

www.melodic.cloud 1 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Title:

Workload optimisation recommendation
and adaptation enactment

Abstract:

This is a report accompanying the initial software release
of the following core components of the Melodic Upperware:
CP Generator, Metasolver, CP Solver, Utility Generator, Solver to
Deployment, Adapter and Event Management System. These
Upperware components refer to Melodic’s substantial
functionalities that enable the application optimisation
recommendation, the initial application placement and the
continuous adaptation enactment. Based on these features the
Melodic platform is able to offer timely decision-making on
optimised cross-cloud data placements and application
deployments.

Specifically, in this deliverable we provide a detailed
description concerning the approach, the business logic and
the implementation details of each of the aforementioned
components. The integration of these components constitutes
a significant part of the Melodic platform release 2.0, which is
being tested and evaluated in the following months, as part of
the project’s pilot demonstrators.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D3.4

Date:

31 January 2019

Responsible partner:

ICCS

Editor(s):

Yiannis Verginadis

Author(s):

Yiannis Verginadis, Christos
Chalaris, Ioannis Patiniotakis,
Vasilis Stefanidis, Fotis
Paraskevopoulos, Evgenia
Psarra, Babis Magoutas,
Efthimios Bothos, Evagelia
Anagnostopoulou, Kyriakos
Kritikos, Paweł Skrzypek,
Marcin Prusiński, Marta
Różańska

Approved by:

Gregoris Mentzas

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/
deliverables/D3.4 Workload
optimisation
recommendation and
adaptation enactment.pdf

http://www.melodic.cloud/
https://melodic.cloud/
http://www.melodic.cloud/%20deliverables/D3.4%20Workload%20optimisation%20recommendation%20and%20adaptation%20enactment.pdf
http://www.melodic.cloud/%20deliverables/D3.4%20Workload%20optimisation%20recommendation%20and%20adaptation%20enactment.pdf
http://www.melodic.cloud/%20deliverables/D3.4%20Workload%20optimisation%20recommendation%20and%20adaptation%20enactment.pdf
http://www.melodic.cloud/%20deliverables/D3.4%20Workload%20optimisation%20recommendation%20and%20adaptation%20enactment.pdf
http://www.melodic.cloud/%20deliverables/D3.4%20Workload%20optimisation%20recommendation%20and%20adaptation%20enactment.pdf

www.melodic.cloud 2

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Document

Period Covered M4-26

Deliverable No. D3.4

Deliverable Title Workload optimisation recommendation and adaptation enactment

Editor(s) Yiannis Verginadis

Author(s)

Yiannis Verginadis, Christos Chalaris, Ioannis Patiniotakis, Vasilis
Stefanidis, Fotis Paraskevopoulos, Evgenia Psarra, Babis Magoutas,
Efthimios Bothos, Evagelia Anagnostopoulou, Kyriakos Kritikos,
Paweł Skrzypek, Marcin Prusiński, Marta Różańska

Reviewer(s) Feroz Zahid, Gregoris Mentzas

Work Package No. 3

Work Package Title Upper ware

Lead Beneficiary ICCS

Distribution PU

Version 2.9

Draft/Final Final

Total No. of Pages 55

http://www.melodic.cloud/

www.melodic.cloud 3

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table of Contents

1 Introduction .. 6

2 CP Generator .. 8

2.1 Approach ... 8

2.2 Business Logic (Creating Constraint Problem process) ... 8

2.3 Technical Implementation ... 10

 Architecture ... 10

 Implementation ... 11

3 Metasolver .. 13

3.1 Approach ... 13

3.2 Business Logic (Metasolver Processes) .. 14

3.3 Technical Implementation ... 18

 Architecture ... 18

 Implementation .. 19

4 CP Solver .. 22

4.1 Approach ... 22

4.2 Business Logic ... 22

4.3 Technical Implementation ...24

 Architecture ...24

 Implementation .. 25

5 Utility Generator ... 27

5.1 Approach ... 27

5.2 Business Logic (Utility Generator Processes) ... 27

5.3 Technical Implementation ... 29

 Architecture ... 29

 Implementation .. 30

6 Solver to Deployment ... 32

6.1 Approach ... 32

6.2 Business Logic (Apply Solution process) .. 32

6.3 Technical Implementation ... 33

http://www.melodic.cloud/

www.melodic.cloud 4

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Architecture ... 33

 Implementation .. 34

7 Adapter ... 36

7.1 Approach ... 36

7.2 Business Logic (Application Deployment process) .. 36

7.3 Technical Implementation ... 38

 Architecture ... 38

 Implementation .. 39

8 Event Management System ... 41

8.1 Approach ... 41

 Event Processing Network ...42

8.2 Business Logic .. 44

8.3 Technical Implementation ...48

 Architecture of EPM (EMS server) ..48

 Architecture of EPA ... 49

 Implementation .. 50

9 Conclusions .. 54

References ... 55

http://www.melodic.cloud/

www.melodic.cloud 5

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

List of Tables

Table 1: Functionality to Process mapping ... 14

Table 2: Sub-component to Process mapping .. 19

List of Figures

Figure 1. Overview of the Upperware Components ... 6

Figure 2. Generate Constraint Problem BPMN process ... 10

Figure 3. CP Generator Component diagram .. 11

Figure 4. CP Generator Class diagram .. 12

Figure 5. Solver Selection BPMN process .. 15

Figure 6. Metric Value Update BPMN process ... 15

Figure 7. Solution Evaluation BPMN process ... 16

Figure 8. Solution Deployment Notification BPMN process .. 17

Figure 9. Event Subscriptions Configuration BPMN process .. 17

Figure 10. Event Subscriptions Configuration BPMN process .. 18

Figure 11. Metasolver Component diagram .. 18

Figure 12. Metasolver Class diagram ... 20

Figure 13. The overall CP solving process ... 23

Figure 14. The optimal solution computation sub-process ..24

Figure 15. CP Solver component diagram .. 25

Figure 16. Class diagram for the CP Solver component ... 26

Figure 17. Creating of the Utility Generator Application object sub-process .. 28

Figure 18. Utility Generator’s Solution Evaluation sub-process ... 28

Figure 19. Utility Generator Component diagram .. 29

Figure 20. Utility Generator Class diagram ... 30

Figure 21. Apply Solution BPMN process ... 33

Figure 22. Solver to Deployment Component diagram .. 33

Figure 23. Solver to Deployment Class diagram ... 35

Figure 24. Application Deployment BPMN process .. 37

Figure 25. Adapter Component diagram .. 38

Figure 26. Adapter Class diagram .. 40

Figure 27. New CAMEL Model BPMN process ... 45

Figure 28. New Solution BPMN process ...46

Figure 29. EPA BPMN process ..47

Figure 30. New Event Processing BPMN process ...47

Figure 31. EPM (EMS server) Component diagram ..48

Figure 32. EPA Component diagram ... 50

Figure 33. EMS Class diagram .. 52

http://www.melodic.cloud/

www.melodic.cloud 6

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1 Introduction

This document is intended for the general audience interested in learning about the core
components of the Melodic Upperware. Parts of the document require a high-level understanding
of the Cloud technologies and the Melodic platform, for which readers are referred to [1].

Specifically, in this deliverable, we discuss the approach, the design and the implementation of a
number of core components of the MELODIC platform, which are mainly related to the application
optimisation recommendation, initial application placement and continuous adaptation
enactment. Essentially, we are referring to the majority of the Upperware components as defined
in [1] and depicted in Figure 1, with the exception of the Data Lifecycle Management (DLMS)
component which has been presented in its separate deliverables [2], [3] and the LA Solver which
is currently under finalization and it is scheduled to be reported in terms of the D3.5 deliverable.

Figure 1. Overview of the Upperware Components

As depicted in Figure 1, the Upperware comprises a number of software components that
encapsulate all the necessary functionality for making timely decisions on appropriate cross-
cloud data placements and application deployments. Specifically, in this deliverable, we present
the design and implementation details of the following components:

 CP Generator – for generating a formal Constraint Problem (CP) out of a set of a cloud
application placement requirements

http://www.melodic.cloud/

www.melodic.cloud 7

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Metasolver – for coordinating and supporting the CP solving process and deciding when
reconfigurations are required

 CP Solver - for finding, in a stateless manner, optimal cross-cloud resources allocation and
application placement according to a set of pre-defined requirements captured as a CP

 Utility Generator – for calculating the utility function value for the deployment solutions
proposed by the optimisation solver configuration

 Solver to Deployment – for instantiating the deployment models according to an accepted
CP solution in order to allow the deployment process to continue

 Adapter – for creating the target application configuration to be deployed into cross-cloud
resources and relaying appropriate instructions to the Cloudiator [4]

 Event Management System – for collecting, processing and delivering monitoring
information pertaining to a cross-cloud application, deployed and maintained by the
Melodic platform

Each of these Upperware components are discussed in separate chapters of this deliverable by
presenting the core aspects of the approach considered for each of them, along with their business
logic and technical implementation details.

http://www.melodic.cloud/

www.melodic.cloud 8

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2 CP Generator

Mission: Create Constraint Problem (CP) to be solved by any of the Solvers.

Positioning in Melodic: CP Generator is one of the microservices comprising the UpperWare of
the Melodic platform.

2.1 Approach

High-level Approach: The CP Generator is responsible for creating the Constraint Problem (CP)
Model based on the provided CAMEL Model and a set of Node Candidates fetched from Cloudiator
according to the hard requirements described in CAMEL.

Functionalities:

 Creating hard requirements in order to fetch matching Node Candidates from Cloudiator
 Storing fetched Node Candidates in Cache for further use
 Creating Constraint Problem based on requirements from CAMEL Model and border values

of corresponding fields of Node Candidates
 Storing Constraint Problem Model to CDO
 Sending Success or Failure Notification in case of any errors

 Input:

 CAMEL model
 Node Candidates fetched from Cloudiator

 Output:

 Constraint Problem Model stored in CDO
 Node Candidates stored in Cache
 Notification sent to the control process

2.2 Business Logic (Creating Constraint Problem process)

First of all, the CAMEL Model is loaded from CDO. Then the Software Components are retrieved from
the first Deployment Model and based on them and their requirements, the node candidates (i.e. a set
of acceptable resources available) are fetched from Cloudiator separately for each component, grouped
by provider name. In this form all the received node candidates are stored in cache. The following
requirements are considered when looking for a new set of node candidates:

http://www.melodic.cloud/

www.melodic.cloud 9

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Resource Requirements
o RAM min, RAM max
o Cores min, Cores max
o Disk min, Disk max
o CPU min, CPU max

 Location Requirement
 Image Requirement
 OS Requirement
 Provider Requirement
 Node Type Requirement (IAAS, Function as a Service (FAAS))

After all node candidates have been successfully fetched, the generation of the CP Model is
started. For each Software Component defined in CAMEL, the CP Model is filled with "hard"
variables and their restrictions, as follows:

 Required Variables
o Variable of type CARDINALITY calculated based on Horizontal Scale Requirement

or default values are set if missing (0 as a minimum number of instances, 100 as a
maximum number of instances)

o Variable of type PROVIDER calculated based on previously loaded Node Candidates
for the actual component

 Optional variables (these variables are calculated only if there is an attribute annotated by
special annotation, indicating that this variable should be created). All these variables are
created not only for each Software Component, but also for each Provider from the
corresponding Node Candidate set. Each variable is prefixed with a function (Provider, 1)=1
<=> (Provider==1) which ensures that one and only one constraint for each variable type
will be fulfilled.

o Variable of type CORES with domain calculated based on Node Candidate hardware
→ cores field

o Variable of type RAM with domain calculated based on Node Candidate hardware
→ ram field

o Variable of type STORAGE with domain calculated based on Node Candidate
hardware → disk field

After that, the CP Model is enriched with Metrics created on the CAMEL Model:

 Raw Metrics
 Composite Metrics
 Traditional Attributes - variables which are both part of current configuration and

marked with annotation from "hard requirement" group.

http://www.melodic.cloud/

www.melodic.cloud 10

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Last, the Constraints are created based on Metric Variable Constraints from the CAMEL’s
Constraint Model. This step completes the generation of the CP model. After that, the CP Model is
stored in CDO and a successful notification is sent back to the control process in order to allow
for the flow to be passed to the next component (Figure 2).

 Figure 2. Generate Constraint Problem BPMN process

2.3 Technical Implementation

 Architecture

As shown in Figure 3, the CP Generator comprises the following sub-components:

 Controller - provides the REST API of the CP Generator for receiving process calls from the
control layer

 Generator Orchestrator - orchestrates the creation of a new Constraint Problem
 CDO Service - retrieves the CAMEL Model from the Models repository and stores the

created CP Model to the Models Repository
 New Constraint Problem Service - creates a new Constraint Problem based on information

from CAMEL and the fetched Node Candidates
 Notification Service - notifies the control process
 Cloudiator Service - fetches the Node Candidates fulfilling the requirements
 Cache Service - creates a Melodic cache with a map of fetched Node Candidates for each

component

http://www.melodic.cloud/

www.melodic.cloud 11

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 3. CP Generator Component diagram

 Implementation

The CP Generator has been written in Java 8. The project is built using Maven and thanks to the
Maven plugin1, a Docker image is created which allows running this component as a separate
microservice.

The following packages are involved in the implementation of the CP Generator:

upperware.profiler.generator: this package is responsible for correctly running the CP Generator
as a Spring Boot application.

upperware.profiler.generator.communication: this package is responsible for the communication
with external systems (i.e. CDO, Cloudiator).

upperware.profiler.generator.error: this package is responsible for handling errors dedicated to CP
Generator.

upperware.profiler.generator.notification: this package is responsible for sending back
notifications.

1 com.spotify:docker-maven-plugin

http://www.melodic.cloud/

www.melodic.cloud 12

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

upperware.profiler.generator.orchestrator: this package is responsible for orchestrating requests
and synchronizing all the involved internal operations.

upperware.profiler.generator.properties: this package is responsible for handling external
properties.

upperware.profiler.generator.result: this package is responsible for creating notifications.

upperware.profiler.generator.service.CAMEL: this package is responsible for dealing with the
CAMEL Model and CP Model.

upperware.profiler.generator.service.CAMEL.creator: this package is responsible for generating
Constraint Problem variables.

upperware.profiler.generator.service.CAMEL.parser: this package is responsible for parsing the
utility expression.

Figure 4. CP Generator Class diagram

The CP Generator’s source code is available in Bitbucket at:
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/cp_generator

Dependencies: CDO Client, Melodic cache, Cloudiator Client, MathParser, Spring-boot framework,
JWT commons, Melodic commons

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/cp_generator

www.melodic.cloud 13

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3 Metasolver

Mission: Coordinate and support the Constraint Problem (CP) solving process.

Positioning in Melodic: Metasolver is one of the microservices comprising the UpperWare of the
Melodic platform.

3.1 Approach

High-level Approach: The Metasolver undertakes the task of selecting an appropriate solver for a
given CP problem and subsequently verify that the solution yielded by this solver is significantly
better than the currently deployed one. A configurable threshold is used for defining how much
better the new solution should be in order to be deployed.

Functionalities:

 Select a solver given a CP model.
 In case an initial placement has already been realized, update the CP model with the most

current metrics values from the application monitoring infrastructure (EMS – see also
chapter 8), as well as with the most recently deployed solution (i.e. description of
application deployment topology) from the Adapter (see also chapter 7).

 Evaluate a given CP solution, provided by the selected solver and accept or reject it, by
comparing it to the currently implemented solution (if any). This comparison is based on
the utility values of the two solutions.

 Receive events signalling SLO violations from the application monitoring infrastructure
(EMS) and trigger a new reconfiguration process.

Input:

 CP model
 Monitoring information in the form of metric values from events relayed through EMS
 Reconfiguration Events, signalling SLO violations

Output:

 Solver selected for solving a given CP problem
 Acceptance or Rejection of a new solution (yielded by a solver)
 Signal the start of a new reconfiguration process (in case the new solution is better than

the current one)

http://www.melodic.cloud/

www.melodic.cloud 14

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3.2 Business Logic (Metasolver Processes)

The aforementioned functionalities are mapped onto concrete processes as indicated in the
following Table 1.

Table 1: Functionality to Process mapping

Process
Functionality

Solver
Selection

Solution
Evaluation

Solution
Deployment
Notification

Event
Subscription

Configuration

Metric
Value

Update

Application
Reconfigu-

ration

Select solver

Evaluate CP solution

Update CP model

Trigger application
reconfiguration

The Event Subscription Configuration and Solution Deployment Notification processes do not
directly fulfil any individual functionality, but they facilitate other processes to achieve their
objectives. The objectives facilitated and indirectly achieved, are marked with an asterisk ().
Specifically, the former process enables Metasolver receiving events from EMS, while the latter
updates the CP model when a new solution gets deployed (i.e. it becomes the new current
solution).

Below we discuss the details of each of the processes mentioned in Table 1 while depicting the
tasks involved as a set of UML BPMN diagrams.

Solver Selection process

Upon request by the Upperware control process, the Metasolver selects a suitable solver for
solving the application Constraint Programming (CP) problem, captured as a CP model.
Specifically, as depicted in Figure 5, it:

 Retrieves the application CP model, generated by the CP generator service of Upperware.
 Updates the metrics (in the retrieved CP model) with the most recent values from the in-

memory Metric Value Registry.
 Notifies EMS about the metric value updates in the CP model.
 Selects a stateless solver in order to solve the CP problem and notifies the Upperware

Control process. Currently only “CP solver” is considered.

http://www.melodic.cloud/

www.melodic.cloud 15

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 5. Solver Selection BPMN process

Metric Value Update process

When Metric Value events are received from the Event Broker, Metasolver extracts the
corresponding metric name and value, and stores them in an in-memory Metric Value Registry,
updating any previous value (Figure 6).

Figure 6. Metric Value Update BPMN process

Solution Evaluation process

Upon request by the Upperware control process, Metasolver evaluates a given CP solution,
captured in a CP model (by the selected Solver), and indicates whether it should be realized as the
new application VM deployment topology or not (i.e. accept or reject it). This resolution is based
on the comparison of the utility value of the calculated (new) solution to the utility value of the
currently deployed solution. In order to prevent “frequent” application reconfigurations,
Metasolver requires that a new solution must have a utility value better (higher) than the utility
value of the currently deployed solution by at least a preconfigured percentage (e.g. 10% or better).
Obviously, during the application’s first deployment there will be no previously deployed solution
and therefore any new solution provided by the Solver will be accepted.

http://www.melodic.cloud/

www.melodic.cloud 16

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The exact steps taken during the new solution evaluation are depicted in Figure 7 and specified
next:

 Acquires the application CP model from Models Repository, and extracts the new CP
solution, as well as the currently deployed one.

 Compares the two solutions in terms of their utility values.
 If the new solution is significantly better than the current one, or if there is no current

solution, then:
o The Upperware Control process is notified to continue with the deployment of the

new solution, thus realizing the application deployment reconfiguration,

Otherwise, the Upperware Control process is notified about the rejection of the new
solution.

Figure 7. Solution Evaluation BPMN process

Solution Deployment Notification process

Upon notification by the Upperware control process, Metasolver updates the CP model with the
most recently deployed solution. Thus, the newly deployed solution is marked as the current
solution in CP model. Specifically, as depicted in Figure 8, it:

 Retrieves the application CP model, which contains the deployed solution.
 Marks the deployed solution as current and stores the updated CP model back in the

Models Repository.

http://www.melodic.cloud/

www.melodic.cloud 17

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 8. Solution Deployment Notification BPMN process

Event Subscriptions Configuration process

Upon request by EMS, Metasolver receives a new event subscription configuration and applies it.
Specifically, as depicted in Figure 9, it:

 Receives a new configuration (by EMS) regarding the event topics it must subscribe to. This
configuration also indicates the event broker where each topic has been registered to, as
well as whether each event topic provides Metric Value events or SLO violation events.
Specifically, two types of events are considered:

o Metric Value events, which convey the most recent / updated values of certain
metrics, based on the measurements of sensors in VMs hosting application
components;

o SLO violation events, which signal that the application deployment topology needs
to be reconfigured. For instance, when an SLO has been violated the application
must be reconfigured in order to cope with this violation.

 Unsubscribes from any old event topics that it has previously been subscribed to.
 Subscribes to the configured new event topics and starts receiving relevant events.

Figure 9. Event Subscriptions Configuration BPMN process

http://www.melodic.cloud/

www.melodic.cloud 18

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Application Reconfiguration process

As shown in Figure 10, when SLO violation events are received from the Event Broker, Metasolver
notifies the Upperware Control process to start a new iteration of application reconfiguration (i.e.
to start solving the Constraint Problem from the top).

Figure 10. Event Subscriptions Configuration BPMN process

3.3 Technical Implementation

In this subsection, all the technical details on the Metasolver implementation are discussed (e.g.
language, frameworks, 3rd party libraries, code structure etc.).

 Architecture

A high-level depiction of the Metasolver architecture is given through the following UML
component diagram (Figure 11).

Figure 11. Metasolver Component diagram

http://www.melodic.cloud/

www.melodic.cloud 19

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

As shown in Figure 11, the Metasolver comprises the following sub-components:

 REST Controller: provides the REST API of the Metasolver for receiving process calls from
the control layer (see [5] for more details)

 Coordinator: orchestrates the functioning of the whole component.
 Event Subscription Management: subscribes to the configured event topics registered in

the Event Broker of EMS. It is also responsible for unsubscribing when the configuration
changes or when Metasolver shuts down. It uses the Broker Client library provided by EMS
in order to communicate with Event Broker and receive events.

 Metric Value Registry: maintains an in-memory catalogue of metric values. The values are
extracted from the corresponding events, received from the Event Broker. When the
Metasolver is requested to select a solver (for application reconfiguration), it first updates
the corresponding CP model with the most recent metric values.

The Metasolver internally uses an instance of the CDO client in order to communicate with the
Upperware Models Repository and retrieve or modify the application CP model. Moreover, it uses
an instance of the Broker Client in order to communicate with Event Broker of EMS and subscribe
to event topics for receiving events. Both CDO and Broker clients are imported as dependencies
from other Melodic-platform modules, namely CDO client and Broker Utils of EMS.

The following Table 2 indicates the Metasolver sub-components involved in each process.

Table 2: Sub-component to Process mapping

Process

Sub-component

Solver
Selection

Solution
Evaluation

Solution
Deployment
Notification

Event
Subscription

Configuration

Metric
Value

Update

Application
Reconfigu-

ration

REST API Controller

Coordinator

Event Subscription Mgmt.

Metric Value Registry

CDO client (external)

Broker client (external)

 Implementation

Metasolver has been implemented using the Java programming language, version 8. It has been
developed as a Spring-boot application for making its maintenance quite straightforward. It is
built and bundled, using the well-known Maven system, into a single fat JAR, containing

http://www.melodic.cloud/

www.melodic.cloud 20

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Metasolver classes and dependencies. It is also bundled (during its building with Maven) as a
Docker container and subsequently been added in the Melodic-platform component swarm.

In Figure 12, we provide further implementation details, using a UML class diagram.

Figure 12. Metasolver Class diagram

The main classes of the Metasolver code are depicted in Figure 12 and briefly presented next. Only
the most important of their methods and fields are explained and depicted.

MetasolverController: This class corresponds to the REST API Controller sub-component and it is
the “entry point” for the functionality of Metasolver. Its mission is to accept REST calls from the
Control process or EMS and extract the information relevant to the Metasolver. Subsequently this
information is passed to the Coordinator sub-component to carry out the actual processing. For
this purpose the MetasolverController class has a reference to Coordinator through the field
“coordinator”. Moreover, it offers four public methods that implement the REST API endpoints;
namely selectSolver(), solutionEvaluation(), updateSolution() and updateSubscriptions().

Coordinator: This class corresponds to the Coordinator sub-component and is responsible for
performing the processing requested through REST API Controller. For this purpose, it calls other
classes and combine their results. It offers five methods to MetasolverController; namely
selectSolver(), setMetricValuesInCpModel(), evaluateSolution(), updateSolutionIdsInCpModel()

http://www.melodic.cloud/

www.melodic.cloud 21

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

and updateSubscriptions(). Coordinator is also responsible to notify the Control process of
Upperware to start a new reconfiguration iteration when an SLO violation event is received (see
MetricValueListener below).

MetricValueRegistry: This class implements an in-memory catalogue containing the latest values
of the monitored metric events. Its values are updated with the reception of a new event. It
includes a HashMap field called “registry,” which provides the actual catalogue. The metric value
(extracted from events) are stored along with a timestamp. For this reason, the inner class
“MetricValue” is defined. Therefore, “registry” stores pairs of Metric names and MetricValue
instances.

MetricValueMonitorBean: It implements the Event Subscription Management sub-component. It
retains references to the Coordinator sub-component, to MetricValueRegistry and an internal
connection cache. It provides methods to subscribe to and unsubscribe from topics in the event
broker. For each subscription, it retains the relevant connection information as an instance of
ConnectionConf in the internal connectionCache. The ConnectionConf instances contain
information like the address of the corresponding event broker and the sessions opened to it.

MetricValueListener: It is also part of the Event Subscription Management sub-component. An
instance of this class is created for every subscription and is responsible for receiving events from
EMS Event Broker, extracting their values and updating the MetricValueRegistry. In case of SLO
violation events it notifies Coordinator.

CpModelHelper: It is an auxiliary class that provides methods for accessing and updating a
specified CP model. It offers the following methods; updateCpModelWithMetricValues(),
getSolutionUtilities(), findAndSetCandidateSolutionIdInCpModel() and
updateSolutionIdsInCpModel().

Metasolver’s source code is available in Bitbucket at:
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/meta_solver?at=refs%2Fhead
s%2FRC2.0

Dependencies: Broker-Client library, CDO client, Spring-boot framework

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/meta_solver?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/meta_solver?at=refs%2Fheads%2FRC2.0

www.melodic.cloud 22

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4 CP Solver

Mission: Solve a CP model after it has been generated by the CP Generator or updated by the
Metasolver, in cooperation with the Utility Generator.

Positioning in Melodic: The CP Solver, part of the Upperware module, is available in a micro-
service form.

4.1 Approach

High-Level approach: The CP Solver is one of the solvers available in the Melodic platform utilised
for solving a CP model. Such a solver can be used both for performing initial application
deployment reasoning as well as application redeployment reasoning. Once the CP model is
received, it is transformed into an internal representation which is fed into the CP solving engine.
During CP model solving, the CP Solver cooperates with the Utility Generator in order to compute
the utility of the currently examined candidate solution. Once the CP model solution is produced,
it is incarnated inside the CP model in a certain specialised part.

Functionalities:

 Solves a CP model
 Cooperates with the Utility Generator during the CP model solving
 Registers the discovered solution within the CP model manipulated

Input:

 CP Model (path to that model within the CDO Model Repository)

Output:

 CP Model enhanced with the solution computed

4.2 Business Logic

The aforementioned functionalities are mapped to a single process, the CP model solving
process, which is depicted in Figure 13. This process performs the following steps:

1. Get CP Model based on its (CDO) Model Repository path given as input
2. Transform the CP model into internal representation of the constraint problem based on

the current CP solving engine exploited (Choco solver2). This internal representation

2 www.choco-solver.org

http://www.melodic.cloud/
http://www.choco-solver.org/

www.melodic.cloud 23

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

concerns an in-memory Java object that represents the constraint problem which
contains other solver-specific elements (like constants, constraints and variables).

3. If the problem is infeasible then notify solution infeasibility.
4. Compute optimal solution

a. Compute first candidate solution. If the problem is infeasible, notify:
b. Otherwise:

i. invoke Utility Generator to produce the current candidate solution’s utility
ii. Get next candidate solution (by also updating the CP model to include an

additional constraint indicating that the utility should be greater than that
found for current candidate solution)

1. if no new solution is found, then previous solution is optimal. It is
written back to (CDO) Models Repository and a respective notification
is produced

2. else go to 3.b.i

The above process, as depicted in Figure 13, incorporates a sub-process named Compute Optimal
Solution, which is depicted in Figure 14. This sub-process maps to part 4 in the above description.

Figure 13. The overall CP solving process

http://www.melodic.cloud/

www.melodic.cloud 24

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 14. The optimal solution computation sub-process

4.3 Technical Implementation

In this subsection, the technical details of the CP Solver’s implementation are discussed.

 Architecture

The internal architecture of the CP Solver is shown in the component diagram of Figure 15. As it
can be seen, this component comprises the following three sub-components:

 CP Solver: this sub-component is responsible for computing the optimal solution to a CP
model and storing that solution, if it exists (i.e., the problem is feasible), in the (CDO) Models
Repository. The whole functionality is encapsulated in the form of a single method called
solve that takes no input parameter (as all relative parameters are given as input to this
sub-component/class constructor) and returns as a result a boolean parameter indicating
whether an optimal solution has been produced or not (i.e. if the problem is infeasible).

 CP Solver Executor: this sub-component is responsible for manipulating the CP Solver
component (i.e., utilise it to compute the optimal solution) and notify back the (successful
or unsuccessful) result produced. This whole functionality is encapsulated in the form of
one method called generateCPSolution. This method does not return any result and takes

http://www.melodic.cloud/

www.melodic.cloud 25

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

as input the parameters relevant for the CP model solving (such as the application ID, the
path to the CDO Models Repository where the CP model is situated and the callback URI
(part) for the notification).

 REST Controller: this sub-component encapsulates the solving process interface
(comprising one core method called applySolution) in the form of a REST service. The sole
method realised does not return any result and takes as input a
ConstraintProblemSolutionRequestImpl object which encapsulates contextual
information from the call that is then applied over the sole CP Solver Executor sub-
component’s method in the form of its input parameters (see above description).

Figure 15. CP Solver component diagram

 Implementation

The CP Solver, having its class diagram depicted in Figure 16, has been implemented in Java as a
Spring-boot application. It can be built and bundled via Maven in a form of either a fat JAR file or
a Docker image. The latter form facilitates its integration into the Melodic’s platform swarm.

Internally, the CP Solver exploits the Choco Constraint Programming solving engine as well as
the CDOClient in order to retrieve a CP model for solving, plus writing back to it, the respective
solution found. In addition, the Utility Generator is utilised for computing the utility of candidate
solutions.

The respective classes of the CP Solver code more or less map to the sub-components introduced
above while they mainly offer just one method each, which has already been explicated.

http://www.melodic.cloud/

www.melodic.cloud 26

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 16. Class diagram for the CP Solver component

The CP Solver’s source code is available in Melodic’s bitbucket at:
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/cp_solver?at=RC2.0

Dependencies: CDOClient, Utility Generator, Spring-boot framework, Choco solver

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/cp_solver?at=RC2.0

www.melodic.cloud 27

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5 Utility Generator

Mission: Calculating the utility function value for a configuration proposed by an Upperware
solver.

Positioning in Melodic: The Utility Generator is a library responsible for evaluating each solution
found by Upperware solvers of the Melodic platform.

5.1 Approach

High-level Approach: The Utility Generator class is instantiated for each reasoning separately.
The Utility Generator exposes the method to evaluate the proposed solution.

Functionalities:

 Calculating the utility function value for the proposed by a solver solution/configuration

Input:

 Constraint Problem model
 CAMEL model
 Current measurements (metric values)
 Cache with Node Candidates

Output:

 Utility function value

5.2 Business Logic (Utility Generator Processes)

Creating of the Utility Generator Application object

Upon creating the Utility Generator Application object, the Utility Generator extracts the
Constraint Problem Model to get variables, constants, and metric values. The exact steps taken
during the creation of the Utility Generator object are specified next and depicted in Figure 17:

 Acquires the application CAMEL model from Models Repository, and extracts the Metric
Model

 Acquires the application CP model from Models Repository
 Extracts from the CP model variables and metric values
 Extracts from the Metric Model the utility function formula and all objects used in this

formula, like Node Candidates attributes, DLMS Utility attributes, metrics, variables, and
values of the currently deployed configuration

http://www.melodic.cloud/

www.melodic.cloud 28

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 If the optimization requirement and hence the utility function formula does not exist in
the CAMEL Model, it creates the default formula which optimizes the cost

Figure 17. Creating of the Utility Generator Application object sub-process

Solution Evaluation process

Upon invocation by a solver based on a new proposed solution, the Utility Generator transforms
it into a configuration for evaluation. This is done by selecting the cheapest one from the available
Node Candidates, while fulfilling the criteria from the proposed solution. If one of the DLMS utility
attributes is used in the utility function formula, the Utility Generator invokes the DLMS Utility
library to get the DLMS Utility. Then, it collects all values used in the utility function formula,
calculates the value of the utility function formula, and returns this value as a result.

Specifically the following tasks, depicted in Figure 18, are involved in this solution evaluation
process each time a solver suggests a possible configuration:

 Maps the solution to the Node Candidates configuration
 If no Node Candidate fulfils these criteria, returns 0.0 as the utility value
 Invokes the DLMS Utility library to get the DLMS Utility if needed (used in the utility

function formula)
 Gets the Node Candidates attributes used in the utility function formula
 Converts all needed values to arguments of the utility function
 Calculates the utility function value and returns this value to the solver

Figure 18. Utility Generator’s Solution Evaluation sub-process

http://www.melodic.cloud/

www.melodic.cloud 29

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5.3 Technical Implementation

 Architecture

Figure 19. Utility Generator Component diagram

In Figure 19, the architecture of the Utility Generator is depicted which comprise the following
main components:

 Evaluator: the main module of the Utility Generator library, responsible for getting Node
Candidates, collecting arguments and invoking the Utility Function Evaluator to get the
utility function value

 Utility Function Evaluator: the module, which uses the MathParser library, responsible for
calculating the utility function formula

 CDO Service: the module responsible for retrieving CAMEL and CP models from the Models
repository (CDO)

 DLMS Utility Service: the module responsible for calling the DLMSUtility library to get the
DLMS utility and converting the DLMS utility object to the arguments needed by the Utility
Function Evaluator module

http://www.melodic.cloud/

www.melodic.cloud 30

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Metrics Converter: the module responsible for converting metrics to the arguments needed
by the Utility Function Evaluator

 Variables Converter: the module responsible for converting solution variables values to the
arguments needed by the Utility Function Evaluator

 Node Candidates Service: the module responsible for converting from the configuration
with Node Candidates attributes used in the utility function formula to the arguments
needed by the Utility Function Evaluator

 Implementation

The Utility Generator has been implemented using the Java programming language, version 8. It
has been developed as a Java library. Its main classes are depicted in Figure 20. Only the most
important methods and fields are depicted, and then explained below the figure.

Figure 20. Utility Generator Class diagram

UtilityGeneratorApplication - The main class of the library. It is created by the solvers and invoked
for evaluating the solution.

UtilityFunctionEvaluator - This class is responsible for coordinating the whole process of
calculating the utility function value. It offers one method: evaluate(Collection<VariableValue>)
and it includes a list of components which cannot be moved, currently deployed configuration,
utility function and list of ArgumentConverters.

http://www.melodic.cloud/

www.melodic.cloud 31

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

UtilityFunction- This class represents the actual utility function. It offers methods to get the utility
function formula and method for evaluating the utility function.

ConfigurationElement- This type is used to represent the deployment configuration.

FromCamelModelExtractor -This class offers methods to get the needed elements, like attributes
of Node Candidates, DLMS Utility Attributes, current-config attributes of Node Candidates, and
utility function formula from the CAMEL Model.

ConstraintProblemExtractor - This class offers methods to get variables, metrics, and actual
configuration from the Constraint Problem.

ArgumentConverter - This is an abstract class with one abstract method: convertToArguments. It
is used for converting the proposed configuration to the arguments of the utility function.

NodeCandidatesConverter - This class implements the ArgumentConverter. It converts the
proposed configuration to the values of node candidates attributes needed by the Utility Function
Evaluator.

VariableConverter - This class implements the ArgumentConverter. It is responsible for
converting solution variables values to the arguments needed by the Utility Function Evaluator.

MetricsConverter - This class implements the ArgumentConverter. It is responsible for converting
metrics to the arguments needed by the Utility Function Evaluator.

DlmsConverter - This class implements the ArgumentConverter. It uses the DLMSUtilityService
to get the DLMS utility value and converts solution to the arguments needed by the Utility
Function Evaluator

DLMSUtilityService - This class offers the method: getDlmsUtility which invokes the DlmsUtility
library to get the DLMS utility value.

CdoService - This class offers the methods getCamelCAMELModel and getConstraintProblem
from the Models repository.

The Utility Generator’s source code is available in Bitbucket at:
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/utility-
generator?at=refs%2Fheads%2FRC2.0

Dependencies: CDO Client, Melodic cache, Cloudiator Client, DLMS Utility, MathParser, Melodic
commons

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/utility-generator?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/utility-generator?at=refs%2Fheads%2FRC2.0

www.melodic.cloud 32

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6 Solver to Deployment

Mission: Creating Deployment Instance Model from the Constraint Problem solution for
deployment process.

Positioning in Melodic: Solver to Deployment is one of the microservices comprising the
UpperWare of the Melodic platform.

6.1 Approach

High-level Approach: Solver to Deployment is responsible for transforming the solution of
Constraint Problem to the Deployment Instance CAMEL Model.

Functionalities:

 Creating the Deployment Instance Model from the solution of the Constraint Problem
 Storing the CAMEL Model with Deployment Instance Model to the CDO repository
 Sending success or failure notification

Input:

 CAMEL Deployment Model
 Constraint Problem solution

Output:

 CAMEL Deployment Instance Model stored in the CDO repository, which contains
information about:

o Software Components - components of deployed application,
o Communications - communication between application's components,
o Geographical Regions - distribution of application's components.

6.2 Business Logic (Apply Solution process)

Solver to Deployment exposes the REST API that can be invoked by the Upperware control process
whenever there is a new solution accepted by the Metasolver that should be deployed. The
incoming message contains information about the application id and the Constraint Problem id.
Upon request by the Upperware control process, Solver to Deployment retrieves the CAMEL Model
and the CP Model from the CDO repository. Then, it gets the cheapest Node Candidate fulfilling
the criteria from the Constraint Problem solution for each software component. It prepares the
new software component instances using the information from the chosen Node Candidate.

http://www.melodic.cloud/

www.melodic.cloud 33

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Then, it prepares all new communication instances and new geographical regions (if needed) and
registers them in a new Deployment Instance Model in the CDO repository. The process is
depicted in Figure 21.

Figure 21. Apply Solution BPMN process

6.3 Technical Implementation

 Architecture

Figure 22. Solver to Deployment Component diagram

In Figure 22, the architecture of the Solver to Deployment is depicted which comprise the following
main components:

 Controller: module, which providers the REST API of Solver to Deployment

http://www.melodic.cloud/

www.melodic.cloud 34

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Solver to Deployment: module responsible for managing the process of instantiating the
accepted solution

 CDO Database Proxy: module responsible for communicating with CDO
 Provider Enricher Service: module, which enriches information about application's

components (i.e. Software Components) by adding data from Node Candidates

 Implementation

Solver to Deployment has been implemented using the Java programming language, version 8. It
has been developed as a Spring-boot application for making its maintenance predictable. It is built
and bundled, using the well-known Maven system, into a single fat JAR, containing Solver to
Deployment classes and dependencies. It is also bundled (during its building with Maven) as a
Docker container and subsequently been added in the Melodic platform component swarm.

The components of Solver to Deployment comprise the following corresponding classes, also
depicted in Figure 23:

SolverToDeploymentController: collects requests about deploying a new solution and relays them
to the SolverToDeployment class for further analysis.

SolverToDeployment: It analyses requests about deploying a new solution from the
SolverToDeploymentController class and manages the process of creating the CAMEL
Deployment Instance Model, involving the following steps:

 Retrieve the CAMEL Model and Constraint Problem from CDO
 Save a new empty Deployment Instance Model in CDO
 For each application's component, compute data concerning the Deployment Instance

Model such as information about:
o communications
o software components (by adding additional data from Node Candidates, using the

Provider Enricher Service)
o geographical regions

 Update the Deployment Instance Model in CDO
 sending notification about result

CDODatabaseProxy: It saves and updates the Deployment Instance Model in CDO.

http://www.melodic.cloud/

www.melodic.cloud 35

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

ProviderEnricherServiceImpl: It analyses information from Node Candidates and creates from
them the necessary attributes, which are required by each Software Component.

Figure 23. Solver to Deployment Class diagram

Solver to Deployment’ source code is available in Bitbucket at:
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/solver_to_deployment?at=ref
s%2Fheads%2FRC2.0

Dependencies: Melodic Commons, CDO client, Memcache, JWT Commons, Spring-boot
framework

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/solver_to_deployment?at=refs%252Fheads%252FRC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/solver_to_deployment?at=refs%252Fheads%252FRC2.0

www.melodic.cloud 36

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

7 Adapter

Mission: Create target application configuration to be deployed into cross-cloud resources.

Positioning in Melodic: Adapter is one of the microservices comprising the UpperWare of the
Melodic platform.

7.1 Approach

High-level Approach: Adapter is responsible for preparing a complete plan of application
reconfiguration for an accepted (by the Metasolver) new deployment. The plan includes a series
of tasks to be sent for execution to the Cloudiator, following a specific order. To fulfill this
requirement, a graph structure is maintained internally by the Adapter to reflect the application
structure along with the dependencies among tasks.

Functionalities:

 Analyse and verify the new CAMEL deployment model
 Compute the difference between a currently running application (topology) and the new

proposed solution given by the solver
 Producing the reconfiguration plan
 Validate the plan
 Apply the plan to the running system by calling the Cloudiator REST API

Input:

 CAMEL Deployment Model

 Output:

 Series of action tasks instructions for execution by the Cloudiator in correct and efficient
order

 Notification of successful/unsuccessful deployment for the control layer

7.2 Business Logic (Application Deployment process)

The Adapter exposes a REST API that can be invoked by the Melodic control process whenever
there is a new Deployment Model prepared by the Solver to Deployment. The incoming message
contains information about the application ID that is being (re)deployed and indicates where the

http://www.melodic.cloud/

www.melodic.cloud 37

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Adapter needs to send the deployment notification after finishing the job. With the use of a
common CDO Client, the two main artifacts can be collected from the database:

 CAMEL Deployment Model for the currently deployed solution

 CAMEL Deployment Model for the new solution produced by the solver, i.e. the one to be

deployed

Based on the existence of the currently deployed model, the Plan Generator (i.e. Adapter’s sub-
component) creates a configuration or a reconfiguration plan (in case an initial placement has
been achieved before), as depicted in Figure 24. The plan contains a series of CREATE or DELETE
tasks that reflect Cloudiator API calls in order make a new or update (i.e. to modify nodes, jobs,
processes etc.) an existing topology (i.e. cross-clouds where application components have been
deployed).

To manage the proper order and dependencies between tasks, a graph structure was adopted
inside the Adapter. While some tasks don't depend on each other and are being deployed in
parallel (like starting multiple VMs), some may require another task to complete first (e.g.
deploying an application component requires a virtual machine to be up and running). Such a
graph is by its nature a perfect form of maintaining the dependencies between actions, thus
allowing very efficient, in terms of time, application deployment.

Figure 24. Application Deployment BPMN process

The generated plan is then verified by the Authorization Service [6] in order to check if the
configuration that is to be deployed aligns with the defined security policies. For that reason,
Adapter uses Authorization Service Client and a configurable set of extractors (which collect
authorization related data) to contact the Authorization Server, seeking for an authorization
decision which will permit the process to continue. Based on the outcome of this authorization
request, the deployment actions can be continued or stopped.

http://www.melodic.cloud/

www.melodic.cloud 38

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Each action task contains the data needed to create a JSON object and passed to Cloudiator via
its REST API. The actual deployment is yet preceded with refreshing the information about the
artifacts that are already deployed within the Cloudiator (context) to assure that if the application
changed since the last deployment, the changes will be considered under the current deployment.
After completing the deployment, the history record is stored inside the CDO for always persisting
the currently deployed model information. The last step is to inform the Melodic's control plane
of the result of the deployment.

7.3 Technical Implementation

 Architecture

Figure 25. Adapter Component diagram

In Figure 25, the architecture of the Adapter is depicted which comprise the following main
components:

 REST Controller: part of the application responsible for exposing REST endpoints

 Coordinator: main sub-component responsible for coordinating all the actions during the
(re)configuration process

http://www.melodic.cloud/

www.melodic.cloud 39

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Plan Generator: part of the application responsible for generating the (re)configuration
deployment plan (i.e. a set of tasks which must be executed by Cloudiator to finish
(re)configuration)

 Plan Executor: part of the application responsible for invoking the previously generated
deployment plan

 CDO Database Proxy: part of application responsible for the communication with CDO
Database

 Authorization Service Client: client for external Authorization Server which should be
invoked to check privileges to (re)configure deployable application according to defined
security policies.

 Implementation

The Adapter component has been developed in Java, version 8. The project is built by Maven and
thanks to the Maven plugin3, a Docker image is created which allows to run this component as a
separate microservice. The following classes, depicted in Figure 26, are involved in the
implementation of the Adapter:

AdapterController - collects requests about applying a new solution and relays them to the
AdapterCoordinator class for further analysis.

AdapterCoordinator - analyses requests about applying a new solution from the AdapterController
class and manages the process.

Validator - validates the DeploymentInstanceModel.

PlanGenerator - is responsible for generating the configuration and reconfiguration deployment
plan (i.e. a set of tasks which must be executed by Cloudiator to finish (re)configuration). It uses
the GraphGenerator class to generate a graph and CamelModelConverter class to convert the
Deployment Instance CAMEL Model to Comparable Model.

GraphGenerator - offers methods to generate the configuration graph and to generate the
reconfiguration graph.

CamelModelConverter - is the abstract class which has five implementations: ScheduleConverter,
MonitorConverter, ProcessesConverter, RequirementsConverter, and JobConverter. It offers a
method to convert the CAMEL Model to the one needed by the Cloudiator classes.

Plan - represents the deployment plan.

Plan Executor - invokes the previously generated deployment plan.

3 com.spotify:docker-maven-plugin

http://www.melodic.cloud/

www.melodic.cloud 40

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 26. Adapter Class diagram

Adapter’s source code is available in Bitbucket at:
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/adapter

Dependencies: Spring-boot framework, CDO Client, Cloudiator Client, Melodic commons, JWT
commons, Authorization Service Client

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/adapter

www.melodic.cloud 41

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

8 Event Management System

Event Management System (EMS) is a distributed application monitoring system, which is used
by Melodic Upperware for monitoring the operation of the cross-cloud application it deploys, in
order to take appropriate actions when certain constraints are violated; i.e. to reconfigure the
application.

Mission: Collect, process and deliver to interested parties, monitoring information pertaining to a
distributed, cross-cloud application, according to CAMEL model specifications.

Positioning in Melodic: The EMS server, called Event Processing Manager (EPM), is one of the
microservices comprising the UpperWare of the Melodic platform. EMS clients, called Event
Processing Agents (EPAs), reside inside each VM that hosts a cross-cloud application component.
The EMS server exposes APIs and endpoints, used while interacting with EMS clients or other
Upperware components.

8.1 Approach

High-level Approach: Deploy a network of agents for collecting monitoring information from the
sensors (i.e. monitoring probes) as events, process them using distributed event processing
techniques, and forward results to the interested parties (e.g. Metasolver). A CAMEL model
specifies the needed monitoring information and the kind of processing required.

Functionalities:

 Acquire and analyse the application CAMEL model. It yields an abstract form of those parts
of the CAMEL model related to monitoring, capturing and processing information, as well
as other auxiliary structures. This abstract form is a multi-root Directed Acyclic Graph
(DAG).

 Generate complex event processing rules for each EPA and the EPM node. Rule generation
is based on the traversal of the DAG resulted from the CAMEL model analysis.

 Deploy and manage the network of EPAs. Deployment is actually carried out by Cloudiator,
which runs an EPA-specific installation process. Upon activation, EPAs connect to the
EPM node (specifically to the network orchestration module of EPM) and receive their
configurations, which encompass the event types to be collected, the event processing
rules to be enforced and the event types (raw or generated) to be propagated to another
EPA or to the EPM node.

 Event brokering. Each EMS node (EPM node or EPA) encompasses an event broker. Locally
captured or generated events, as well as events forwarded from other nodes, are published
there. Events are organized in topics according to their source or type. Some of these topics

http://www.melodic.cloud/

www.melodic.cloud 42

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

can be configured to forward their events to other EMS nodes. Typically, EPA brokers are
private (internal to EPA). However the EPM node broker is open to be accessed (for
consuming events) by any interested Melodic platform component.

 Complex Event Processing (CEP). Each EMS node (EPM or EPA) encompasses a CEP engine,
which receives events as they arrive to the local event broker, applies the configured event
processing rules and publishes the generated events back to the local event broker.
Typically, event processing that occurs at cross-cloud application nodes, refers to filtering
and aggregating local events (i.e. those collected by local sensors) and pertain solely to that
application node. Event processing at the EPM node typically aggregates and filters events
from all application nodes. Some EPAs can be designated as intermediary event processors
(filters or aggregators), hence resulting in a multitier distributed event processing
hierarchy.

Input:

 Raw monitoring information from sensors
 Distributed application topology (i.e. deployment model)
 CAMEL model of a cross-cloud application.

Output:

 Monitoring information as simple or complex events
 Configurations for other Upperware components (i.e. MetaSolver).

 Event Processing Network

As already mentioned, EMS is a distributed application monitoring system that comprises of a
server integrated in Melodic Upperware, named Event Processing Manager (EPM), and several
clients, named Event Processing Agents (EPAs). EPM and EPAs formulate a network of nodes for
distributed event processing, called Event Processing Network (EPN). This network is
orchestrated and controlled by EPM.

There are several operations involved in event processing. Some of the most common are:

 Event collection (from monitoring probes)
 Event filtering (selecting events that meet certain conditions)
 Complex event generation (creating new events based on the values of other events)
 Event aggregation (creating complex events by aggregating the values of other events)
 Event pattern detection (finding predefined motives of event occurrences)
 Event propagation/delivery (sending events to other processing nodes or destinations).

Furthermore, these operations might be applied in different fashions and scopes. For instance,
they might be applied per application node/VM, per cloud provider or for the whole application. In

http://www.melodic.cloud/

www.melodic.cloud 43

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Melodic we have devised a hierarchical model of scopes, where event processing can occur locally
(i.e. in each application VM), across the application nodes deployed in a single cloud provider, or
across the whole application (cross-clouds). The event processing results of one scope are
propagated to the higher-level scope.

For example, RAM usage events can be collected per application VM and averaged per minute.
Average value events are then propagated to the cloud level. In cloud scope, all average RAM usage
events from the VMs deployed in the same cloud provider are collected and filtered. Events might
be checked, if they exceed a specified threshold. Such events might then be propagated to the
Application level (i.e. global) in order to signal that a certain condition occurred (i.e. a node has
been overloaded).

In Melodic we have defined the following scopes, which we call groupings:

 Per Instance: processing involves events from a single application instance executed in a
VM.

 Per Host: processing involves events originating from the same local VM. It may also
aggregate events generated and propagated from the Per Instance grouping.

 Per Zone: processing involves events originating from VMs in the same cloud availability
zone.

 Per Region; processing involves events originating from the same cloud region.
 Per Cloud; processing events originating from all application nodes deployed in the same

cloud provider.
 Global; processing events originating from any application nodes. Events might be

received from any subordinate grouping. This is the terminal grouping.

For each grouping, different event processing operations might be required. These can be
expressed as sets of event process rules and event propagation flows between groupings.

An important aspect of the hierarchical grouping model of Melodic, is that it requires the event
processing to occur as close to the event generation point as possible. This statement means that
the scope processing must occur in the same VM/location where input events are created. For
example, in per host grouping, event processing must take place locally, in each VM. In per cloud
grouping, event processing must take place in application VMs designated for this purpose, per
cloud provider. The global grouping event processing occurs in the EPM node.

To implement this approach, an EPA must be deployed in each application VM. EPM configures
the EPAs into a cooperating network of event processing nodes, providing all necessary event
processing rules and event propagation routes.

This approach is based on the assumption that large numbers of events can be exchanged very
fast and much cheaper between VMs running on the same availability zones, regions or cloud
infrastructures. Processing events inside the same zone/region/cloud can reduce the number of
events that need to be propagated to a central processing node thus reduce the overall network

http://www.melodic.cloud/

www.melodic.cloud 44

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

throughput for application management purposes. Moreover, the computational load of the event
processing is distributed to all application VMs, hence the central processing node does not
require increased computational capabilities or network resources. Of course, if an application
requires centralized processing it is possible to reduce the number of groupings into per host and
global, thus resulting in events flowing from VMs to EPM.

In the context of EMS, the EPM acts as the global event processing node, whereas EPAs are the
per cloud/region/zone/host nodes. EPAs are also responsible for collecting events from local
sensors (i.e. installed in the same VM), perform the operations required for the grouping they have
been designated to and propagate the results to another EPA or the EPM, which acts as the higher
grouping processing node.

Between EPN nodes, two types of connections are established: (i) Control connections, created
between each EPA and the EPM, and (ii) event propagation connections, created either among
EPAs or between EPAs and EPM. The former connection type is used by EPM to control and
configure EPAs, as well as by EPAs to announce their presence to EPM (during VM launching).
The latter connection type is used to convey events between the grouping processing nodes.

8.2 Business Logic

The EMS design and implementation has the following objectives:

 Analyse the CAMEL model of a cross-cloud application in order to extract the required (by
other Melodic-platform components) monitoring information along with the processing
needed.

 Deploy (through Cloudiator) EMS clients, which are called Event Processing Agents (EPAs)
to each distributed application node that hosts an application component (to be
monitored).

 Configure each EPA to collect (from sensors) and forward the needed events, and also
apply the required complex event processing rules.

 Provide the required information (specified in the CAMEL model), either by updating the
application CP model, by publishing events (any interested party may subscribe to receive
them), or by requesting Melodic-platform to reconfigure the distributed application (e.g.
when certain SLOs are violated).

The aforementioned objectives and the functionalities that these imply, are realized by a number
of concrete processes, which are detailed in the following sections.

New CAMEL Model process

Upon loading a new CAMEL model to the Melodic Models Repository, the Upperware control
process invokes EPM in order to pass the identifier/path of the new CAMEL model. Subsequently,

http://www.melodic.cloud/

www.melodic.cloud 45

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

EPM retrieves and analyses it and prepares the application monitoring system, and generates
various configurations for other Melodic components. Specifically, as shown in Figure 27, it:

 Retrieves the application CAMEL model and convert the monitoring related parts into an
abstract form called DAG.

 Using the DAG it generates the configurations for all nodes of the monitoring system (EPM
and EPAs):

o Event Topics per node grouping
o Event Processing Rules per node grouping
o Event Topic forwarding per grouping

 Using the DAG, it generates the configuration for Metasolver, containing the event topics
it must subscribe to and what type of actions to take (i.e. update the CP model with new
metric variable values and start a new reconfiguration iteration).

 Using the DAG, it generates the sensor configurations per application component type.
 Configures the EPM event broker and CEP engine.
 Configures and initializes the Baguette server, i.e. the EPA orchestration module.
 Sends the appropriate configuration to each EPA that successfully connects to the

Baguette server, based on the role of the application node in the monitoring network.
 Sends configuration to Metasolver.
 Notifies the Upperware control process when EPM is ready to accept EPA connections and

process any incoming events.

Figure 27. New CAMEL Model BPMN process

New Solution process

When a new application is deployed or an existing is reconfigured, the Upperware control process
invokes a solver in order to generate a new application deployment topology (in the form of a
constraint problem solution). During this process, the solver assigns values to certain deployment
parameters (registered in the corresponding CP model) that might be needed when monitoring
the application and processing events; for instance, the storage capacity of all application VMs.
For this reason, EMS must be notified every time any of these parameters is updated. This
happens through Metasolver, which is notified when a new application topology gets
implemented (i.e. application is deployed or reconfigured), signalling that the corresponding,
updated parameters become effective. Metasolver subsequently notifies EPM of the new
parameter values in effect, passing the identifier/path of the corresponding CP model.

http://www.melodic.cloud/

www.melodic.cloud 46

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Upon notification, EPM will retrieve the new parameter values and propagate them to all event
processing nodes (i.e. EPM and connected EPAs). Specifically, as depicted in Figure 28, it will:

 Retrieve the CP model and extract parameter values.
 Apply new parameter values to the EPM CEP engine.
 Send parameter values to each connected EPA.
 Each EPA immediately applies new parameters to its local CEP engine.
 EPAs that might connect or reconnect after parameter values update, will get the most

recent values along with their initial configuration.

Figure 28. New Solution BPMN process

Event Processing Agent process

When an application node is launched, the locally installed EPA is activated, and it immediately
tries to connect to EPM. If a connection is established, then the EPA announces itself to EPM and
sends its unique id. EPM subsequently designates EPA to a grouping and sends the related
configuration (i.e. event processing rules and event propagation routes). If in the future there is
any change in the application configuration, EPM will again send updates to EPAs. EPAs, upon
receiving their configurations or updates, apply them immediately. Updates can either be slight
changes in the values of application deployment parameters (see the “New Solution” process) or
completely new configurations.

Each EPA encompasses a local event broker that receives events from local sensors as well as
from subordinate EPAs, and a local Complex Event Processing (CEP) engine, responsible for
applying event processing rules to the incoming events. The CEP engine subscribes to the
necessary local event broker topics in order to receive (input) events. The outcomes of the CEP
engine (i.e. new events) are sent to the local event broker. Moreover, the events sent to configured
topics are also propagated to the higher-level grouping EPA.

The exact process of EPA operation is depicted in the following diagram (Figure 29).

http://www.melodic.cloud/

www.melodic.cloud 47

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 29. EPA BPMN process

New Event Processing process

Every event delivered to EPM or to an EPA is being handled and processed according to the “New
Event Processing” process. Specifically:

 If the event is published to an event topic used in an event processing rule, a copy of the
event is immediately handed to the CEP engine, thus triggering a new CEP iteration.

 If an event is published to an event topic configured for propagation to next grouping EPA,
a copy of the event is immediately published to the next EPA.

 If the CEP engine generates a new event, it is immediately published to the appropriate
topic in the local event broker. This action may also result in publishing the new event to
next grouping EPA (if configured).

The next diagram, Figure 30, depicts the process present above.

Figure 30. New Event Processing BPMN process

http://www.melodic.cloud/

www.melodic.cloud 48

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

8.3 Technical Implementation

In this subsection, all the technical details of the EMS implementation are discussed (e.g.
language, frameworks, 3rd party libraries, code structure etc.). It essentially comprises the
following modules which are explained in the next sub-sections:

 Event Processing Manager (EPM) node or EMS server, responsible to analyse the CAMEL
model, deploy and manage the whole monitoring network of EPAs, and interact with the
rest of the Melodic platform (by providing interfaces and invoking interfaces of others).

 Event Processing Agents (EPAs), deployed to each distributed application node. They are
responsible to contact EPM node for taking their configurations (i.e. events to collect, event
processing rules and where to propagate events (raw or processed)).

 Architecture of EPM (EMS server)

A high-level depiction of the EPM architecture is given through the UML component diagram
depicted in Figure 31.

Figure 31. EPM (EMS server) Component diagram

http://www.melodic.cloud/

www.melodic.cloud 49

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Based on Figure 31, the EPM comprises the following sub-components:

 Translator: provides a two-step process involving the analysis of the CAMEL model to
produce a multi-root Directed Acyclic Graph and also the Generation of EPL rules and other
related information.

 Client install component: provides the necessary instructions on how to install an EPA to
the application VM defined in the application deployment model.

 Baquette Server: is responsible for the deployment and management of the Event
Processing Network. Specifically, it designates EPAs installed in each application VM, to
the appropriate grouping, by sending the corresponding configuration. It also collects VM
identification information sent from EPAs. The Baguette server encapsulates an SSH
server used to accept incoming connections from EPAs. These connections are used to
send configurations or other commands to EPAs.

 Control Service: Coordinates and oversees the functioning of EPM. It also interacts with
the Upperware control process through the REST API and furthermore offers a few EPM
management and debugging functions (as REST endpoints as well).

 Web console component: Provides a dashboard for monitoring the functioning of the local
event broker.

 Broker-CEP Service: encapsulates an event broker instance and a CEP engine instance,
appropriately wired to implement the process presented in Figure 30, hence Broker-CEP
provides event brokerage and complex event processing capabilities. The Consumer sub-
component depicted inside Broker-CEP is used to forward the event broker messages into
the CEP engine in order to be processed.

 Architecture of EPA

A high-level depiction of the EPA architecture is given through the following UML component
diagram, shown in Figure 32.

Based on Figure 32, the EPA comprises the following sub-components:

 SSH Client: provides secure communication with the Baquette server (of the EPM) through
an EPM connection interface.

 Executor component: Configures and starts the Broker-CEP Service based on the
instructions by the Baguette Server.

 Broker-CEP service: provides the local Complex Event Processing engine (i.e. Esper) along
with the local Event Broker (i.e. ActiveMQ) that collects and propagates data messages to
other Virtual Machines components in the distributed hierarchy of Virtual Machines in our
cloud environment. This client can undertake the role of per instance, per host, per zone,
per region or per cloud grouping as explained in section 8.1.1.

http://www.melodic.cloud/

www.melodic.cloud 50

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 32. EPA Component diagram

 Implementation

All EMS modules have been implemented using the Java programming language, version 8, and
almost all of them are Spring-boot applications, components or configurations, thus making their
maintenance quite predictable. EMS is delivered as a set of software packages; one for the EPM
node, one for EPAs, and one for the Broker client library.

All EMS parts (EPM node, EPAs and Broker client library) are built and bundled using the well-
known Maven system. Due to license incompatibilities, the third-party libraries used are not
bundled with the EMS code but are kept separately. Therefore an EMS package is a collection of
JAR files (containing the EMS code and the compiled third-party libraries), configuration files and
launch scripts.

Following, more information on each EMS package are given:

 EPM package: provides a “fat” microservice encompassing several EMS modules. EPM can
also be bundled (during building with Maven) as a Docker container image and
subsequently be added in the Melodic platform component swarm.

 EPA package: provides a lightweight, low-consumption application, since it is collocated
with the application node software and it must not compete with it for system resources.
It is bundled as a Zip file including all needed JAR files, configuration and launch scripts.
During application deployment, Cloudiator uses that Zip file to install EPA in each
application node.

 Broker Client: has been implemented as a lightweight, non-Spring library. Therefore it can
be used in any kind of Java application, either Spring-boot or not.

http://www.melodic.cloud/

www.melodic.cloud 51

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

More insights on the EMS implementation are provided by the following class diagram (Figure 33)
and the accompanying class descriptions. Only the most important classes have been included
for better understanding of the implementation approach:

Control Service

 ControlServiceController: It encompasses methods that map to EMS REST API endpoints
and provide the respective functionality. These methods relay the actual processing to the
Control Service Coordinator and take care of any HTTP request conversions into the
internal representations of EMS, and vice versa.

 ControlServiceCoordinator: It implements the business logic of the EMS Control Service
component and it is mainly invoked by the Control Service Controller. This Coordinator
initializes and utilizes features realized in other EMS components (Broker-CEP, Baguette
Server and Translator).

Broker-CEP service

 BrokerCepService: It provides the API of the Broker-CEP service and encapsulates the
event brokerage and complex event processing functionality. It holds pointers to the actual
implementations of the Event Broker and the CEP engine and communicates with them in
order to fulfil the API calls.

 BrokerService: It provides the Event Broker functionality. This class is part of the ActiveMQ
event broker.

 CepService: It encapsulates the Complex event processing functionality. It initializes an
instance of the Esper CEP engine and registers the required extensions. It is also used to
register event processing rules and the respective listeners that receive the outcomes of
the rules.

 BrokerCepConsumer: It is an event processing rule listener used to redirect the events
generated in the Esper engine into the event broker.

Baguette Server

 BaguetteServer: It is a wrapper class that provides the API of the Baguette Server
component. It initializes an instance of the Sshd class and an instance of
ServerCoordinator, according to the configuration.

 Sshd: It encapsulates an SSH server, used to communicate with EPAs, and takes care of the
session establishment and communication details.

 ServerCoordinator: It is an interface defining the required functionality of the Server
Coordinator objects. Server coordinators are responsible to implement the event
processing network topology. To this end, they must designate the appropriate roles to
every EPA connected and send the corresponding commands.

http://www.melodic.cloud/

www.melodic.cloud 52 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 33. EMS Class diagram

http://www.melodic.cloud/

www.melodic.cloud 53 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Translator

 CamelToEplTranslator: It encapsulates the Translator component functionality. It
instantiates all related classes (Model Analyzer, Graph Transformer, Rule Generator and
CDO client) and invokes them accordingly.

 CDOClientX: It provides a CDO client used to connect to the Melodic Models repository in
order to retrieve the CAMEL and CP models.

 ModelAnalyzer: It provides methods that parse a given CAMEL model and yields an
abstract Directed Acyclic Graph representation of it, as well as a set of configurations for
various Melodic or application components (e.g. Metasolver and Monitoring probes).

 GraphTransformer: It improves or optimizes the DAG generated by the Model Analyzer.
 RuleGenerator: It generates event processing rules based on the transformed DAG. The

rules are generated using rule templates and information from DAG. The current version
of this class generates EPL rules, compatible to the Esper engine used in the Broker-CEP
service. The rule templates are defined in the application.yml configuration file bundled
with the Translator code.

Broker Client Installation

 ClientInstallationHelper: It is used when registering a new application node in order to
provide the needed EPA installation instructions. These instructions are relayed to the
Cloudiator to carry them out.

Classes of EPA

 BaguetteClient: It is the application executed when launching an EPA. It loads the
configuration and instantiates the Sshc class.

 Sshc: It provides an SSH client used to connect to the EMS Baguette server. It also takes
care of the communication details. The commands received from the server are replayed
to the Command Executor.

 CommandExecutor: It carries out the command received from the server. It instantiates a
local event broker and a CEP engine, and subsequently uses them to process the events
received.

Classes of Broker Client library

 BrokerClient: It is used to connect to a configured event broker and publish or receive
events.

The most recent version of EMS (RC2.0) is available in Bitbucket at:

https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/event-
management?at=refs%2Fheads%2FRC2.0

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/event-management?at=refs%2Fheads%2FRC2.0
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/event-management?at=refs%2Fheads%2FRC2.0

www.melodic.cloud 54

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Dependencies: Spring-boot framework, ActiveMQ library, Esper CE library, CDO client, Apache
MINA SSH library, JGraphT library, and Apache Commons libraries (lang3 and text).

9 Conclusions

This deliverable encapsulated a detailed description concerning the approach, the business logic
and the development of each one of the following core components of Upperware: CP Generator,
Metasolver, CP Solver, Utility Generator, Solver to Deployment, Adapter and Event Management
System. These Upperware components are essential for the application optimisation
recommendation, the initial application placement and the continuous adaptation enactment.
Their operation brings the necessary functionality to the Melodic platform, for making timely
decisions on appropriate cross-cloud data placements and application deployments, starting with
the generation of a formal Constraint Problem model and resulting to a target application
configuration the captures the optimised deployment into cross-cloud resources.

All these Upperware components have been integrated with the rest of the platform components,
consolidating a major part of the Melodic Release 2.0. The next steps involve a number of
comprehensive real-world tests, across the project’s pilot demonstrators. According to their
evaluation results, the Upperware components will be further improved and fine-tuned as part of
the finalisation development work which will lead to the final release of the Melodic platform.

http://www.melodic.cloud/

www.melodic.cloud 55

Editor(s):
Yiannis Verginadis

Deliverable reference:
D3.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

References

[1] Y. Verginadis, G. Horn, K. Kritikos, F. Zahid, D. Baur, P. Skrzypek, D. Seybold, M. Prusiński, S.
Mazumdar, “D2.2 Report on Architecture and Initial Feature Definitions”, Melodic Deliverable,
2018.

[2] F. Zahid, D. Pradhan, “D3.2 Report on Business logic for supporting the complete data and data-
intensive application life-cycle management”, Melodic Deliverable, 2019.

[3] F. Zahid, K. Kritikos, S. Mazumdar, D. Seybold, Y. Verginadis, “D2.5 Report on Data Placement
and Migration Methodologies”, Melodic Deliverable, 2018.

[4] D. Baur, D. Seybold, “D4.3 Report on Resource Management Framework Prototype”, Melodic
Deliverable, 2018.

[5] F. Zahid, Y. Verginadis, G. Horn, K. Kritikos, D. and E. G. Gran, “D2.3 Report on Final framework
and external APIs”, Melodic Deliverable, 2019.

[6] P. Skrzypek, I. Patiniotakis, Y. Verginadis and C. Chalaris, “D5.3 Report on Security
requirements & design”, Melodic Deliverable, 2018.

[7] Kritikos, K., Magoutis, K., & Plexousakis, D. (2016). Towards Knowledge-Based Assisted IaaS
Selection. In Proceedings of the 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Luxembourg, 12-15 December (pp. 431-439).

http://www.melodic.cloud/

