

Title

D4.4 Resource Management Framework

Multi-cloud Execution-ware for
Large-scale Optimised Data-
Intensive Computing

Executive summary

The purpose of this deliverable is to show the evolvement of the
prototype of the resource management framework to the final
product. For this purpose, it depicts the feedback received by the
testers and use cases of the project and depicts the taken steps to
address this feedback. It thus presents the newly developed
features integrated to address this feedback, and in addition
maintenance effort done to improve existing features.

H2020-ICT-2016-2017
Leadership in Enabling and
Industrial Technologies:
Information and Communication
Technologies

Grant Agreement Number
731664

Duration
1 December 2016 –
30 November 2019

www.melodic.cloud

Deliverable reference
D4.4

Date
30 November 2019

Responsible partner
UULM

Editor(s)
Daniel Baur

Author(s)
Daniel Baur, Volker Foth, Florian
Held, Florian Lappe, Łukasz
Szymański

Reviewers
Ernst Gunnar Gran, Gregoris
Mentzas

Distribution
Public

Approved by
Gregoris Mentzas

ISBN number
N/A

Document URL
http://www.melodic.cloud/deliverables/D4.4 Resource Management Framework.pdf

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 731664

http://www.melodic.cloud/
http://www.melodic.cloud/deliverables/D4.4%20Resource%20Management%20Framework.pdf

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 2

Document

Period Covered M20-32

Deliverable No. D4.4

Deliverable Title Resource Management Framework

Editor(s) Daniel Baur

Author(s) Volker Foth, Florian Held, Florian Lappe, Łukasz Szymański

Reviewer(s) Ernst Gunnar Gran, Gregoris Mentzas

Work Package No. 4

Work Package Title Executionware

Lead Beneficiary Ulm University

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 29

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 3

Table of Contents
1 Introduction .. 4

1.1 Scope of this document ... 4

1.2 Structure of this document .. 4

2 Feedback to the prototype ... 6

3 Features .. 7

3.1 Monitoring .. 7

3.1.1 Monitoring Model .. 9

3.1.2 Monitoring Orchestration .. 10

3.1.3 Scaling Engine ... 11

3.2 Bring Your Own Node (BYON) ..12

3.2.1 Functionality ..12

3.2.2 Usage ...13

3.3 User Interface .. 14

4 Implementation ... 18

4.1 License ... 18

4.2 Main Dependencies... 18

4.3 Source Code Repositories ... 18

5 Maintenance ... 19

5.1 Updates to the previous prototype .. 19

5.1.1 Refined Docker Interface .. 19

5.1.2 Parallelization ... 23

5.1.3 Matchmaking .. 23

5.1.4 Cost Discovery .. 24

5.2 Other Improvements .. 25

6 Documentation .. 26

7 Integration ... 27

8 Summary .. 28

9 References ... 29

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 4

1 Introduction
1.1 Scope of this document
This document describes the final product of the resource management layer of the Executionware
work package. As it describes the evolution of the previous prototype it builds upon the deliverable
D4.3 [1]. Moreover, this deliverable and part of the described technical functionalities will serve as a
basis for D4.6 Data processing layer.

1.2 Structure of this document
In Section 2, this document will first give an overview of the received feedback about the prototype
described in deliverables D4.1 [2], D4.3 [1] and D4.5 [4]. It includes a) feedback given by the use case
providers adapting their applications using the resource framework and b) feedback given by the
testing team. The remainder of the deliverable will discuss actions that were executed to address
the feedback given by those users. First, Section 3 will discuss new major features of the resource
management layer that were introduced to address feature requests by the end-users. Section 4 will
then elaborate on formal and technical dependencies of the Cloudiator Framework like the used
software licence and used third-party software. Afterwards, Section 5 will discuss general
maintenance effort executed to address the feedback, including smaller improvements to existing
components.

Figure 1: Revised Cloudiator Architecture

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 5

Figure 1 shows the corresponding changes in the overall Cloudiator. architecture. Yellow boxes are
associated with newly developed features, whereas blue boxes imply components that underwent
the mentioned maintenance process. The new Montitoring Agent gives the Cloudiator user the
opportunity to configure the monitoring settings for the deployed application by exposing
appropriate interfaces to the REST Endpoint. The Byon Agent makes it possible for the user to
register his or her own nodes, e.g. a virtual server, that don’t necessarily stem from a cloud provider,
in the system. Maintenance of the Lance Agent included improvements in communication
capabilities of the associated Docker Support feature. The Node Agent now is able to allocate
resources in parallel and the Resource Broker Agent now finds resources for an optimal deployment
in much shorter time. Moreover, the newly developed Cost Discovery mechanism associated with
the Discovery Agent, makes it now possible to gather cloud-specific pricing-lists in an agnostic,
consistent way. All these mentioned new implementations, improvements and maintenances of
the components are discuessed in depth in Section 3 through 5.

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 6

2 Feedback to the prototype
In Table 1, feedback to the previous prototype, presented in D4.3 [1], that was either delivered by a
single use-case partner, the use-case partners as a whole or the developers of the prototype itself, is
listed. These feedbacks were considered and the resulting requests for new feature
implementations or improvements were eventually implemented in the new prototype and will be
discussed in Section 3 and 5. The first column in the table lists feedback IDs and associated
reference names, whereas the second column gives a brief description of the feedback.

Table 1: Feedback to the Prototype

ID Description

F1 – Monitoring The monitoring framework that only existed as a draft needed
implementation.

F2 – Docker Communication

The Docker Support, first described in D4.5 [4], needed to be
expanded with respect to communication capabilities for the
deployed containers. These capabilities were required in the
‘CRM and App Store’ use case originally described as Use Case 1
in D6.1 [5].

F3 –Deployment
Parallelization

Parallelization of the resource allocation and deployment to
speed up the overall deployment process.

F4 – Resource Offering Speed
The time required to perform the resource offering and the
internal matchmaking needs to be improved.

F5 – Bring Your Own Node
(BYON)

In some cases, the use case partners wanted to reuse some
already allocated nodes with the Cloudiator Framework. For this
purpose the BYON feature was developed.

F6 – User Interface
To ease the testing and usage of the Framework, a user interface
to perform basic actions was requested.

F7 – Stable Release
The integration needed to be changed to provide an additional,
more stable, release version.

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 7

3 Features
This section will discuss new features introduced with the final version of the resource
management framework. Those features mainly include: i) the final implementation of the
monitoring layer responsible for monitoring the allocated resources (F1), ii) the Bring-Your-Own-
Node features that allows the usage of Cloudiator with already existing nodes (e.g. residing at
unsupported providers or physical node not managed by a cloud software) (F5) and iii) a user
interface allowing manual interaction with Cloudiator’s API (F6), e.g. for error handling and
debugging.

3.1 Monitoring
This section describes the monitor-handling and -orchestration of Cloudiator. The complete
scientific approach of the monitoring is expounded and published in the corresponding paper [3].
The monitor-handling is part of the complete orchestration structure of Cloudiator shown in
Figure 2, which visualizes the orchestrational interactions inside Cloudiator. The monitoring part
mainly takes place between the Monitor-Orchestration-Service and the Monitoring-Agent called
Visor. Visor is a lightweight software client for monitoring installed on a virtual machine. The Event
Processing Agent (EP-Agent) handles the outgoing communication of the nodes. This includes the
aggregated data of Visor as well as the orchestrational feedback of a node and triggers events based
on the deployment rules. EP-Agent is not in scope of monitoring and is described in paper [3] and
deliverable D3.4 [6]. Cloudiator offers the possibility to orchestrate monitors with two types of
sensors called Push- and Pullsensor. Pullsensors are the equivalent to traditional hardware related
Systemsensors monitoring metrics like CPU-Usage or Memory-Usage. Pushsensors are application
specific, custom metrics handled over a specific port. This port can be specified in the monitor
request or is randomly chosen by Visor.

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 8

Figure 2: Monitoring architecture [3]

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 9

3.1.1 Monitoring Model
The fundamental structure of a Cloudiator monitor is defined in a YAML-file which is also used for
the REST-API1 definition. This guarantees a common structure for all interfaces interacting with
Cloudiator monitors. Using Cloudiator REST-API to make a monitor request results in a json
description of the requested monitor whose structure is shown in Listing 1.

In contrast to enumeration types of ‘targets’ and ‘sinks’, in the monitor request the enumeration at
the ‘sensor’ is a discriminator for polymorphism. The sensor configuration is type specific, so the
configuration attributes differ depending on the sensor type. The ‘datasinkconfiguration’ and ‘tags’
are designed as a stringmap, thus any number of tags or configuration properties can be added to
each monitor. For internal handling a monitor instance is extended by some private attributes like
‘monitorstatus’ or ‘Visor-Uuid’ before it is stored in the monitoring database. The ‘Visor-Uuid’ is a
unique identifier for a sensor in Visor and will be added to the associated instance on node level.
The status attribute and its handling will be explained in the following section.

1 http://cloudiator.org/rest-swagger/

{
 "metric": "string",
 "targets": [
 {
 "type": ["JOB","TASK","PROCESS","NODE"]
 "identifier": "string"
 }
],
 "sensor": {
 "type": ["PushSensor","PullSensor"]
 "configuration": [polymorph type specific]
 },
 "sinks": [
 {
 "type": ["KAIROS_DB","INFLUX_DB","JMS","CLI"]
 "configuration": {
 "keystring1": "valuestring1",
 "keystring2": "valuestring2"
 }
 }
],
 "tags": {
 "keystring1": "valvuestring1",
 "keystring2": "valuestring2"
 }
}
 Listing 1: Structure of Cloudiator monitors

http://www.melodic.cloud/d
http://cloudiator.org/docs/sparkInterface_examples.html

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 10

3.1.2 Monitoring Orchestration
The monitoring as part of the Cloudiator Framework interacts with other agents via its internal
messaging service. Furthermore, there are two direct connections. On the one hand to the Store-
Agent which contains all Cloudiator databases, thus also the monitoring database, on the other hand
the interaction with Visor which is handled via an internal REST-Interface.

The basic monitoring workflow is shown in Figure 3. Melodic Upperware uses the REST-API to
define a monitor request (1). According to this Request a monitor model is created and stored in the
monitoring database (2). The affected virtual machine will be requested and the related Events
subscribed (3). After identification of the virtual machine all needed agents (4) and sensors (5) will
be installed. Finally, the requested data can be gathered (6) and sent to the monitor data sink (7).

According to the specified targets of a monitor request, one or more internal monitor instances will
be created. How many instances are generated depends on the hierarchical level of the specified
targets.

Figure 3: Monitor Orchestration Workflow

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 11

The hierarchical structure of Cloudiator monitors can
contain multiple instances of the next lower level down to
the lowest level, i.e. the node level, see Figure 4. From a
monitoring point of view, a job can contain multiple tasks
which can contain multiple processes. A process can also
contain multiple nodes if it is a cluster process.

According to the monitor target, all monitor instances will
be initiated to set up the demanded sensor on all related
nodes. During the creation of a monitor, an initial search
request in Cloudiator is performed to identify all selected
targets and their statuses. After the first initial request any
further changes of the targets will be transmitted by the
Cloudiator internal event-messaging system.

Thereby, changes in the backend will be noticed and the
affected monitors can be updated. If a status of a node or
process changes, the event listener checks the monitoring database for related monitor instances.

On node- and process level, the monitoring status is a direct copy of its targets’ status. On job- and
task level, the status is either the status of all sublevel instances which have in common or it’s
‘ERROR’ if one of the related instances differ. The handling of all monitor instances on one node is
done by the Monitor-Orchestration-Service to keep Visor as lightweight as possible. Furthermore,
the monitoring is also responsible for installing all needed agents on the nodes. These agents will
only be installed if needed, so the installation is triggered by the first monitor request on the
respective node. The monitor installation on every node is handled by a dedicated queue to which
all requested monitors are added. Each queue has a separate queue worker responsible for installing
the monitors in the queue. All existing queues are listed in the monitoring. When a monitor request
is delivered, it checks if already a queue for the requested node exists. If so, the requested monitor
is added to the existing queue. Otherwise a new queue and its associated worker will be created. If a
queue worker has emptied its queue, it finally removes the queue from the list of existing queues
and terminates itself.

3.1.3 Scaling Engine
The Scaling Engine is responsible for enacting scaling requests issued either manually by the user
or automatically be the Melodic Upperware. A scaling request includes the following information:
the process (i.e. the running application component) that needs to be scaled, the scaling direction
and either an explicit set of resources that should be used for scaling or an implicit target node size.

As scaling direction, the scaling engine supports horizontal scaling in both direction: i) scale-out
meaning that additional resources are added to the running process and ii) scale-in meaning that
resources are removed. Using an explicit resource description, the user or the Upperware needs to
previously acquire the nodes using the API. Using the implicit resource description, the user only
needs to express the amount of resources needed and the internal matchmaking of Cloudiator will
perform the required matchmaking and it will allocate the resources needed.

Figure 4 hierarchical monitor structure

Job Task Process Node

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 12

3.2 Bring Your Own Node (BYON)
This section describes the functioning and the usage of the BYON (Bring-Your-Own-Node) feature
that was integrated into the Resource Framework of Cloudiator as part of Melodic R2.5.

3.2.1 Functionality
The BYON feature was developed as an extension to the resource management framework
described in D4.3 [1]. The basic idea behind the BYON support is to give a user the possibility to
provision his ‘own physical nodes’ with the help of the Executionware, or more precisely, the
Cloudiator Framework. By using his own node (e.g. a virtual server), the user can have several
advantages over the usual method of provisioning a node with the help of a cloud provider. For
example, if the node is a dedicated server, which is owned by the user or the company he or she is
employed at, the user will be in the position of full control over the application component that is
hosted on this node during the lifecycle of the application. This implies complete ownership of the
data residing on the node or the direct enforcing of security measures or policies. Moreover, if the
user constructs his ‘own node’ by means of the API of a cloud provider, he can create a tailor-made
node for his requirements by exploiting every configuration detail of the specific provider, which
might not be the case if he indirectly creates his node with the generic multi-cloud interface of the
Melodic platform. On the other hand, if the user or his company are the owner of the node, they
would be obliged to administer the node by themselves and they also would have to pay bills for
electricity or maintenance. Both things would be avoided if the node was provisioned by a cloud
provider. In this case, where the user builds his node with the help of a cloud API, he would have to
execute certain work steps, which in the regular case the Melodic platform would relieve him of. To
summarize, the BYON Support gives the Melodic platform more flexibility in the resource
provisioning process and enlarges the portfolio of possible use-cases. In the following, the term
‘BYON’ is used to describe nodes that are associated with the BYON Support feature.

On the technical side, specific information needs to be delivered to Cloudiator to make it aware of a
single BYON. That is e.g. the public IP address, login credentials or the Operating System that was
installed on the node. It should be mentioned that the Operating System doesn’t need to be installed
on a Virtual Machine in a virtualized environment but can also be installed on ‘bare-metal’ on the
BYON. Internally, the interactions with a registered BYON are as follows. After being registered in
the system, the node will pop up when a list of possible node candidates is queried. If specific
requirements of an application component later comply with the offered properties of the BYON, the
reasoning process of the Melodic Upperware will select the BYON for the deployment of an instance
of the component.

The central part of the BYON implementation is the Byon-Agent. This agent saves the internal states
of the BYONs and handles all interactions with them. That is adding a BYON, querying all BYONs
and deleting a BYON in the system. Concerning the state, two possibilities exist: unallocated and
allocated. The initial state is unallocated, and it switches to allocated if and only if an application
component instance is deployed on a BYON. In the time of being allocated, the BYON cannot be
deleted from the system and will not pop up when querying possible node candidates. Both will be
the case again if Cloudiator removes the application component from the BYON, while at the same
time the state will transition back from allocated to unallocated.

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 13

3.2.2 Usage
The following example in Listing 2 shows the json description the Byon-Agent requires to register a
node in the system. The description must be delivered by the Cloudiator user, e.g. the Melodic
Upperware. The example is for the most part self-explanatory. However, it should be noted that fields
which do not describe a functional property, e.g. the ‘geolocation’, are used to create a unique
internal id for the node. Specific units for fields can be found in the description of the Cloudiator
REST-API2. The field “disk” e.g. requires a Gigabyte value.

{
 "name": "byon-test-node",
 "loginCredential": {
 "username": "ubuntu",
 "password": "testpw"
 },
 "ipAddresses": [
 {
 "IpAddressType": "PUBLIC_IP",
 "IpVersion": "V4",
 "value": "134.60.64.1"
 }
],
 "nodeProperties": {
 "providerId": "e12a32e4b62be36596e0882886a552a0",
 "numberOfCores": 8,
 "memory": 4096,
 "disk": 1.0,
 "operatingSystem": {
 "operatingSystemFamily":"UBUNTU",
 "operatingSystemArchitecture":"AMD64",
 "operatingSystemVersion": 1604
 },
 "geoLocation": {
 "city":"Ulm",
 "country":"DE",
 "latitude": 48.4010822,
 "longitude": 9.9876076
 }
}

Listing 2 – BYON description Example

2 http://cloudiator.org/rest-swagger/

http://www.melodic.cloud/d
http://cloudiator.org/docs/sparkInterface_examples.html

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 14

3.3 User Interface
The initial prototype did not feature a user interface but instead relied on the exposed API3 for main
interaction with the other components of Melodic. For manual testing a collection of API calls were
provided with the POSTMAN4 collaboration platform for API development. However, it became
apparent that a more user-friendly way of accessing the base functionality of the Cloudiator
Framework is needed. For this purpose, a high-level graphical user interface was developed that
encapsulates the main interaction endpoints with the framework: i) registering a new cloud
provider, ii) running a new application and iii) providing an overview of a running application.

The cloud management overview depicted in Figure 5 allows the user to add/update/delete a new
cloud provider which will cause the automatic detection of its offers and their addition to the
resource offering mechanism. In addition, the discovered entities can be viewed.

The textual editor shown in Figure 6 allows the user to deploy an application using a newly
developed YAML syntax for describing the application. A graphical feedback shows a graph of the
components of the application and their dependencies, while automatically checking the provided
description of syntactic and semantic errors.

Finally, the overview of the deployed application (see Figure 7) gives feedback on all running
deployments. It gives quick access to vital information like the endpoints of the running
applications while using a traffic-light style indication (green: running, yellow: pending, red: error),
allowing the operator an overview of the deployment status.

The Cloudiator web user interface is built using the JavaScript framework Angular5. For UI design,
the CSS library Bulma6 was combined with Angular CDK7, a toolkit to build Angular components. In
consideration of the use case it was designed desktop first, but it still has full functional support on
mobile devices. To simplify internal state management, NgRx8 was employed to realize a redux
pattern. As the Cloudiator API is designed with the Swagger framework, Swagger's code generation
tool was used to generate interfacing services. Furthermore, a Jasmine9/Karma10 stack was used for
testing, as it has a good default integration with Angular.

3 http://cloudiator.org/rest-swagger/
4 https://www.getpostman.com/
5 https://angular.io/
6 https://bulma.io/
7 https://material.angular.io/cdk
8 https://ngrx.io
9 https://jasmine.github.io/
10 https://karma-runner.github.io/latest/index.html

http://www.melodic.cloud/d
http://cloudiator.org/rest-swagger/
https://www.getpostman.com/
https://angular.io/
https://bulma.io/
https://material.angular.io/cdk
https://ngrx.io/
https://jasmine.github.io/
https://karma-runner.github.io/latest/index.html

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 15

Figure 5: Cloud Management

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 16

Figure 6: Textual Editor using YAML format

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 17

Figure 7: Overview of running Application

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 18

4 Implementation
This section describes the implementation of the Cloudiator Framework and will list major
additions to the previous implementation section found in D4.3.

4.1 License
As for the prototype, all software belonging to the Cloudiator Framework is released under Apache
License 2.011.

4.2 Main Dependencies
During the development of the final release, multiple open source dependencies were added to the
Cloudiator project, which are listed in Table 2.

Table 2: Main Dependencies

Name Description Link

Google Jib

Builds efficient
containers from java
projects. Used to
improve the integration
(see Section 7).

https://github.com/GoogleContainerTools/jib

AngularJS

A popular javascript
framework used for
developing the user
interface.

https://angularjs.org/

CMPL (<Coliop | Coin>
Mathematical
Programming Language)

A mathematical
programming language
for describing integer
linear optimization
problems.

http://www.coliop.org/

CBC (COIN-OR Branch-
and-Cut solver)

A branch-and-cut solver
for integer linear
optimization problems.

https://github.com/coin-or/Cbc

4.3 Source Code Repositories
All source code repositories of Cloudiator are hosted on Github under the organization
Cloudiator12.As for the new prototype, a new repository was added, named user-interface, which
contains the source code for the newly developed user interface.

11 http://www.apache.org/licenses/LICENSE-2.0
12 https://github.com/cloudiator

http://www.melodic.cloud/d
https://github.com/GoogleContainerTools/jib
https://angularjs.org/
http://www.coliop.org/
https://github.com/coin-or/Cbc
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/cloudiator

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 19

5 Maintenance
This section gives an overview for the maintenance effort required to leverage the Cloudiator
Framework from a prototype to the final product. This maintenance effort mainly includes reacting
to the feedback given by the use cases but also includes daily work like responding to bug requests,
analysing software bugs and providing fixed versions. The first section will give an overview about
updates done to the previous prototype, if possible, referencing feedback given by the use case
providers. The second section will summarize smaller maintenance efforts not large enough
warranting an individual section.

5.1 Updates to the previous prototype
This section presents updates to the previous prototype based on the provided feedback. In contrast
to the feature section (see Section 3) which presents new features, this part will present updates to
the already existing feature set.

5.1.1 Refined Docker Interface
The ‘Native Docker Support’ as described in D4.5 [4] was further refined to support a broader range
of application use-cases. The main focus of the refinement lays in extending the interaction
capabilities of Docker containers (F2). As an example, a load balancer (e.g. HAProxy13) must know its
downstream application component instances to reconfigure itself with the goal to balance the
incoming load. A generic approach was used by dividing the respective components into two
groups: The first one, in which its members, respectively containers, announce their public IP
addresses and ports (i.e. sockets) after they had successfully bootstrapped and started. The second
one in which its members process these events. The first group is named ‘dynamicgroup’ and the
second one ‘dynamichandler’. In order to process these events (i.e. announced sockets), the
application owner can inject a custom shell-script into the containers of the ‘dynamichandler’ group
by means of the respective Dockerfile. With the help of the formerly described mechanism, this
script can then process the announced socket values to reconfigure the load balancer associated
with the container. The communication means for the announcements of the events is the etcd14
registry. From there, the ‘dynamichandler’ component instances can query the socket values that
were written into the registry by boostraped and started members of the ‘dynamicgroup’.

13 http://www.haproxy.org/
14 https://coreos.com/etcd/

http://www.melodic.cloud/d
https://coreos.com/etcd/

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 20

Figure 8: Docker Application Example

To illustrate this functionality, an application (see Figure 8) is described, that consists of three
components: A load balancer, a webserver and a database. The load balancer’s job is to evenly spread
the load among instances of the second component, the webserver. The webserver is a component,
that provides instances which can be scaled out horizontally and which access a single database,
which forms the third component. Listing 3 shows an example of a Cloudiator job-description, that
is compliant with the given example application. The first json-object under the ‘tasks’ array
describes the load balancer. All relevant configuration parameters are mapped into the
environment, of which the ‘dynamichandler’ and the ‘updatescript’ parameters are the relevant ones
for the refined Docker Interface. As discussed at the beginning of this section, the load balancer
instance will execute the script defined as the value of the parameter ‘updatescript’, with a socket
value as its input-parameter, at the moment the corresponding downstream component instance
(webserver) with an appropriate ‘dynamicgroup’ value has bootstrapped and has become ready. The
second object is the webserver, which should provide the Cloudiator user, e.g. the Melodic
Upperware, the possibility to scale it horizontally. For that purpose, it has to get registered at the
load balancer instance with the help of the ‘dynamicgroup’ parameter. To make the communication
between the webserver instances and the load balancer instance work, the ‘dynmichandler’ and
‘dynamicgroup’ parameters in the respective components must have the same value. In the example
case, this value is equal to ‘dynamicgroup1’. The third component is the database, which was chosen
to be a mariadb15. In contrast to the other components, this component is pulled from the public

15 https://mariadb.org/

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 21

docker registry16, which also implies that there are no user credentials set in the environment. The
communications block in Listing 3 specifies the dependencies between the components and thus
enforces a certain start order.

{
 "name": "EXAMPLE_APP",
 "tasks": [
 {
 "name": "loadbalancer",
 "behaviour": { "type": "ServiceBehaviour", "restart": true },
 "executionEnvironment": "DOCKER",
 "taskType": "SERVICE",
 "ports": [
 {
 "port": "8080",
 "type": "PortProvided",
 "name": "LBProvPort"
 },
 {
 "isMandatory": true,
 "type": "PortRequired",
 "name": "LBReqPort"
 }
],
 "interfaces": [
 {
 "type": "DockerInterface",
 "dockerImage": "omi-registry.e-technik.uni-ulm.de:443/melodic/sample-
loadbalancer:latest",
 "environment": {
 "username": "test.user@example.com",
 "password": "topsecret",
 "port": "8080:8080",
 "dynamichandler": "group1",
 "updatescript": "/etc/updateEndpoints.sh"
 }
 }
],
 "optimization": null,
 "requirements": []
 },
 {
 "name": "webserver",
 "behaviour": { "type": "ServiceBehaviour", "restart": true },
 "executionEnvironment": "DOCKER",
 "taskType": "SERVICE",
 "ports": [
 {
 "port": "9494",
 "type": "PortProvided",
 "name": "WebserverProvPort"
 },

16 https://hub.docker.com/

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 22

 {
 "isMandatory": true,
 "type": "PortRequired",
 "name": "WebserverReqPort"
 }
],
 "interfaces": [
 {
 "type": "DockerInterface",
 "dockerImage": "omi-registry.e-technik.uni-ulm.de:443/melodic/sample-
webserver:latest",
 "environment": {
 "username": "test.user@example.com",
 "password": "topsecret",
 "DB_USER": "melodic",
 "DB_PASSWORD": "testpwd",
 "DB_HOST": "$PUBLIC_WebserverReqPort",
 "DB_NAME": "testdb",
 "port": "9494:9494",
 "dynamicgroup": "group1"
 }
 }
],
 "optimization": null,
 "requirements": []
 },
 {
 "name": "database",
 "behaviour": { "type": "ServiceBehaviour", "restart": true },
 "executionEnvironment": "DOCKER",
 "taskType": "SERVICE",
 "ports": [
 {
 "type": "PortProvided",
 "name": "DatabaseProvPort",
 "port": 3306
 }
],
 "interfaces": [
 {
 "type": "DockerInterface",
 "dockerImage": "mariadb",
 "environment": {
 "MYSQL_DATABASE": "testdb",
 "MYSQL_PASSWORD": "testpwd",
 "port": "3306:3306",
 "MYSQL_USER": "melodic",
 "MYSQL_ROOT_PASSWORD": "admin"
 },
 }
],
 "optimization": null,
 "requirements": [],
 }
],

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 23

 "communications": [
 {
 "portRequired": "LBReqPort",
 "portProvided": "WebserverProvPort"
 },
 {
 "portRequired": "WebserverReqPort",
 "portProvided": "DatabaseProvPort"
 }
]
}

Listing 3 – Docker job-description

With this job description, it is ensured that whenever a new component instance of the webserver
is added to the system after the initial deployment, the load balancer instance gets notified and can
take appropriate actions in the form of e.g. reconfiguration.

5.1.2 Parallelization
The prototype was not able to allocate resources in parallel (F3). This caused high deployment times
especially for use cases that required to allocate a large amount of virtual machines (VMs) at the
same time, e.g. 100 VMs in the CE-Traffic use case. While Cloudiator’s architecture consisting of
micro services connected by a distributed message queue was already setup for high amounts of
parallelization, we discovered some issues implementing this feature. First of all, the
implementation used for the abstraction layer (Apache jClouds17) was not fully thread-safe, meaning
that an allocation of multiple nodes at the same time could cause race-conditions, also being the
reason the prototype did not offer parallelization in the first place. This issue could however be
solved by an in-depth analysis of the problem and synchronizing the problematic parts. However, a
fully parallelized startup is still hindered by request quota limitations from the providers, meaning
that only a specific number of requests is possible within a defined time frame. Therefore, we are
currently limiting the number of concurrent requests by a configurable threshold. Nevertheless, we
were able to speed up the deployment time by a significant amount.

5.1.3 Matchmaking
The resource management layer prototype features a resource offering and matchmaking
mechanism. However, during testing, especially with a large provider set, it became clear that the
existing implementation was too slow, requiring up to multiple minutes for providing a solution.

We therefore improved the performance of the approach significantly by replacing the existing
approach using the Choco Solver18 with a combination of the <Coliop|Coin> Mathematical
Programming Language (CMPL) and the solvers supported by it (mainly the COIN-OR Branch-and-
Cut solver). Thus, instead of translating the Object Constraint Language Constraints expressed by

17 https://jclouds.apache.org/
18 http://www.choco-solver.org/

http://www.melodic.cloud/d
https://jclouds.apache.org/
http://www.choco-solver.org/

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 24

the user into a logical constraint problem expressed with the Choco Solver, we transform the
expressed constraints to a mathematical representation of the Integer Linear Program (ILP) using
the CMPL. We then use the above branch-and-cut solver to solve the newly represented problem.
Our evaluation shows that for some example constraints, this can reduce the runtime of the
matchmaking and resource offering from minutes to milliseconds.

In addition, the new resource offering and matchmaking system is now capable of handling
resource quotas issued by the provider. We differentiate between two quota approaches:
AttributeQuotas and OfferQuotas. AttributeQuotas restrict the amount a user can have of a specific
resource type, while OfferQuotas restrict the amount the user can have of a specific offer. Openstack
e.g. mainly uses AttributeQuotas restricting e.g. the total amount of CPUs a user may allocate, while
Amazon EC2 uses OfferQuotas restricting the amount of a specific hardware flavour, e.g. t2.medium.
We acquire the quotas from the provider’s API and then consider them during the resource offering
and matchmaking processes ensuring that the generated solution is viable and is not restricted due
to quota allocation.

5.1.4 Cost Discovery
The Cost Discovery mechanism is based on MultiCloudPricingService, Cloudiator’s internal service
class, which, as its name implies, is specially designed to collect price lists from multiple Cloud
Service Providers (CSPs). This service uses a pricing supplier factory which creates specialized
suppliers for each CSP that is being offered. Every pricing supplier needs to follow a specified
interface to hook up into the discovery mechanism, which then persists the discovered price lists
to the database. From there, pricing information can be used in other platform components through
a pricing domain repository (e.g. attaching prices to node candidates).

For the mechanism to kick in, first an object of type Cloud, which represents a specific CSP along
with details such as account credentials required to access its resources, needs to be registered. If a
particular CSP requires authorization to retrieve pricing, a pricing supplier requests the pricing
information using the appropriate authorization method. The method is specific to the CSP in
question and based on credentials provided during the registration. At the time of writing, the
Amazon Web Services (AWS) Price List Service API is being used to query for pricing information.
AWS provides a Java SDK19 to serve this purpose. AWS uses its own data format (JSON-based) for
the returned pricing information as is the case with other CSPs – everyone uses a different schema.
That is why the Cost Discovery mechanism internally translates particular CSP-specific data
schemas to a canonical data model. This model, in other words, is a generalised pricing model
employed by major CSPs. It comprises of three types of entities structured in a hierarchy. At the very
top there is PricingModel which comprises of common properties such as:

• Cloud Service Provider Name – e.g. AWS
• Instance Name – e.g. m5.xlarge
• Operating System Family/Architecture – e.g. RHEL/AMD64

19 https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pricing/package-
summary.html

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 25

• Location – e.g. eu-west-1
• Product Family – e.g. Compute Instance (bare metal)
• Tenancy – e.g. Shared
• License Model – e.g. No License required
• Currency – e.g. USD

One level below, there is PricingTermsModel, which holds a relation to PricingModel and
information about the terms of pricing of specific compute instance such as:

• Lease Contract Length – e.g. 3 years
• Purchase Option – e.g. No Upfront
• Terms Type – e.g. Reserved

The last level is occupied by PricingPriceDimensionsModel, which holds a relation to
PricingTermsModel and information about the price dimensions of specific terms of pricing such
as:

• Price Per Unit – e.g. 0.0912
• Unit – e.g. Hours
• Begin Range – e.g. 0
• End Range – e.g. Infinity
• Description – e.g. $0.861 per On Demand SUSE m3.2xlarge Instance Hour

Thanks to this approach, new pricing suppliers can be easily added to the discovery mechanism
and use the existing infrastructure (e.g. persistence services).

5.2 Other Improvements
The major part of the effort was put into supporting the use case partners and the testing team in
locating and fixing smaller issues that not only includes bug fixing, but also smaller ease of use
requirements. A total of 70 reported issues where analysed, fixed and closed.

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 26

6 Documentation
As for the prototype the main documentation resides on the ‘Cloudiator web page’20 The installation
and the usage guide were updated with the new feature set. The step-by-step tutorial was updated
with an example for an Apache Spark job and an Amazon Lambda FaaS application.

20 http://cloudiator.org/

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 27

7 Integration
As described in the prototype deliverable, Cloudiator has a fully featured integration process that
proved valuable during release testing, as bug fixes and new features could be automatically
provided to the testers and use cases. To even further increase the speed at which the changes could
be provided, we integrated Jib21 into the build process which builds optimized Docker containers for
all Cloudiator components. This not only reduced the build time significantly, but also decreased
the overhead of a running Cloudiator installation by providing more efficient containers.

In addition, a new release management was introduced. While the previously described integration
process (see D4.3 [1]) was designed to be able to respond quickly to bug fixes and thus push changes
fast to the released version, it became apparent that for use case testing a more stable release
process is required ensuring that changes are only pushed to the stable version if they previously
passed the defined test cases. For this purpose, the integration process was virtually duplicated,
providing two releases of Cloudiator: i) a nightly build directly built from the latest code and ii) a
stable build built from a separate branch. In addition, policies ensure that only code passing the test
cases is merged from the night builds to the stable version.

21 https://github.com/GoogleContainerTools/jib

http://www.melodic.cloud/d
https://github.com/GoogleContainerTools/jib

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 28

8 Summary
In this deliverable we have presented the evolution from prototype to final product for the resource
management layer of Cloudiator. First, we presented the collected feedback from the users of the
prototype and then addressed each individual feedback by either describing a new feature
addressing the feedback item or improving existing features during the maintenance task. In
parallel, we have addressed issues reported by users or the testing team.

In the follow-up deliverable D4.6, we will present the final product of the Data Processing Layer in
addition to a validation of the Resource Management Framework, which will be executed by said
layer.

http://www.melodic.cloud/d

 Deliverable reference Editor(s)
D4.4 Resource Management Framework Daniel Baur

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 731664

www.melodic.cloud 29

9 References
[1] Daniel Baur and Daniel Seybold, “D4.3 Resource Management Layer Prototype”, Melodic
Project Deliverable, Aug. 2018.

[2] D. Baur and D. Seybold, “D4.1 Provider agnostic interface definition & mapping cycle”, Melodic
Project Deliverable, Apr. 2019.

[3] D. Baur, F. Griesinger, Y. Verginadis, V. Stefanidis, and I. Patiniotakis, “A Model Driven
Engineering Approach for Flexible and Distributed Monitoring of Cross-Cloud Applications,” in 2018
IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC), Jan. 2019, pp. 31–
40.

[4] D. Baur, D. Seybold, F. Held and P. Skrzypek, “D4.5 Data Processing Layer Prototype”, Melodic
Project Deliverable, Jan. 2019.

[5] S. Schork et al., “D6.1 Evaluation Framework and Use Case Planning”, Melodic Project
Deliverable, Feb. 2018.

[6] Y. Verginadis et al., “D3.4 Workload optimisation recommendation and adaptation
enactment”, Melodic Project Deliverable, Jan. 2019.

http://www.melodic.cloud/d

	1 Introduction
	1.1 Scope of this document
	1.2 Structure of this document

	2 Feedback to the prototype
	3 Features
	3.1 Monitoring
	3.1.1 Monitoring Model
	3.1.2 Monitoring Orchestration
	3.1.3 Scaling Engine

	3.2 Bring Your Own Node (BYON)
	3.2.1 Functionality
	3.2.2 Usage

	3.3 User Interface

	4 Implementation
	4.1 License
	4.2 Main Dependencies
	4.3 Source Code Repositories

	5 Maintenance
	5.1 Updates to the previous prototype
	5.1.1 Refined Docker Interface
	5.1.2 Parallelization
	5.1.3 Matchmaking
	5.1.4 Cost Discovery

	5.2 Other Improvements

	6 Documentation
	7 Integration
	8 Summary
	9 References

