platform system. In Melodic,
the User Authentication Service is based on actual standards in cloud application
security: SAML2 (Security Assertion Markup Language) and OAuth for authentication.

This chapter is structured as follows. In subsection 6.1 the requirements for the User
Authentication Service are extracted on the basis of the feedback from the project
PaaSage, which is the underlying framework in Melodic. Subsection 6.2 gives a brief
overview of the most frequently used user authentication models introduced in the
literature. Based on the information of the first two subsections, the User Authentication
Service design decisions are supplied in subsection 6.3.

6.1 User Authentication Service Requirements

The Melodic platform should use a unified method for user and component
authentication. Based on the input provided in chapter 3, the summary of the

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 34

requirements related to the User Authentication Service (which covers users and
components authentication) is presented in Table 4 below.

Table 4: User authentication security requirements

Req.
id

Name of requirement Requirements short description Priority

1. Unified method of user
and component
authentication.

Ability to use a unified way of user and
component authentication. Preferably
the same method should be used in a
transparent way.

High

2. User and components
credentials are stored in
one place only.

User and component credentials
should be stored in one place in
encrypted form, i.e., in only one
component, which is responsible for
authentication and thus should have
access to these credentials.

High

3. Token based
authentication.

Authentication of user and method
invocation should be based on
generated tokens with an expiration
timeout.

High

4. Use industry standards for
authentication.

For the authentication, industry
standards (proven and verified) should
be used.

Medium

6.2 Related work on user authentication

Based on [12], the evolution of the authentication methods for modern, cloud-based
distributed applications is briefly presented in this subsection.

6.2.1 Monolithic applications

In a traditional monolithic architecture, users’ requests are handled within a single
process in the backend. A filter in the system boundary verifies the identity and access
as well as determines the response or distribution of the request. As HTTP is a stateless
protocol, it is usually based on a session that the server generates for the client to
manage the user status. Here is the session control process:

1. The client provides his/her authentication credentials.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 35

2. The server validates the credentials. Depending on the validation results, we have

the following alternative cases:
a. Re-certification is performed if verification fails.
b. The session is generated if verification is successful.

3. The client requests the resource within the session.
4. The server gets the session of the user by session id and response resource if the

user has access.

The advantages of the session-based system are that it is simple and easy to implement
while it allows for imposing more limitations in accessing the target system. However,
it also suffers from many drawbacks as well. The server needs to save the session in
memory, which may cause high memory usage and reduced performance. Moreover, the
authentication feature is mixed with other systems' features together resulting in
reduced system scalability and flexibility. As the traffic increases, the system needs to
deploy multiple nodes to balance the respective load. Sharing sessions in multiple nodes
is also a major issue. Besides, the session-based system uses cookies most of the time,
so it should be able to deal with some cookie-based attacks from the side of the client.

6.2.2 Distributed Session Management

As the features of the system become more complex and the number of users increases,
applications deployed on a single machine do not have enough resources to handle the
user load. Moving from a single node to a cluster, the multiple nodes of the cluster must
share a session when they use session-based authentication mechanisms. The
following distribution solutions can be used for this purpose:

 A sticky session ensures that all the subsequent requests, constituting a request
sequence along with the initial one, will be sent to the server that handled the
first request in the sequence.

 Session replication means that each server saves session data and synchronizes
through the network. So, it could be affected by network problems.

 Centralised management adds a specific server to manage all sessions. Every
service request then maps to a session generated by the session server.

In any case, distributed sessions are complex in design and difficult to maintain.

6.2.3 Token-Based Authentication

A token-based authentication system allows users to enter their username and
password in order to obtain a token which allows them to fetch one or more resources
without using their username and password any more. Once their token has been
obtained, the users can exploit it to have access to specific resources for a certain period
of time. Figure 9 shows the process of token-based authentication. Through the use of a

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 36

token, there is no need to keep the session stored; the token is a self-contained entity
that conveys all the user information. In addition, the token is stateless which makes it
easy to deal with server-side scalability. The token can be adapted to different clients,
such as browsers and mobile devices.

Figure 9: The authentication flow of operations

6.3 User Authentication Service Design Decisions

Using the requirements presented in subsection 6.1 and the information on user
authentication work provided in subsection 6.2 as guidelines, we will subsequently
supply the authentication service design decisions and provide brief justifications for
our choices.

6.3.1 User credentials store

The LDAP server is chosen to be used as a store for user credentials. LDAP is a widely
used standard for storing all user related information. In this respect, its usage allows for
an easy and flexible integration of Melodic with organisational and enterprise security
solutions.

6.3.2 Authentication mechanism – token-based

As presented in subsection 6.2, token-based authentication is recognized as a state-of-
the-art mechanism and the most secure way of authenticating user and components in
modern distributed applications. This is the reason for the usage of that method for the
Melodic platform. The separate component TokenAuth (see Figure 9) is responsible for

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 37

generating tokens based on user credentials stored in LDAP. The tokens are generated
based on user credentials, but used in each operations invocation between components.

6.3.3 Changes in process flow

The introduction of user and component authentication requires the following changes
in the Melodic’s deployment flow:

1. All method invocations should be executed in the context of a given user.
2. The authentication of method invocation will be based on the auth tokens

generated by the TokenAuth component.

As a further extension, the usage of an access control service (described in chapter 5) as
an authorisation mechanism for users and methods invocation is planned.

6.3.4 Changes in components’ methods invocation

All Melodic components will be changed to use the authentication method based on
tokens. For each method invocation, the token will be used. A token will be acquired
once, at the beginning of the (deployment) process, from the TokenAuth component and
will be used in all method invocations within the process. In case of expiration of the
token, a new token should be generated.

6.4 User Authentication Service Architecture

The User Authentication Service architecture contains the following elements which
implies changes to existing elements of the Melodic platform:

1. LDAP Server – an LDAP server with a data store for user credentials. The LDAP
server is used to authenticate users based on provided credentials.

2. TokenAuth component – this component is responsible for issuing a JWT based
token for an authenticated user. Token has an expiration time which is set based
on the respective configuration in the system. Tokens are used to authenticate
each method invocation on behalf of the user.

3. Changes in method invocation on the Melodic platform (between Melodic
components) - each method invocation will use the user token to authenticate
invocation of the particular method.

The authentication flow of operations is as follows:

1. User provides his/her username and password during the invocation of the
deployment process on Melodic platform.

2. The user's credentials are used to authenticate the user in the TokenAuth
component. This component attempts to validate the user in the LDAP Server;

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 38

upon a positive validation result, the token is issued and returned to the
deployment process.

3. The issued token is used to invoke methods of Melodic's components. Only the
supply of valid tokens during method invocation allows the actual execution of
the given method.

Further extensions of the Authentication Service would be possible by using the
Authorisation Service to control the access to the given method attempted to be invoked.

7 Cloud providers' credentials security

The management of cloud providers' credentials is crucial for the Melodic platform, as
they allow accessing different cloud providers for supporting multi-cloud deployment.
In Melodic, cloud providers' credentials are securely handled and passed through the
deployment process without being stored in each component. They are only stored at
one point, encrypted using the symmetric encryption algorithm AES with a key length
of 256 bits, in the Cloudiator component. This supports the objective of achieving a high
level of security for operations in a multi-cloud environment.

This chapter is structured as follows. In subsection 7.1, the requirements for the handling
of cloud providers' credentials in a secure way are extracted on the basis of the feedback
from the PaaSage project, which is the underlying framework in Melodic. Based on this
information, the cloud providers' credentials security related design decisions are
supplied in subsection 7.2.

7.1 Cloud providers' credentials security requirements

These requirements stem from the usage of the PaaSage framework. They are also based
on common sense as well as general security principles. Based on the security
requirements described in chapter 3, the summary of the requirements related to Cloud
providers' credentials security is presented in Table 5 on the following page.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 39

Table 5: Cloud providers' credentials security requirements

Req.
id

Name of requirement Requirements short description Priority

1. Encryption of cloud
providers' credentials.

After users provide their cloud
credentials, they should be stored in an
encrypted form in the Melodic platform.

High

2 . Storing cloud
providers' credentials
in one place.

Cloud providers' credentials should be
stored in one place in the Melodic
platform.

High

3. Cloud providers'
credentials
encryption type.

Cloud providers' credentials should be
stored in encrypted form using
symmetrical encryption.

Medium

4. Frequency of supply
of cloud providers'
credentials.

Cloud providers' credentials should be
provided by the user only once.

Medium

7.2 Cloud providers' credentials security design decisions

Based on the presented requirements, the following design decisions have been taken:

1. Cloud providers’ credentials will be stored only in the Cloudiator component
(Executionware) as it is the sole component in the Melodic platform that requires
them for execution deployment operations on the selected cloud providers. The
cloud providers’ credentials will not be stored and used in any other component
of the Melodic platform. Storing in one place is an assumption in the logical
architecture and it does not assume that it can't be replicated at the physical level,
like database replication or file system synchronization.

2. Cloud providers’ credentials will be encrypted using a symmetrical cryptography
method – the AES algorithm with 256-bit key length.

3. The requirement 4 from Table 5 is not covered. It has medium priority and
covering it could create another security leak.

The flow of cloud provider credentials are shown in Figure 10.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 40

Figure 10: Cloud Providers credentials flow

8 Summary

Today, hardly anyone considers cloud solutions as a classic data centre infrastructure.
It is also widely known that there are many applications, including those processing
sensitive data, that turn many profits from safety, flexibility and economy of the cloud.
This is possible thanks to security solutions implemented and applied by cloud
providers.

The Melodic project delivers very specific types of security tools, corresponding to its
character and objectives. Requirements were collected based on experiences from the
PaaSage project, Description of Action for Melodic, requirements from use case
applications and general security related experience. These security tools are described
in this document. There have been three main solutions designed and implemented:

 Access control (chapter 5) – an innovative access control attribute-base model
based on the XACML standard and the Balana solution, which enables advanced
access control and authorisation in Melodic. It also allows the flexible definition
of the security rules by using the XACML standard. It significantly increases the
overall security level of the Melodic platform.

 User authentication (chapter 6) – it allows accessing and operating the whole
system. In this project, the User Authentication Service is based on actual
standards in cloud application security, i.e., the SAML2 and OAuth standards for
authentication and authorisation.

 Cloud providers credentials security (chapter 7) – these credentials are crucial for
the project as they allow access to various, independent cloud providers making
Melodic a “multicloud” product.

The approach to the security aspects of cloud services described in this document
ensures a significant level of security for the entire Melodic project and enables safe use
of cloud solutions in general. Potential future works for Melodic security would be in
direction of more tight integration between User Authentication Service and
Authorisation Service.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 41

9 References

[1] Y. Verginadis, G. Horn, K. Kyriakos, F. Zahid, D. Baur, P. Skrzypek, D. Seybold, M.
Prusiński and S. Mazumdar, D2.2 Architecture and Initial Feature Definitions, 2016.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles, Towards a
Better Understanding of Context and Context-Awareness., 2000.

[3] Y. Verginadis, I. Patiniotakis, C. Halaris, G. Mentzas, K. Kritikos and K. Jeffery, D2.4
Metadata Schema, 2017.

[4] Y. Verginadis, W. Żołnierowicz, P. Skrzypek, D. Seybold, K. Kritikos, S. Mazumdar, A.
Schwichtenberg, F. Zahid, J. Domaschka, G. Horn, E. G. Gran, D. Baur, H. Masata and
P. Góra, D2.1 "System Specification", 2016.

[5] J. Xu, Discretionary Access Control vs Mandatory Access Control.

[6] V. C. Hu, D. Ferraiolo, R. Kuhn , A. Schnitzer, K. Sandlin, R. Miller and K. Scarfone,
Guide to Attribute Based Access Control (ABAC) Definition and Considerations,
2014.

[7] D. Ferraiolo and R. Kuhn, Role-Based Access Controls, 1992.

[8] D. Ferraiolo, R. Chandramouli, V. C. Hu and R. Kuhn , A Comparison of Attribute
Based Access Control (ABAC) Standards for Data Service Applications: Extensible
Access Control Markup Language (XACML) and Next Generation Access Control
(NGAC), 2016.

[9] D. F. Ferraiolo , R. Chandramouli, D. R. Kuhn and C. Tong Hu, Extensible Access
Control Markup Language (XACML) and Next Generation Access Control (NGAC),
2016.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier and J.
Irwin, Aspect-oriented programming, 1997.

[11] J. Wang, An example to explain why we need AOP – Aspect Oriented Programming,
2016.

[12] M. Fowler and J. Lewis, Microservices. A definition of this new architectural term.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 42

Appendix A: Assessing the Melodic Security Services via

External Security Experts

According to the 1st Melodic review report, the project officer and the three project
reviewers requested a further assessment of the security mechanisms designed and
implemented in terms of the Melodic platform, via external security experts. In order to
address this request, the consortium decided to seek for the appropriate external
security experts that would be able to evaluate the current work with respect to the
Melodic security services and potentially provide recommendations about their
improvement, keeping in mind the context and scope of the Melodic Description of
Actions (DoA). Based on this, the Melodic consortium decided to seek for two external
security experts, one from the academic and one from the industry world, in order to
achieve the necessary diversity of the external security audit’s outcome. Thus, the
external security experts used for this evaluation were the following:

 Assistant Professor Antonis Michalas from the Tampere University of
Technology in Finland who also co-leads the Network and Information Security
group (NISEC) of the university

 SIDIO Sp. z o. o., 15a Polish company comprising a team of practitioners and
experts in the field of information and communication security. Specifically, two
experts were involved from Sidio:

o Slawomir Kobus, co-founder and Managing Director of SIDIO
o Adam Kuligowski, co-founder of SIDIO

All these experts involved in the external evaluation of the Melodic security services
bring several years of experience and a proven track record in cybersecurity as it is
mentioned in the short bio sections provided in the two reports, available in the
Appendices B and C of this deliverable.

Although the reader may find the details of these two reports at the respective
appendices, in this new Appendix A of the deliverable we aim to summarize their
findings, analyze their relation to the Melodic DoA and sketch the next steps with
respect to the enhancements of the Melodic security services.

15 From the industry, three companies were contacted and asked for an offer. SIDIO has been selected as the
best value offer for the Melodic purposes.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 43

Last, we note that the 2nd recommendation out of the 1st Melodic review report16 is
considered a part of the already planned WP6 work according to Melodic DoA.
Specifically, the appropriate measurements and evaluations will be reported in
deliverable D6.5 “Final Validation Results” (due M36) as part of the Melodic three use case
demonstrators.

A.1 Summary of the external experts’ assessment

In this section, we provide a summary of the external experts’ assessment discerning
the detected positive highlights and their recommendations for future enhancements of
the Melodic security services.

A.1.1 Positive highlights

According to Prof. Michalas point of view, one of the strongest points of Melodic is that
it has been designed by strictly following industrial standards. Specifically, the expert
praised the decision to use SAML2.0 for authenticating and communicating attributes
and privileges of users, as it is standardized, it is considered secure, it provides an
excellent user experience, and it is supported by a big community that guarantees a
satisfactory adoption of all the latest technological advancements. For the similar
reasons the use of OAuth in Melodic was also considered as a very good idea since it is
a popular authorization protocol following the token-based authentication which has
the potential to provide tighter security. Another positive highlight was the adoption of
the XACML standard and the way it was enhanced in Melodic for supporting and
enforcing fine-grained, context-aware authorization. Apart from that, the expert praised
the use of LDAP for storing users' credentials and the symmetric cipher AES-256 for
encrypting cloud provider's credentials. In summary the expert stated that: “…by
following industry standards, Melodic has the potential to support the latest
technological advancements in the field of security. Therefore, and based on the fact
that Melodic is still a research prototype the overall design is considered as a very good
starting point that can be easily enhanced with extra security mechanisms”.

Similarly, the report coming from the SIDIO experts highlights that all Melodic security
services are very well architected using some of the most advanced security features.
Specifically, the analysis conducted consisted in the assessment that Melodic and its
particular mechanisms ensure satisfactory security levels in terms of the platform itself,
its users, data and applications. Also, the key security functionalities and their

16 “Use quantitative measurements for assessing melodic performance and security against similar cloud
solutions as this will raise trust in Melodic solution, - also for the three open source platforms that are
integrated in Melodic, namely: PaaSage, CACTOS, and PaaSword.”

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 44

compliance with best practices was highly appreciated in terms of user credentials
protection (based on AES-256 encryption), the token-based authentication of users and
components (based on SAML 2 and JWT), the access control and pre-authorization
(based on XACML), and the secure users’ credentials storage (based on OpenLDAP).
Among the noteworthy findings of the SIDIO experts were the following: “…We have
found authorization services very advanced and well architected, as well as very flexible
for the user of the platform”.

A.1.2 Recommendations for enhancement

Both the external security experts’ reports have provided a number of valuable
recommendations that could be considered by the consortium for enhancing the
Melodic security services. In this section, we have tried to aggregate the most significant
details of these suggestions by compiling Table 6 and Table 7. There, we provide for each
recommendation, a short description along with its prioritization and potential impact,
the Melodic components that are affected, and last but not least an indication about the
relevance of each suggestion to the Melodic DoA and an indication on whether or not it
will be addressed in one of the upcoming releases of the Melodic platform.

Table 6: Consolidated details of the recommendations17 provided by Prof. Michalas

Recom. Short Description/Prioritization Melodic
Components
affected

Impact (if not
supported)

Relation to
Melodic DoA
(Yes/No) /
Implementation in
Melodic
(supported/to be
(partially)
supported/will not
be supported)

SR.01 Cloud providers that host data-aware
applications could be running in a
trusted state / COULD

- Untrusted use of
public cloud
resources

No / will not be
supported

SR.02a Cloud providers that store users'
internal data source can be
protecting users' data from external
attacks by encrypting the entire hard
disks of the Cloud Service Provider /
COULD

- Untrusted use of
public cloud
resources

No / will not be
supported

17 We note that this table enhances the recommendations listed in chapter 4 of the security expert’s report
by including relevant suggestions clearly stated or implied in the previous chapters of the same report.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 45

SR.02b The platform does not provide any
mechanism to securely store and
manage application's sensitive
information (e.g. data storage
credentials) /COULD

- DLMS
- Cloudiator
- Cloud
providers'
credentials
security

Poor applications
credentials
management

No / to be partially
supported

SR.03 Melodic should support SSL/TLS
communication channels between
all components / SHOULD

- All Melodic
components

Lack of secure
inter-
components
communication

No / to be
supported

SR.04 Melodic should provide secure
storage for intermediate and final
results that are exported by the
underlying components.
Authorization should be applied for
any access to read/write data to
Models Repository / SHOULD

- CDO
- Access
control

Exposing CAMEL
models /
Maliciously
amending
CAMEL models

Yes / to be
supported

SR.05 Melodic could provide mechanisms
to enforce secure destruction of data,
models and workloads that may
contain sensetive information /
COULD

- DLMS Poor data
sanitization
support

No / to be partially
supported

SR.06a Melodic's token-based
authentication system could protect
users from impersonation attacks
/COULD

- All Melodic
components
- User and
component
authenticatio
n

Lack of token
revocation or
renewal issues
that may affect
all the
components

No / will not be
supported

SR.06b The two layers of BPM and EPM
should be able to authenticate each
component that are interacting /
COULD

- ESB, BPM
- EPM
- User and
component
authenticatio
n

Untrusted
communication
between
components

No / to be partially
supported

SR.07 Melodic should provide access
control for Melodic users and
components / SHOULD

- Access
control
- CAMEL
textual and a
web-based
editor
- Metadata
Schema
Editor

Inappropriate
users gaining
access to CAMEL
models

Yes / supported

SR.08 Melodic should support a mechanism
for secret key revocation (and key
rotation) of misbehaving platform
administrators / SHOULD

- Cloudiator
- Cloud
credential’s
service

Poor credentials
security
(inability to
revoke keys)

No / to be
supported

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 46

SR.09 Melodic should support a mechanism
for token revocation for
compromised components / SHOULD

- All Melodic
components

- User and
component
authenticatio
n

Lack of token
revocation or
renewal issues
that may affect
all the
components

No / to be
supported

SR.10a Melodic should provide secure
storage for cloud providers
credentials and others (i.e. external
storage credentials, database
accounts) / SHOULD

- Cloudiator
- Cloud
providers'
credentials
security

Poor credentials
security

Yes / partially
supported

SR.10b Explore other more sophisticated
approaches (e.g. using a protocol
based on hybrid encryption) / COULD

- Cloud
providers'
credentials
security

Poor credentials
security

No / will not be
supported

SR.10c Securely update the Cloud Providers
credentials / SHOULD

- Cloudiator
- Cloud
providers'
credentials
security

Poor credentials
security
(inability to
change
credentials)

Yes / to be
supported

Table 7: Consolidated details of the recommendations provided by the SIDIO experts

Recom. Short Description /
Prioritization

Melodic
Components
affected

Impact (if not
supported)

Relation to
Melodic DoA
(Yes/No) /
Implementation in
Melodic
(supported/to be
supported/will not
be supported)

Rec.1 Enabling modifications to
credentials / HIGH

- Cloudiator
- Cloud providers'
credentials
security

Missing cloud
providers
credentials update
support

Yes / to be
supported

Rec.2 Adding password complexity
verification mechanism /
HIGH

- Camel web editor
- MUSE editor
- BPM UI
- User and
component
authentication

Platform
vulnerable to
brute-force attacks
and unauthorized
access

No / to be
supported

Rec.3 Adding account lockout
mechanism after x failed login
attempts / HIGH

- Camel web editor
- MUSE editor
- BPM UI
- User and
component
authentication

Platform
vulnerable to
brute-force attacks
and unauthorized
access

No / to be
supported

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 47

Rec.4 Introducing accountability of
user activity by logging all
events that make it possible to
determine who, where and
when introduced
modifications affecting
functionality or security /
MEDIUM

- DLMS / Data
Catalogue

- User and
component
authentication

Lack of users’
accountability.
Platform
vulnerable to
brute-force attacks
and unauthorized
access

No / to be partially
supported

Rec.5 Adding differentiating
mechanism for levels of users’
access to platform / LOW

- Camel web editor
- MUSE editor
- Access control

Lack of fine-
grained access
control

Yes / supported

Rec.6 Introducing two-factor
authentication for Melodic
users / MEDIUM

- Camel web editor
- MUSE editor
- BPM UI
- User and
component
authentication

Poor overall
platform security

No / will not be
supported

Rec.7 Guaranteeing confidentiality
of data transmitted via REST
communication between
Melodic and cloud
environments / HIGH

- Inter-
components
Restful
Communication

Lack of secure
inter-components
communication

No / to be
supported

Rec.8 Providing security against
Man-In-The-Middle (MITM)
attacks for communication
between Melodic and cloud
environments. Introducing
public key (certificate)
verification process / MEDIUM

- Inter-
components
Restful
Communication
- Cloudiator-Cloud
providers

Vulnerability to
Man In The Middle
(MITM) attacks

No / to be partially
supported

Based on the analysis of the external experts’ findings and recommendations, we
identified a number of identical or similar recommendations among them that we
highlight next. We also note the following mapping between severity and prioritization
of these recommendations as follows:

 Could / Low
 Should / Medium
 Must / High

The identified similarities are provide in Table 8 on the following page.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 48

Table 8: Related recommendations

Prof. Michalas SIDIO

SR.10c/SHOULD Rec.1/HIGH

SR.03/SHOULD Rec.7/HIGH

SR.04/SHOULD

SR.07/SHOULD

Rec.5/LOW

SR.06a/COULD

SR.06b/COULD

SR.09/SHOULD

Rec.8/HIGH

SR.02b/COULD

SR.10a/SHOULD

-

A.2 Next steps for the Melodic security services enhancement

In this section, we list the experts’ valuable recommendations (grouped by relevance)
and discuss the next steps regarding the way that the Melodic consortium plans to
address them or provides justification for some of them that will not be supported – all
summerised in Table 9 below.

Table 9: Addressing the experts’ recommendations

Recom. Short Description /
Prioritization

Discussion on the next steps

Rec.1 Enabling modifications to
credentials / HIGH

We are considering a functionality (for the final Melodic
platform release) that will allow the Melodic user to propagate
any updates on the cloud providers’ credentials to the
Cloudiator.

SR.10c Securely update the Cloud
Providers credentials /
SHOULD

Rec.2 Adding password
complexity verification
mechanism / HIGH

Although this recommendation is out of the scope of the
Melodic DoA, we are considering a functionality (for the final
Melodic platform release) that will cater for the password
complexity verification.

Rec.3 Adding account lockout
mechanism after x failed
login attempts / HIGH

Although this recommendation is out of the scope of the
Melodic DoA, we are considering a functionality (for the final
Melodic platform release) that based on a configurable
number of failed logins the user account will be locked out.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 49

Rec.4 Introducing accountability
of user activity by logging
all events that make it
possible to determine who,
where and when introduced
modifications affecting
functionality or security
/MEDIUM

Although this recommendation is out of the scope of the
Melodic DoA, we have already decided to develop and support
a Data Catalog (for the final Melodic platform release) which
will provide audit trails for the component actions. The Data
Catalog will enable each of the Melodic platform components
to log critical events pertaining the critical decisions they
take with implications to the platform, as well as to the
application deployments. In this way, this recommendation
will be partially addressed since the focus of accountability
and auditing is seen from the Melodic components point of
view.

Rec.5 Adding differentiating
mechanism for levels of
users’ access to platform
/LOW

Rec.5 and SR.07 are already covered by the integration of the
XACML-based Melodic authorization service to the Melodic
editors and to the Adapter. SR.04 will also be addressed by
enhancing the CDO model repository with access control
capabilities (for the final Melodic platform release).

SR.04 Melodic should provide

secure storage for
intermediate and final
results of that are exported
by the underlying
components. Authorization
should be applied for any
access to read/write data to
Models Repository /
SHOULD

SR.07 Melodic should provide
access control for Melodic
users and components /
SHOULD

Rec.6 Introducing two-factor
authentication for Melodic
users / MEDIUM

This is a recommendation (prioritized as medium) not related
to the Melodic DoA and it will not be addressed. The Melodic
platform is designed to interface certain expert users (i.e.
Admin, DevOps), but the implementation of two-factor
authentication exceeds the scope of a research prototype.

Rec.7 Guaranteeing
confidentiality of data
transmitted via REST
communication between
Melodic and cloud
environments / HIGH

Although the functionalities related to these
recommendations were not mentioned in the Melodic DoA,
we are planning to address them since they based on the
experts’ opinion seem critical for the security of the platform.
Specifically, we are considering enhancing all the inter-
components communication with an appropriate
cryptographic protocol designed to provide communications
security over unsecured networks (e.g. TLS, SSL). The
communication between Melodic and the Cloud Providers is
already based on signed certificates and TLS.

SR.03 Melodic should support
SSL/TLS communication
channels between all
components / SHOULD

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 50

Rec.8 Providing security against
Man-In-The-Middle (MITM)
attacks for communication
between Melodic and cloud
environments. Introducing
public key (certificate)
verification process. /
MEDIUM

The Rec.8, SR.06a and SR.06b are all related to the protection
from the MITM attacks, a functionality not mentioned in the
Melodic DoA. These recommendations have been
characterized with medium priority by the experts, so it is not
imperative to be fully addressed. Nevertheless, the Rec.8 is
already addressed with respect to the communication
between Melodic (i.e. Cloudiator) and Cloud Providers based
on TLS and certificates. Rec.8 from the Melodic inter-
component communications point of view (consequently
relating to the SR.06b), it will be partially covered (for the final
Melodic platform release) through the multi-way
authentication support for two components between BPM
and EPM layers, as a demonstration, with the use of
certificates. This will be considered only for two components
and for demonstration purposes, since it is expected to inject
significant lag in the inter-components communication that
may risk the reactivity of the platform. For a similar reason,
SR.06a will not be addressed since the multi-tokens support
for all Melodic components will normally be hosted on the
same VM and in addition we consider that such a
functionality exceeds the scope of this research prototype.
Last, a token revocation process will be introduced (in the
final Melodic platform release) that essentially addresses the
recommendation SR.09.

SR.06a Melodic's token-based
authentication system could
protect users from
impersonation attacks /
COULD

SR.06b The two layers of BPM and
EPM should be able to
authenticate each
component that are
interacting / COULD

SR.09 Melodic should support a
mechanism for token
revocation for the
compromised components /
SHOULD

SR.01 Cloud providers that host
data-aware applications
could be running in a
trusted state / COULD

This recommendation is out of the scope of the Melodic DoA
and it will not be addressed in terms of Melodic because it
refers to external functionalities and services that may or
may not be offered by the cloud providers.

SR.02a Cloud providers that store
users' internal data source
can be protecting users' data
from external attacks by
encrypting the entire hard
disks of the Cloud Service
Provider / COULD

This recommendation is out of the scope of the Melodic DoA
and it will not be addressed in terms of Melodic because it
refers to external functionalities and services that may or
may not be offered by the cloud providers.

SR.02b The platform does not
provide any mechanism to
securely store and manage
application's sensitive
information (e.g. data
storage credentials) /
COULD

Although this recommendation is out of the scope of the
Melodic DoA and it is characterised with medium priority by
the expert, it will be partially addressed.

We are considering a functionality (for the final Melodic
platform release) that will enable a secure variable store for
safely persisting such sensitive information within the
platform (see SR.10a).

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 51

SR.05 Melodic could provide
mechanisms to enforce
secure destruction of data,
models and workloads that
may contain sensitive
information / COULD

Although this recommendation is out of the scope of the
Melodic DoA and it is characterised with medium priority by
the expert, it will be partially addressed.

We are considering a functionality (for the final Melodic
platform release) that will exploit the offered data sanitization
support offered as a service by the used cloud providers (in
case they support it). In this connection, a data life-cycle
event management and triggering system, developed as part
of the DLMS, can be exploited to execute data
destruction/sanitization tasks upon resource
decommissioning.

SR.08 Melodic should support a
mechanism for secret key
revocation (and key
rotation) of the misbehaving
platform administrators /
SHOULD

Although this recommendation is out of the scope of the
Melodic DoA and it is characterised with medium priority by
the expert, it will be partially addressed. Specifically, we are
considering a manual administrative procedure (for the final
Melodic platform release) on revoking and re-issuing
compromised keys (through appropriate scripts).

SR.10a Melodic should provide
secure storage for cloud
providers credentials and
others (i.e. external storage
credentials, database
accounts) / SHOULD

This is already partially supported as it was stated by the
expert (cloud providers credentials are encrypted while at
rest). This will be further enhanced (for the final Melodic
platform release) as we address the SR.02b recommendation
as stated above.

SR.10b Explore other more
sophisticated approaches
(e.g. using a protocol based
on hybrid encryption) /
COULD

This recommendation is very interesting and forward
looking, but it will not be addressed in terms of the Melodic
research project because it refers to researching and
implementing advanced encryption techniques which are out
of the scope of the Melodic DoA. The use of hybrid encryption
and other sophisticated approaches will be considered for
implementation in Melodic as part of the after-project
exploitation of the platform.

http://www.melodic.cloud/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 52

Appendix B:

Security Audit Report by Prof. Antonis Michalas

http://www.melodic.cloud/

MELODIC: Multi-cloud Execution-ware for Large-scale Optimized
Data-Intensive Computing

Security Analysis

H2020-ICT-2016-2017
Leadership in Enabling and Industrial Technologies;

Information and Communication Technologies

Prof. Antonis Michalas

November 10, 2018

http://www.amichalas.com

Contents

1 Introduction 3
1.1 Organization . 3

2 Overview of the Melodic System and Current Security Mechanisms 5
2.1 Interfaces to End Users . 5
2.2 Upperware . 6
2.3 Executionware . 8
2.4 Auxiliary Services . 9

2.4.1 Status and Event Service . 9
2.4.2 Security Service . 9

2.5 Control Plane and Monitoring Plane . 10

3 Security Analysis of Melodic 11
3.1 Melodic’s Positive Highlights . 13
3.2 Missing Security Functionality . 14

4 Security Recommendations 16

A Short Bio 19

1

List of Tables

4.1 Identified Melodic Security Requirements 17

2

Chapter 1

Introduction

This document is a contribution to the H2020 Multi-cloud Execution-ware for Large-
scale Optimized Data-Intensive Computing (Melodic) project that has been funded by the
European Union under the H2020-ICT-2016-2017: Leadership in Enabling and Industrial
Technologies; Information and Communication Technologies call.

This study has been conducted by external experts and not by the members of the
current Melodic consortium1 – however, proper channels of collaboration were established.
The main aim of this study is to assess the overall security of the Melodic framework and
provide some valuable insights regarding strengths and weaknesses of the current approach.

Before we proceed, it is worth mentioning that the current consortium already pre-
sented a well-rounded analysis on the security requirements of Melodic [7]. Our work
extends this analysis by further analyzing the overall security of Melodic. As a result,
we produce a list of security requirements that enhances the ones that has been already
defined by Melodic’s consortium.

Furthermore, the purpose of this document, and considering the scope of security
services that was described in the DoW, is to provide the basis for the overall security
design and functions that could be supported when/if Melodic is launched to the market.
To this end, we propose a list of what we believe is considered as core security requirements
for a framework like this. However, we leave the decision of adopting/implementing our
suggestions to the discretion of the project’s consortium.

1.1 Organization

The rest of the document is organized as follows:

• Chapter 2 – Overview of Melodic System and Security: This chapter, briefly
describes the general architecture of Melodic along with its main components. Based

1This task is one of the requirements after the first review of the project that took place on the 6th of
July, 2018 in Brussels.

3

on the described architecture we provide a list of main security points that we iden-
tified.

• Chapter 3 – Security Analysis of Melodic: In this chapter, we focus on assess-
ing the security of Melodic. To do so, we first identify the existing security features
of Melodic and then we proceed by highlighting potentially valuable security func-
tionality that could enhance the platform beyond the lifecycle of the project and on
the process of becoming from a research prototype a product.

• Chapter 4 – Security Requirements: This chapter contains a collection of the
core security requirements that Melodic could consider in order to enhance its overall
security.

4

Chapter 2

Overview of the Melodic System
and Current Security Mechanisms

In this chapter, we present a high-level overview of Melodic architecture. This description
is the coupled with a presentation of the identified critical security points that we will
rely on in order to assess the overall security staus of Melodic. For a more detailed and
well-rounded description of Melodic’s architecture we refer reader to ”D2.2: Architecture
and Initial Feature Definitions” [8].

The Melodic framework (Multi-cloud Execution-ware for Large-scale Optimised Data-
Intensive Computing), aims to provide ease and optimization at data-aware application
deployment across geographically distributed and federated cloud environments. It is con-
structed from the following main component groups:

• the Interfaces to End Users (see Section 2.1);

• the Upperware (see Section 2.2);

• the Executionware (see Section 2.3);

• and two auxiliary services as Status & Event Notification and Security Services (see
Section 2.4).

2.1 Interfaces to End Users

This is the entry point to Melodic for end users wish to use the platform for modelling
their data-aware applications as well as the underlying data. To do so, Melodic is using
CAMEL – a domain-specific language that allows users to define multi-cloud placement
requirements and constraints. Through the Melodic framework, users can also add/or
define new extensions for the CAMEL language.

For the description of applications and data models, Melodic interface supports both
a textual and a web-based editor. The defined models include all user requirements as
well as constraints of applications and a wide variety of data-sets such as security require-
ments, organization models, cloud provider models, deployment requirements, scalability
rules, and service-level objectives. For the definition of new extensions, Melodic enables

5

http://camel.apache.org/

amendment/expansion on Requirement, Metric, Scalability, Location, Provider, Security
sub-models through the web-based Metadata Schema editor.

Based on design of the component Interfaces, we provide a list of the main security
points that we identified:

2.1.1 Communication between end users and the Interfaces should be protected. Without
building proper encrypted communication channels, an adversary can perform a
wide range of attacks that could allow him to maliciously amend model definitions
in CAMEL – a malicious behavior that can have severe consequences.

2.1.2 The framework should provide authorization to restrict access rights to the platform
resources. For instance, only users with suitable roles should be able to access the
Metadata Schema editor;

2.1.3 If CAMEL is shared between multiple users, it should not contain any sensitive
information such as data storage credentials. Instead, the platform should support
a separate way for user to securely store their sensitive information.

2.2 Upperware

Upon receiving the application and data models in a form of CAMEL modelling language
from a group of Interfaces, the Upperware component calculates the optimal data place-
ments and application deployments in cross-cloud environments. Its calculation is not
only based on the actual requirements and constraints of the CAMEL format but it also
takes into consideration factors such as the performance, the current workload as well as
the underlying cost of the required cloud resources.

The Upperware group consists of the following components:

• Models Repository stores the models generated by end users through the Interfaces.
This component is built on top of the internal component CDO Server for the model
storage while the rest of the components exploit CDO Client in order to load the
corresponding models.

• CP Generator is responsible for generating constraint programming (CP) models.
These models express constant equations, based on application and provider models
that are described in CAMEL.

• Utility Generator assigns a utility value (i.e. the goodness) to a candidate deploy-
ment configuration from the solver based on reconfiguration assessments from the
other two components of the Upperware group, Data Lifecycle Management System
(DLMS) and the Adapter. Functionalities of the two components are described later
in this section. The utility value lies in the interval [−1, 1] and its purpose is to show
to compare the effectiveness of two configurations. More precisely, when the utility
value is positive means that the candidate configuration is better than the current
baseline configuration while in the case of a negative value it means that the fresh
configuration is worst and should be avoided.

6

• Metasolver orchestrates the solvers’ operations and ranks their outputs based on the
CP models defined by the CP Generator earlier and the application description in
CAMEL. Then, it exports the most optimal solution that is stored in the Models
Repository.

• CP (Constraint Programming) Solver solves a specific deployment reasoning/ opti-
mization problem that is described by a CP model and has been retrieved from the
Models Repository and/or a local file system. Then it stores the solution back to
the CP model.

• LA (Learning Automata) Solver solves a constraint mapping problem based on the
realization that the problem is stochastic.

• Solver-to-Deployment applies a certain solution from the solvers to the application
model defined in CAMEL. More specifically, at first it retrieves models from the
Models Repository, which includes a CAMEL model describing the user application
and the CP model which contains the corresponding solution. As a next step, it
identifies the number of instances of the application components, virtual machines
and connections between them that are needed for generating the required provider-
specific deployment model.

• Adapter is responsible for validating a new CAMEL deployment model regarding
time and cost aspects. Furthermore, it provides a comparison between the evaluated
model and the current model. In addition to that, it separates the new model
into different and well-defined action tasks and guides the Executionware on how
to execute each one of them. Finally, it enriches the CAMEL model with running
execution context information.

• Event Processing Management synchronizes and orchestrates Event Processing Agents
in a distributed network in order to detect situations where reconfiguration is needed
.

• Event Probes Manager decides and instructs the Executionware to deploy new mon-
itoring probes and configure them to collect monitoring data on status of application
components and used cloud resources.

• Data Lifecycle Management System (DLMS) manages the life-cycle of the registered
data sources. More precisely, DLMS is responsible for selecting optimal data place-
ment, ensuring that user-defined data requirements have been properly addressed
and finally estimating costs to their data transfer and access.

Based on design of the Upperware component, we identify the following security issues
that Melodic should carefully consider:

2.2.1 The communication channels between components need to be protected. Currently,
components communicate through the Enterprise Service Bus (ESB) architecture.
As a result, protecting the communication between all the components and the
ESB is of paramount importance. Without building proper encrypted channels, an
adversary could access and/ or amend optimal deployment models, change or steal
monitored data and in general disrupt the proper function of Melodic.

7

2.2.2 Assume that two components ci and cj communicate with each other. More precisely,
we assume that ci wishes to communicate with cj (i.e. ci initiates the communication)
Then, cj should be able to authenticate and validate the trustful state of ci as well as
the freshness and the integrity of the request. Hence, every time that a component
receives a request from another component, proper security mechanisms need to be
in place in order to verify the validity of the request and protect cj from receiving
and processing malicious requests.

2.2.3 Data that is stored in the Models Repository needs to be protected from unau-
thorized access. The first step would be to provide a fine-grained access control
mechanism. As a second step, it would worth investigating the support of encryp-
tion. While symmetric encryption could be a good solution we need to have in mind
that it is not easy for CDO to support encrypted models. In addition to that, the
fact that these models are frequently updated implies that the time needed for up-
dating data and in some cases implementing key rotation might be a real burden for
the proper run of Melodic.

2.2.4 APIs invocation should be protected from unauthorized access and possible corrupt-
ed/malicious entities.

2.3 Executionware

After the conclusion on the optimal solutions by the Upperware, Executionware is responsi-
ble for implementing the actual cloud deployments. Moreover, it manages and orchestrates
cloud resources while at the same time monitors the deployed applications.

The Executionware group consists of the following components:

• Cloud Orchestration is built upon Cloudiator – a tool that allows the orchestra-
tion of web applications, discover private cloud resources offerings and optimized
virtual machine placements. In addition to that, Cloudiator’s Monitoring Services
are further extended to support the integration of the Upperware’s Event Process-
ing Agents. Cloudiator’s interface is the main entry point for the interaction of
Upperware with the Executionware. At first, the Upperware requests a new applica-
tion deployment to the Executionware. An application described in CAMEL will be
mapped to a Job in Cloudiator, each application component to a Task, and instances
to Process Entities. Based on that, the Executionware provisions the required nodes
and deploys the processes on such nodes. At the same time, the Upperware requests
the deployment and configuration of Event Processing and Monitoring on the provi-
sioned nodes. Then the Executionware notifies the Upperware about the monitored
deployment state.

• Resource Management Framework is an extended layer of Cloudiator that supports
automated discovery of cloud resource offerings and their actual provisioning across
multiple cloud providers.

• Data Processing Layer is another extended layer of Cloudiator that is implemented
using a modular-based architecture. The Data Processing Layer can support Apache

8

Spark clusters orchestration by implementing SparkAgents, or Hadoop MapReduce
clusters orchestration via implementing MapReduceAgents.

Based on the current design of Executionware, we identify the following security issues
that Melodic should carefully consider:

2.3.1 The cloud providers’ credentials are stored in Cloudiator in an encrypted form using
a symmetric cipher. The symmetric secret key that is used for the encryption is only
known to the platform administrators. Although cloud credentials are protected
by using encryption, it is not easy to update the corresponding secret keys and/
or credentials. The platform should support a seamless way to change/ revoke the
secret key, update/ delete the cloud provider credentials, etc.

2.4 Auxiliary Services

The auxiliary services involve the Status & Event Service and the Security Service. The
first service provides a notification mechanism for all other components while the second
one provides a set of secure operations.

2.4.1 Status and Event Service

This component is implemented as an ESB service and is responsible for generating and
managing specific notifications and regarding events and the status of an operation in
Melodic. Furthermore, it encompasses status notifications of operations such as returning
deployment/ reasoning status of a given application, uploading CAMEL models, starting
reasoning process and starting a deployment process.

Based on design of the Status and Event Service component, we identify the following
security issues that Melodic should carefully consider:

2.4.1.1 The underlying communication channels between the Status & Event Service and
ESB should be protected. Without proper protection, an adversary could interfere
to create false alarm or mix up event notifications which may lead to unavailability
of the system.

2.4.2 Security Service

This service is responsible for authenticating and authorizing the actions of core compo-
nents of Melodic. To this end, the security service is focusing on the problem of data
placement, performed and allowed actions of the underlying applications while it also sup-
ports a security and access policy repository. As a first step, the security service receives
authentication requests from other components and/or new configuration and deployment
actions from the Upperware’s Adapter through ESB. Based on the received requests, it
performs a list of security checks and publishes relevant reports containing the actual out-
come (i.e. permit or deny), via ESB to the corresponding components. Furthermore, it
can also export output reports that can be stored in the Models Repository.

9

• Authentication service securely stores all credentials for accessing cloud providers ser-
vices and verifying core components on their actions like making decisions, placing/
configuring applications, migrating data, commissioning/ decommissioning cloud re-
sources. The authentication is token-based by using SAML [2] and LDAP [1].

• Authorization service relies on a predefined set of policies and available context
information in order to take a decision on allowing or denying the execution of
placement or perform a reconfiguration actions. Moreover, it supports Attribute-
Based Access Control (ABAC) policies [9]. The authorization is using the XACML
standard [4] and WSO2 Balana platform.

Based on design of Security Service, we identify the following security issues that
Melodic should carefully consider:

2.4.2.1 Both the authentication and authorization mechanisms need to be enhanced in order
to provide a better level of security. Details on the existing authentication and
authorization services will be presented in Chapter 3.

2.5 Control Plane and Monitoring Plane

For the integration of components, Melodic relies on two main layers – the Control Plane
and the Monitoring Plane. The first layer is responsible for controlling actions within a
process. The message propagation between components is done based on an Enterprise
Service Bus (ESB) architecture for while the process orchestration is taking place through
a Business Process Management (BPM). The second layer is responsible for monitoring
data using a queue-based message broker for the delivery of messages.

Based on the current functionalities of the two planes, we identify the following security
points that Melodic should carefully consider::

2.5.1 Communication between components and between the two layers should be pro-
tected;

2.5.2 For additional protection at the potential production phase of Melodic, the two layers
could be able to authenticate each component that are interacting with.

10

https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://wso2.com/

Chapter 3

Security Analysis of Melodic

The current security design of Melodic focuses on the following three aspects:

• Cloud provider credentials protection;

• User and component authentication;

• User access control authorization.

For more details on the existing security solutions we refer reader to the deliverable
”D5.03: Security requirements and design” [7].

Cloud provider credentials are needed for the Cloudiator component in the Execution-
ware in order to be able to send deployment requests to the corresponding cloud service
providers. Therefore, Melodic stores the cloud service provider’s credentials only in the
Cloudiator component. By doing this, it avoids any unnecessary transferring of such cre-
dentials between components. In addition to that, the credentials are encrypted using
the AES symmetric cipher with a secret key of 256-bit length. Moreover, the underlying
secret key is only known to the platform administrators.

Authentication is JWT token-based by relying on SAML2 (Security Assertion Markup
Language) and OAuth [5] standards. Users’ credentials are stored in LDAP server while
tokens are generated by the separate component TokenAuth. When a user wishes to
deploy an application on the platform, she needs to provide a username and a password
to the deployment process. This information is then sent to the TokenAuth component
which connects to the LDAP server through which authenticates the user. As soon as the
user’s credentials are validated by the LDAP server, TokenAuth generates a unique token
based on the received credentials. The generated token is then issued to the deployment
process. Then, the token is used every time that a method is invoked between the platform
components. The involved components are then responsible for validating the token in
order to allow or deny the actual execution of the invoked method.

The platform provides two types of authorization. One is a pre-authorization phase
that enforces a deployment and/or data placement plan to conform to the given set of poli-
cies, constraints and limitations (such as regulation, budget, resource, security, etc). The
other type is the actual authorization phase which protects the platform resources (such

11

as services, components and workflows) from unauthorized access attempts or from com-
promised components that try to access the platform. The authorization method is based
on the Attribute Based Access Control (ABAC) model for authorizing resource requests,
and eXtensible Access Control Markup Language (XACML) for describing authorization
policies, access control requirements, and querying access to resources. More precisely, the
authorization process is implemented by five core components as follows:

• The Policy Enforcement Point (PEP) is responsible for receiving access requests and
authorizing them based on the output that will be received by the Policy Decision
Point (PDP). Furthernore, PEP is embedded in the following platform components:

– Business Process Management (BPM);

– Adapter;

– Data Lifecycle Management System (DLMS);

– Metadata Schema Editor (MuSE).

In BPM, PEP examines the timeliness and origins of the requests received by the
other Upperware components. If the requests are valid then PEP provides authorizes
them. In Adapter, PEP is responsible for validating the application deployment plan
against a set of defined policies prior to execution by the Executionware. In DLMS,
PEP checks a data placement and migration plan against a set of defined policies.
Finally, in MuSE, PEP authorizes any access to its functions as well as data.

• The Policy Administration Point (PAP) is responsible for managing policies as well
as provides the Policy Decision Point (PDP) with policies.

• The Policy Decision Point (PDP), is implemented by the WSO2 Balana open source
framework, retrieves requests from PEP and evaluates them based on a set of policies
and necessary collected information that are received by PAP, PIP and the Context
Handler. The main goal of PDP is to provide a decision in order to allow or deny a
requested access.

• The Policy Information Point (PIP) stores the necessary attributes that are needed
for a proper evaluation of policy. These attributes can be the of the access request,
the corresponding resource id, etc. and can be based on data from both internal and
external sources.

• The Context Handler collects additional attributes and information regarding the
context of the received requests, context related to the underlying platform and
environment that are subsequently stored in the PIP.

Communication between PEP and authorization server (which contains PDP, Context
Handler and PIP) is only protected over SSL/TLS.

12

3.1 Melodic’s Positive Highlights

Before describing the identified missing security functionality (Section 3.2) it is worth de-
scribing (briefly) the advantages and the strong points of the current Melodic architecture.
One of the strongest points of Melodic is that it has been designed by strictly following
industrial standards.

First of all, the decision to use SAML2.0 is considered as an excellent choice. SAML
is an XML-based framework that is used to authorize, authenticate and communicate
attributes and privileges of a user. It provides numerous benefits to enterprises, organi-
zations and governments. However, SAML has been widely adopted for three primary
reasons: is standardized, it is considered as secure, and it provides an excellent user ex-
perience. Apart from that, the fact that SAML is a widely used framework implies two
important things:

• There is a big community that supports and further develops the framework in such
a way that the satisfactory adoption of the latest technological advancements is
”guaranteed”.

• A possible integration of Melodic services with other services can be proved to be a
relatively easier task than what it would have been if Melodic was based on a not
so popular and widely used framework.

Apart from that, Melodic is also using OAuth. OAuth is a popular authorization pro-
tocol that enables applications to access HTTP services on behalf of users by enabling
delegated tokens rather than the users’ main credentials. Currently, OAuth is being de-
veloped and has the full support of the IETF OAuth working group. Integrating OAuth
in Melodic is again a decision that can be proved to be wise in the future. This is not only
due to the flexible token-based approach that the protocol is using but also due to the
fact that OAuth is supported by many different providers and platforms. Therefore, inte-
gration and communication of Melodic with other services could be done in an easy and
(possibly) straight forward way. Furthermore, using a token-based authentication instead
of a traditional username and password approach reduces the burden and insecurity of
repeating submitting users’ credentials. Tokens are only valid for a limited (short) time –
hence replay attacks can be avoided (in certain scenarios). Additionally, these tokens are
both revocable and refreshable. Therefore, it is believed that token-based authentication
has the potential to provide tighter security. Apart from that, the XACML (eXtensible
Access Control Markup Language) standard that is used to enforce authorization poli-
cies supports defining fine-grained, attribute-based policies as well as role-based policies.
Furthermore, it also supports conditional authorization, combination of policies, and con-
flict resolution. Relying on XACML standard provides lot of flexibility to the underlying
services since it is considered to be independent of the implementation.

Apart from that, Lightweight Directory Access Protocol (LDAP) is utilized for storing
users’ credentials. LDAP is widely used and it is considered as a reliable central cre-
dentials storage mechanism that also provides easy accessibility. In addition to that, as
LDAP supports TLS/SSL, users’ credentials can be protected via a secure communication
channel.

13

Finally, symmetric cipher AES with a secret key of 256-bit length is used to encrypt
cloud provider’s credentials. AES is considered as a very good and reliable choice since
it is a well-known and standardized symmetric cryptosystem that is also being used in
industry. Moreover, AES is also considered to be semantically secure – a very important
property when you store sensitive information.

In summary, by following industry standards, Melodic has the potential to support the
latest technological advancements in the field of security. Therefore, and based on the fact
that Melodic is still a research prototype the overall design is considered as a very good
starting point that can be easily enhanced with extra security mechanisms.

3.2 Missing Security Functionality

Although the cloud service provider’s credentials are protected by using symmetric en-
cryption – an approach that for the current status of Melodic is considered as adequate –
it would be a good practice to also explore other more sophisticated approaches (e.g. using
a protocol based on hybrid encryption) in case Melodic goes into the market. In addition
to that, another point that needs some attention is that of key rotation. More precisely,
the secret key needs to be changed regularly in order to enhance credentials’ security and
privacy. Moreover, every time that the key is changed, re-encryption of the underlying
credentials is required. Apart from that, in order to update the cloud credentials, a simi-
lar process where the fresh credentials will be submitted and stored in an encrypted form
is required. These last points are the first issues that Melodic’s consortium will have to
look at if they decide to further expand the existing security mechanisms. Providing a
reliable and realistic solution for these problems can really pave the way for building a
much stronger security model that will allow Melodic to be launched in the market.

In addition to that, it is quite common that data-aware applications require some type
of sensitive information to run such as data storage credentials, database accounts, etc.
For the sake of security, such sensitive information should not be hard-coded into the
application’s source code, or stored in any component as plaintext. Based on the current
architecture of Melodic, the platform does not provide any mechanism to securely store
and manage application’s sensitive information.

Apart from that, the platform executes authentication based on SAML2 and OAuth
standards. For each user, the component TokenAuth generates a token which could be
used by other components for each method invocation. By relying on token with expira-
tion time, the platform avoids requirement of repeated submitting users’ credentials and
enhance its security (provide at least a basic protection against replay attacks). However,
the fact that the same token is used by different components of the platform leads to some
disadvantages. For instance, when a token is revoked or renewed, its revocation or renewal
needs to be propagated promptly to every component that is using it. Additionally, the
token only contains user’s specific information but it does not contain any information on
the component to which it is issued. Instead, issuing different tokens to different compo-
nents for the same user is a more secure and more complete approach for authentication.
Considering the adoption of a Single-Sign-On scheme could be a solution to this problem.

Moreover, the platform supports authorization which involves pre-authorization en-
forcing a deployment and/or data placement plan to conform to given policies and au-

14

thorization protecting the platform resources from unauthorized access. More precisely,
authorization support is evident for the appropriate components but it seems that it has
not been implemented for one critical component of the architecture – the Models repos-
itory. Models Repository stores models that are generated by the end users, constraint
programming (CP) models generated by CP Generator, optimal solutions calculated by
Metasolver, security check reports outputted by security services, etc. Such models and
information are vital for the proper function of the platform – hence the proper security of
this information is of paramount importance. To this end, authorization should be applied
for any access to read/write data to Models Repository.

Furthermore, the data stored in Models Repository are important for Melodic and
they need to be protected. As a result, the first and most important measure is to protect
the confidentiality of the stored data so that any corrupted entity will fail to extract any
valuable information regarding the content of the stored data.

Finally, the communication between all components should be protected by (at least)
enabling SSL/TLS. Currently, only the communication between the components of PEP
(Adapter, Data Lifecycle Management System) and PDP in Authorization Sever is con-
firmed to be running over TLS/ SSL. However, it is not clear how the rest of the commu-
nication channels are protected – especially between the ESB and other components.

15

Chapter 4

Security Recommendations

In this chapter, we present a concrete list of the main security requirements that were
exported from our analysis on the security of Melodic. For the evaluation of each rec-
ommendation we have followed the RFC 2119 convention [3]. In Table 4.1, we present
the identified security recommendations that needs to be considered by the consortium
of Melodic in case they decide to launch Melodic in the market (currently Melodic is a
research prototype and therefore a subset of these recommendations may be applied).

ID Recommended Security Requirements Supported

SR.01 Cloud providers that host data-aware applica-
tions COULD be running in a trusted state (i.e.
satisfying pre-defined security policies, and be-
ing launched by using a trusted launch protocol
such as the one described in [6] and makes use
of the Trusted Computing principles).

No

SR.02 Cloud providers that store users’ internal data
source CAN be protecting users’ data from ex-
ternal attacks by encrypting the entire hard
disks of the Cloud Service Provider.

No

SR.03 Melodic SHOULD support SSL/TLS communi-
cation channels between all components as well
as between users and Melodic.

Partially

SR.04 Melodic SHOULD provide secure storage for in-
termediate and final results of that are exported
by the underlying components.

Depends on au-
thentication on
CDO Server in
Models Reposi-
tory

16

SR.05 Melodic COULD provide mechanisms to enforce
secure destruction of data, models and work-
loads that may contain sensitive information.

Partially through
DLMS

SR.06 Melodic’s token-based authentication system
COULD protect users from impersonation at-
tacks.

Not completely.
A component
may impersonate
a user by reusing
granted token.

SR.07 Melodic SHOULD provide access control for
Melodic users and components.

Yes

SR.08 Melodic SHOULD support a mechanism for se-
cret key revocation of the misbehaving platform
administrators.

No

SR.09 Melodic SHOULD support a mechanism for
token revocation for the compromised compo-
nents.

No

SR.10 Melodic SHOULD provide secure storage for
cloud providers credentials and others (i.e. ex-
ternal storage credentials, database accounts).

Partially – cloud
providers cre-
dentials are
encrypted while
at rest.

Table 4.1: Identified Melodic Security Requirements

17

Bibliography

[1] B. Arkills. LDAP Directories Explained: An Introduction and Analysis. Addison-
Wesley Professional, 2003.

[2] A. Armando, R. Carbone, L. Compagna, J. Cullar, and M. L. Tobarra. Formal analysis
of saml 2.0 web browser single sign-on: breaking the saml-based single sign-on for
google apps. In V. Shmatikov, editor, FMSE, pages 1–10. ACM, 2008.

[3] R. L. Barnes, S. T. Kent, and E. Rescorla. Further key words for use in rfcs to indicate
requirement levels. RFC, 6919:1–6, 2013.

[4] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu. Extensible access control markup
language (xacml) and next generation access control (ngac). In Proceedings of the 2016
ACM International Workshop on Attribute Based Access Control, ABAC ’16, pages
13–24, New York, NY, USA, 2016. ACM.

[5] D. Hardt. The oauth 2.0 authorization framework, 2013.

[6] N. Paladi, C. Gehrmann, and A. Michalas. Providing user security guarantees in
public infrastructure clouds. IEEE Transactions on Cloud Computing, 5(3):405–419,
July 2017.

[7] P. Skrzypek, Y. Verginadis, I. Patiniotakis, and C. Chalaris. H2020 melodic: D5.03
security requirements and design. Technical report, 7bulls, 2018.

[8] Y. Verginadis, G. Horn, K. Kritikos, F. Zahid, D. Baur, P. Skrzypek, D. Seybold,
M. Prusiski, and S. Mazumdar. H2020 melodic: D2.2 architecture and initial feature
definitions. Technical report, Simula Research Laboratory, 2018.

[9] E. Yuan and J. Tong. Attributed based access control (abac) for web services. In
Proceedings of the IEEE International Conference on Web Services, ICWS ’05, pages
561–569, Washington, DC, USA, 2005. IEEE Computer Society.

18

Appendix A

Short Bio

Prof. Antonis Michalas received his PhD in Network Security from Aalborg University,
Denmark and he currently works as an Assistant Professor at the Department of Pervasive
Computing at Tampere University of Technology, Faculty of Computing and Electrical
Engineering. Within the Department of Pervasive Computing there is the Network and
Information Security group (NISEC) which is co-led by Antonis and Prof. Billy Bob
Brumley. The group comprises PhD students, professors and researchers. Group members
conduct research in areas spanning from the theoretical foundations of cryptography to the
design and implementation of leading edge efficient and secure communication protocols.
Apart from his research work at the NISEC group, as an assistant professor Antonis is
actively involved in the teaching activities of the University. Finally, his role expands to
student supervision and research projects coordination.

Prior to that, he was working as a lecturer (assistant professor) in Cyber Security at
the University of Westminster, London. As a lecturer he was teaching both undergraduate
and postgraduate courses related to cryptography, forensics, cyber security and network
security. His role expanded to student supervision and research group coordination. More
precisely, during his time at the University of Westminster, Antonis established his own
research group (CSec). In parallel Antonis was an active member of the department’s
project development and research activities.

Earlier, Antonis was working as a postdoctoral researcher at the Security Lab of the
Swedish Institute of Computer Science (SICS) in Stockholm, Sweden. As a postdoctoral
researcher at the SEC Lab he was actively involved in national and European research
projects and combined research with student supervision and project management.

Finally, Antonis has published a significant number of papers in field-related jour-
nals and conferences and has participated as a speaker in various conferences and work-
shops. His research interests include private and secure e-voting systems, reputation sys-
tems, privacy in decentralized environments, cloud computing, trusted computing and
privacy preserving protocols in eHealth. More information on his profile can be found at:
www.amichalas.com

19

http://www.amichalas.com

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.03

www.melodic.cloud 73

Appendix C:

Security Audit Report by SIDIO Sp. z o.o.

http://www.melodic.cloud/

REPORT Sidio Sp. z o. o. www.sidio.pl

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa

Title: Security Audit Report for Melodic Platform

Date: 05 November 2018

Author(s)
Adam Kuligowski, SIDIO

Slawomir Kobus, SIDIO

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa

TABLE OF CONTENTS

1. INTRODUCTION ... 4

2. EXECUTIVE SUMMARY ... 4

3. ANALYSIS AND CONCLUSIONS ... 5

3.1. Protection of user credentials when accessing cloud environment 5
3.2. Authentication of users and components ... 6
3.3. Authorization and access control ... 7

3.3.1. Access control ... 7
3.3.2. Pre-authorization ... 8

3.4. Storing users’ credentials ... 9
3.5. Users accountability ... 9
3.6. Protection from unauthorized access to the user interface .. 10
3.7. Securing REST communication between Melodic and cloud environments 11
3.8. High Availability.. 12

4. RECOMMENDATIONS ... 13

5. ABOUT THE AUTHORS ... 14

5.1. Slawomir Kobus ... 14
5.2. Adam Kuligowski.. 15
5.3. SIDIO ... 15

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 4

1. INTRODUCTION

The purpose of this document is to present the results of the analysis of architecture and security

mechanisms used in Melodic platform, to indicate key elements affecting security level of the whole

platform and to assess them. Results of this analysis will determine the adequacy of technologies

used and provide recommendations for improvements of the elements according to security

requirements.

2. EXECUTIVE SUMMARY

Melodic is well architected in terms of security services, using some of the most advanced security

features, especially in the authorization part. We have found authorization services very advanced

and well architeced, as well as very flexible for the user of the platform.

Main findings for improvement regarding security of Melodic platform are related to user interface

and accountability of user activity on the platform. They include among others: no password

complexity verification mechanism, no account lockout mechanism due to using wrong password

too many times (making the platform vulnerable to brute-force attacks), no user activity log

(monitoring both login attempts and user activities after successful logging into the account).

There is also a need for implementation of two-factor authentication to access Melodic user

interface. Two-factor authentication will significantly increase platform’s level of security in case of

sharing the interface via the Internet by platform administrators or in case of changing the model of

cloud computing (to Platform-as-a-Service).

It has also been noted that the credentials (logins and passwords) provided by users to access

cloud environments cannot be modified. It is however a functional, not security-related issue.

Vulnerability to Man In The Middle (MITM) attacks has been observed in terms of REST API

communication between Melodic platform and cloud environments as well as the need to

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 5

implement verification mechanism for public keys (certificates) used as a part of such

communication.

The assessment also noted lack of security mechanisms for applications deployed and maintained

on Melodic. According to auditors it is not critical. However, a possibility of implementing such

mechanisms by taking them into account when creating application models and integrating

Melodic platform with specialized third-party security solutions (free or commercial), such as web

application firewalls (WAF) or application delivery controllers (ADC) would be worth considering.

Including application security mechanisms in created models and proper integration can prove

Melodic’s significant competitive advantage when compared to similar solutions.

Architecture of the platform, its particular components, models and implementation methods used

have not raised any concerns.

3. ANALYSIS AND CONCLUSIONS

The analysis conducted consisted in assessment of the architecture of Melodic platform, its

particular elements and mechanisms used to ensure satisfactory security level in terms of the

platform itself, its users, data and applications. Key security functionalities and their compliance with

best practices in a given sector have also been taken into account.

3.1. Protection of user credentials when accessing cloud environment

Proper security of the stored credentials (logins and passwords) is one of the most basic aspects of

Melodic platform security. Due to the critical nature of these data, it is crucial to exercise due

diligence in terms of their protection from disclosure and unauthorized access.

In order to limit distribution of the credentials among many platform components it has been

established that they will be stored in one component only (Cloudiator) and encrypted symmetrically

basing on AES algorithm with 256 bit key. Encryption/decryption key will be provided by Melodic

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 6

users during the first storing of credentials at the initial stage of application deployment before the

deployment process starts and will be only known to these users.

Storage and security methods used to protect credentials on Melodic platform ensure sufficient

security level.

It should be noted however that there is no possibility of re-entering (modifying) the credentials

stored. It creates limitations in terms of password change policy, necessity of changing access

account or in a situation where the user of the cloud environment resets his/her password.

3.2. Authentication of users and components

Due to the multi-module structure of the platform, its distributed architecture and the necessity of

communication between many elements, it is crucial to provide uniform, proven and safe method of

authentication for each operation taking place in the set of elements consisting of a user, a system

component and an external system. The authentication should be based on username and

password, but neither user’s nor component’s credentials should be spread between different

elements of the platform. Such data should be stored in one place only and for authentication of

each operation a security token of pre-determined and configurable validity period should be used.

Token-based authentication allows for resigning from spreading the username and password

between different platform components, moreover, due to token’s statelessness, it simplifies system

scalability and makes the authentication mechanism independent from client’s environment

(different browsers, mobile devices etc.).

All above-mentioned requirements are met by the verified, commonly used and safe Security

Assertion Markup Language 2 (SAML 2). SAML 2 is in fact a standard for securing the process of

authentication in modern cloud applications. Using this standard in Melodic platform along with JWT

(JSON Web Token) constitutes sufficient security of authentication of methods being called within

particular components of the platform.

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 7

3.3. Authorization and access control

Authorization process on Melodic platform is executed in two different contexts:

1. Access control in terms of different resources (services, components, workflow and data).

2. Parameter validation (pre-authorization) of the application and datasets deployment plan

before they are deployed on different cloud environments.

3.3.1. Access control

Melodic platform is a set of networked micro-services distributed around the Internet or virtual private

networks. Distributed structure and necessity of communication between many components poses

real threat of cyberattacks, which is why ensuring verified, safe, efficient and stable access control

mechanism is crucial in the context of security of the whole platform.

Access control model selected by Melodic architects is the Attribute-Based Access Control (ABAC).

Attribute-based access control uses pre-defined sets of policies and rules and verifies the set of

different parameters, the so-called context (not only login and password for example) accordingly,

to grant access to requested resources. The context might be:

§ checking if access request is a part of regular workflow, or if it is only a standalone attempt,

§ checking if the access attempt is performed in a correct sequence and time,

§ requestor identity, his/her permissions, location, purpose of the operation,

§ resource identity and its state,

§ timeframes.

The method of ABAC model implementation in Melodic is XACML (eXtensible Access Control

Markup Language) model and language based on Balana WSO2 library. XACML is a popular

method of implementation of authorization services, commonly used in sectors such as: banking,

healthcare or insurance.

Due to the use of multi-module architecture based on the following components:

§ Policy Administration Point (PAP),

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 8

§ Policy Enforcement Point (PEP),

§ Policy Decision Point (PDP),

§ Policy Information Point (PIP),

§ Context Handler (CH),

XACML model guarantees adequate level of security, efficiency and stability for authorization

services implementation based on this model.

It is important to stress that due to critical significance of authorization service in the context of

functioning of the whole Melodic platform, it is crucial to ensure stability, redundancy and efficiency

of the basic components of authorization server, which in the XACML model consists of:

§ Policy Decision Point (PDP),

§ Policy Information Point (PIP),

§ Context Handler (CH).

ABAC-based authorization service in XACML implementation ensures proper security of Melodic

platform resources, stability, efficiency as well as of the authorization service itself, meets all of the

project requirements and is compliant with the best practices in this sector.

3.3.2. Pre-authorization

The idea of pre-authorization in the context of Melodic platform refers to validation of parameters

of application and dataset deployment in cloud environments included in the deployment plan

created by solvers. Elements that use pre-authorization are the Adapter and DLMS (Data Lifecycle

Management System).

Pre-authorization means verifying compliance of the parameters included in the deployment plan

such as:

§ number and type of application components,

§ way of dataset distribution between virtual machines (VM),

§ selection of cloud provider,

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 9

§ imposed requirements for virtual machines and datasets (including security requirements),

§ selected installation procedures,

with adopted policies.

Pre-authorization allows deploying applications and datasets in compliance with existing laws,

corporate standards or other restrictions adopted (i.e. budget) as well as protects from possible

attacks on Upperware components, which might, in effect, lead to applying incorrect parameters in

the application and dataset deployment plan.

3.4. Storing users’ credentials

Due to specific permissions of Melodic users in the context of actions taken within maintained

applications, it is important to ensure that users credentials stored on the platform are confidential.

Credentials should be stored in one central database providing data encryption, high efficiency,

scalability and integration with third-party software.

Method used in the Melodic platform for storing users’ credentials is central LDAP database based

on OpenLDAP v.1.2 implementation.

The method adopted is compliant with the best practices in this sector. LDAP is an open-source

protocol created for the purposes of authentication and authorization of users. It guarantees

flexibility (due to the possibility of integration), scalability and security.

It is important to stress that only Melodic users’ credentials are stored in the LDAP database.

Application users’ credentials are stored in respective application databases.

3.5. Users accountability

User activities within Melodic platform (modeling data and applications, determining requirements

and objectives) directly affect stability, efficiency and scalability of the applications deployed by the

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 10

Melodic platform on cloud environments. That is why it is important to ensure full accountability of

user activities within the platform. Such accountability should be based on the logs. They should

include events that would allow determining who, where and when performed actions that might

affect functionality and security.

It is worth considering introducing a differentiating mechanism for users access level depending on

their needs or roles (i.e. read-only, full access, read-only log files, modeling application only,

application deployment only etc).

3.6. Protection from unauthorized access to the user interface

Users’ access to Melodic platform is executed via secure HTTPS protocol through the web browser,

while authentication process uses credentials provided by the user (login and password). The

credentials are stored in the internal LDAP database, basing on OpenLDAP v.1.2 implementation,

while the communication between authentication and authorization mechanisms and the database

is executed with the use of encrypted SSL connection.

While the choice of authentication, authorization and user credentials storage mechanisms is

compliant with the best practices in this sector, their application alone does not provide sufficient

security level in the context of protection from unauthorized access to the platform. Especially in

case of possibility of accessing user interface (UI) via the Internet. Users’ passwords are not covered

by the complexity policy and multiple failed attempts of logging in do not result in locking the account.

It makes the platform vulnerable to brute-force attacks, which might, in effect, lead to an

unauthorized access to the user interface of the Melodic platform.

It is also worth noting that login attempts of users are not logged in the event logs.

In order to increase the level of security against unauthorized access, the following solutions should

be considered:

1. Introduction of password complexity verification.

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 11

2. Introduction of account lockout mechanism after x failed login attempts.

3. Introduction of logging any login attempt, both successful and failed, in the event logs.

Due to the possibility of sharing user interface system via the Internet by the administrators or

sharing Melodic platform as a PaaS service (Platform-as-a-Service) introduction of two-factor

authentication mechanism should also be considered i.e. in the form of security tokens sent as a

text message to user’s phone number.

3.7. Securing REST communication between Melodic and cloud environments

Selected method of communication between Melodic platform and cloud environments is critical for

security of applications maintained within the platform. Due to the critical meaning of data being sent

between those environments, which, for instance:

§ determine architecture of the application and its particular components;

§ are control data, sent as a part of control plane;

§ are metrics of particular components, sent as a part of monitoring plane;

ensuring confidentiality of these data is of the highest priority.

Communication between Melodic platform and cloud environments is executed with the use of the

REST API. REST API as a web service is based on HTTP protocol, which, according to current

trends, is a standard way of communication for distributed applications. Interaction between the

client and the server is stateless, client’s context is not stored on server between requests, it does

not base on transactions and the way of communication between the client and the server is light

and resource-oriented. One of the disadvantages of the REST method is that it lacks standardization

(unlike i.e. SOAP). SOAP, thanks to standardization, provides many more possibilities, but at the

same time it forces transmission of much more data between the client and the server, which makes

it heavier and more complex than REST.

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 12

In order to ensure confidentiality of the transmitted data, each REST transaction should be

authenticated and the communication between the server (cloud environment) and the client

(Melodic platform) should be encrypted.

Using REST API and SSL-encrypted transmission for communication between Melodic platform and

cloud environments is compliant with the best practices in this sector.

One should note however the existing risk of a Man-In-The-Middle (MITM) attack on encrypted

HTTPS connections. The attacker redirects encrypted transmission to themselves and sends their

own public key to both sides of the transaction, which, in effect, allows the attacker to intercept and

modify transmitted information without their knowledge.

MITM attacks on API communications are rare and hard to execute. However, security mechanisms

against such attacks provided by all cloud environments supported by the Melodic platform should

be verified (security against MITM attacks is usually executed on the server side) and other

mechanisms preventing sending of an unauthorized public key (certificate) for communication with

cloud environments should be implemented.

3.8. High Availability

Criticality of the operations performed by the Melodic platform on applications and their data:

§ constant monitoring of the application state,

§ verifying the compliance of application and datasets deployment with current policy,

§ controlling changes in application or datasets deployment

requires constant availability of the elements executing these operations.

Component integration method applied in the Melodic platform – ESB (Enterprise Service Bus) as

well as its implementation based on MuleESB ensures statelessness of most of the key

components, which enables running many instances of each of these components and, in effect,

provides sufficient high availability mechanism. The only component that cannot work in a cluster

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 13

architecture (running multiple instances at the same time) is the stateful Learning Automate (LA)

Solver. In case of a failure or an error LA Solver is restarted and starts counting all over again.

All of the above makes Melodic platform capable of constant support of the most critical applications.

4. RECOMMENDATIONS

All of the recommendations along with designation of their severity level are presented in table 1.

Severity level scale is as follows:

o high – meeting the requirement is critical in terms of platform security;

o medium – meeting the requirement is important in terms of platform security;

o low – meeting the requirement is optional in terms of platform security.

Table 1: Recommendations for amendments

No. Recommendation Severity

1. Enabling modifications to cloud providers’ credentials. high

2. Adding password complexity verification mechanism. high

3. Adding account lockout mechanism after x failed login attempts. high

4. Introducing accountability of user activity by logging all events

that make it possible to determine who, where and when

introduced modifications affecting functionality or security.

Including all login attempts, both successful and failed.

medium

5. Adding differentiating mechanism for levels of users’ access to

platform.

low

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 14

6. Introducing two-factor authentication for Melodic users. medium

7. Guaranteeing confidentiality of data transmitted via REST

communication between Melodic and cloud environments.

high

8. Providing security against Man-In-The-Middle (MITM) attacks for

communication between Melodic and cloud environments.

Introducing public key (certificate) verification process.

medium

5. About the Authors

5.1. Slawomir Kobus

Co-founder of SIDIO and Managing Director responsible for the implementation and shaping of

company's strategy in all areas of its activities.

Passionate about new technologies market with wide knowledge of mature manufacturers

specializing in IT security and young, promising startups. As an experienced IT security consultant,

he is particularly competent in projects implemented for financial institutions. During eighteen years

of professional activity in IT companies, he went through all career levels, starting from the position

of system engineer, through the positions of salesman and manager in international corporations.

He implemented security systems for Telewizja Polska, Deutsche Bank, Bonduelle, Bank PKO BP.

Graduate of Electronics and Telecommunications at the Military University of Technology and

postgraduate management at the Warsaw School of Economics. He completed Ethical Hacking

training, holds certificates such as Cisco Certified Security Professional (CCSP), Checkpoint, Palo

Alto Networks.

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 15

5.2. Adam Kuligowski

Co-founder of SIDIO responsible for determining the direction of company's development,

cooperation with technological partners and technical implementation of projects.

He is a respected consultant and implementation practitioner, as well as a certified engineer for

Fortinet, Palo Alto Networks, Proofpoint, Radware and Wallix. He collaborates with the largest Polish

IT system integrators on advanced implementations for enterprises and corporations. At SIDIO, he

supervises the technical aspects of Company's key projects.

A graduate of the Faculty of Cybernetics at the Military University of Technology in Warsaw and the

Warsaw School of Economics in the field of "IT project management". He has been active in the IT

security sector since 2011, first as an IT Security Engineer, responsible for numerous projects for

clients from the public administration and commercial companies, and since 2016 as an Architect of

IT Security Solutions at one of the largest IT integrators in Poland, carrying out projects for the most

important public institutions, financial institutions and universities.

5.3. SIDIO

SIDIO is a team of practitioners and experts in the field of information and communication security.

We are a group of engineers, implementers and consultants. Many years of practice, hundreds of

implementations, consultations and trainings in the field of ICT network protection mechanisms have

given us proficiency in selecting the best solutions, which very often have to be an effective

compromise between data security and the comfort of users' work.

When creating SIDIO's offer, we have analyzed the criticality of ICT infrastructure elements and

cases of cyber-attacks, both in terms of their diversity, most frequent vectors of implementation, as

well as frequency of occurrence. From the perspective of data security and the entire IT

infrastructure, we have considered the possibilities of mutual integration of protection systems we

Security Audit Report for Melodic
Platform

SIDIO Sp. z o.o.

05 November 2018 www.sidio.pl

SIDIO Sp. z o.o.

ul. Obrońców Tobruku 25/9
01-494 Warszawa 16

have recommended. The result of this work is an offer based on the products of world technological

leaders in the field of:

§ email protection,

§ network protection,

§ endpoint and server protection,

§ Web application protection,

§ protection of intellectual property,

§ raising awareness of IT security,

§ privileged access management,

§ security event monitoring and analysis,

§ network access control,

§ protection against DDoS attacks,

§ incident response.

	D5.03 Security requirements & design_to_resubmit_EGG_v7
	Melodic_Security_FinalMichalas
	Introduction
	Organization

	Overview of the Melodic System and Current Security Mechanisms
	Interfaces to End Users
	Upperware
	Executionware
	Auxiliary Services
	Status and Event Service
	Security Service

	Control Plane and Monitoring Plane

	Security Analysis of Melodic
	Melodic's Positive Highlights
	Missing Security Functionality

	Security Recommendations
	Short Bio

	Security Audit Report for Melodic Platform-FINAL-SIDIO

