

www.melodic.cloud 1 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Title:

D3.2 Business logic for supporting the
complete data and data-intensive
application life-cycle management

Abstract:

This is a report accompanying the initial software release
of the Melodic Data Life-cycle Management System
(DLMS). The DLMS is an Upperware component which
enables holistic management of data in Cross-Cloud
environments and assists in achieving data-aware
application deployments in the Melodic platform. The
main functionality DLMS offers includes the
management of data sources in Cross-Cloud
environments on behalf of Melodic users, the ability to run
data life-cycle management events on commissioned
nodes, and the assignment of utility values to all Cross-
Cloud deployment solutions proposed by the Melodic
solvers. The utility values, based on various DLMS
algorithms such as affinity-aware utility calculation
between application components and datasets, and inter-
data centre network performance based utility
calculation, are used in the utility function to optimize
Cross-Cloud application deployments with respect to the
data-awareness enabled by the DLMS.

In this document, we give an overview of the
implementation of the DLMS and its sub-components. For
technical details about the DLMS design, readers are
referred to the Melodic deliverable D2.5 Report on Data
Placement and Migration Methodologies [1].

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D3.2

Date:

4 February 2019

Responsible partner:

Simula Research Laboratory

Editor(s):

Feroz Zahid

Author(s):

Feroz Zahid, Dipesh Pradhan

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/de
liverables/D3.2 Business
logic for supporting the
complete data and data-
intensive application life-
cycle management.pdf

http://www.melodic.cloud/
https://melodic.cloud/
http://www.melodic.cloud/deliverables/D3.2%20Business%20logic%20for%20supporting%20the%20complete%20data%20and%20data-intensive%20application%20life-cycle%20management.pdf
http://www.melodic.cloud/deliverables/D3.2%20Business%20logic%20for%20supporting%20the%20complete%20data%20and%20data-intensive%20application%20life-cycle%20management.pdf
http://www.melodic.cloud/deliverables/D3.2%20Business%20logic%20for%20supporting%20the%20complete%20data%20and%20data-intensive%20application%20life-cycle%20management.pdf
http://www.melodic.cloud/deliverables/D3.2%20Business%20logic%20for%20supporting%20the%20complete%20data%20and%20data-intensive%20application%20life-cycle%20management.pdf
http://www.melodic.cloud/deliverables/D3.2%20Business%20logic%20for%20supporting%20the%20complete%20data%20and%20data-intensive%20application%20life-cycle%20management.pdf
http://www.melodic.cloud/deliverables/D3.2%20Business%20logic%20for%20supporting%20the%20complete%20data%20and%20data-intensive%20application%20life-cycle%20management.pdf

www.melodic.cloud 2

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Document

Period Covered M6-24

Deliverable No. D3.2

Deliverable Title Business logic for supporting the complete data and data-intensive
application life-cycle management

Editor(s) Feroz Zahid

Author(s) Feroz Zahid, Dipesh Pradhan

Reviewer(s) Jörg Domaschka, Ernst Gunnar Gran

Work Package No. 3

Work Package Title Upper ware

Lead Beneficiary Simula Research Laboratory

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 20

http://www.melodic.cloud/

www.melodic.cloud 3

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table of Contents

1 Introduction .. 5

1.1 Scope of the Document .. 6

2 Functionality.. 7

3 Components and their Interaction ... 9

3.1 DLMS Agents ... 11

Alluxio Monitor ... 11

NetPerf Monitor .. 11

RDBMS Monitor ... 11

3.2 DLMS Controller.. 12

4 DLMS and Applications ... 13

4.1 Hadoop MapReduce and Spark ... 14

4.2 Other Applications ... 15

5 Implementation .. 15

5.1 License ... 15

5.2 Third-Party Dependencies ... 16

5.3 Source Code Repositories ... 18

5.4 Documentation ... 18

5.5 Installation and Packaging .. 18

5.6 Continuous Integration Platform ... 19

6 Summary and Outlook ... 19

References ... 20

http://www.melodic.cloud/

www.melodic.cloud 4

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

List of Tables

Table 1: Summary of main DLMS functionalities ... 7

Table 2: The DLMS algorithms ... 12

Table 3: Main dependencies of DLMS ... 16

Table 4: Repositories .. 18

List of Figures

Figure 1: An overview of the DLMS Architecture .. 5

Figure 2: The DLMS component diagram .. 10

http://www.melodic.cloud/

www.melodic.cloud 5

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1 Introduction

Figure 1: An overview of the DLMS Architecture

The Data Life-cycle Management System (DLMS) is a Melodic Upperware component which
empowers the Melodic platform with the ability of data-aware application deployments and
optimisations in Cross-Cloud environments. An overview of the DLMS architecture is presented
in Figure 1. As shown in the figure, the DLMS interacts with the Utility Generator and the Adapter
components of the Upperware. For each solution proposed by the Melodic Optimisation Solvers,
the Utility Generator consults the DLMS Controller, which in turn employs DLMS algorithms, to
assign utility values based on the logic implemented in the algorithm [1]. To elaborate further, the
utility value represents the degree to which a solution is favourable by each DLMS algorithm,
considering any data migrations required and impact on the application performance by the
prescribed placement of application components and data sources.

As described above, in Melodic the data-aware application deployments and adaptations follow a
two-step approach: In the first step, the CAMEL modelling language [2], is used to formally describe

http://www.melodic.cloud/

www.melodic.cloud 6

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

all the data sources and application components to be deployed by the Melodic in the Cloud, as
well as their requirements and constraints, including any external data sources that the user has
access to. The modelling enables the Melodic Upperware Solvers to consider constraints related
to the data components in the calculation of candidate deployment solutions. In the second step,
each candidate deployment solution is evaluated by the DLMS and is assigned utility values based
on various DLMS algorithms. The DLMS algorithms assign utility values using information
provided in the CAMEL DataModel [3], as well as keep in an internal knowledge-base containing
information about historical data access patterns by the application components, network
performance of data transfers and access costs, among others. The utility values, returned by the
Utility Calculation component, are then used by the Utility Generator in the utility function for the
selection of the optimal solution among the proposed candidate deployment solutions.

The current implementation of the DLMS computes utility values based on historical data access
patterns reflecting affinities between application components and data sources, dataset
characteristics, average network latencies and throughput between data centres, Cloud provider
costs, and predictions from past DLMS decisions, as implemented by the DLMS algorithms.
However, new DLMS algorithms can also be implemented and hooked to provide additional
functionality if needed. Moreover, in the utility function employed by the user, the utility values
returned by the DLMS are used as deem fit by the specific use-case. Further, the Adapter, which
is the Upperware component responsible for analysing and validating a new deployment model
and deciding on reconfiguration action tasks to be executed in a specific order, consults DLMS for
specific data migrations and configurations needed for a deployment reconfiguration. This is
done using the interface provided by the DLMS migration service, which is a part of the DLMS.

1.1 Scope of the Document

This document is an implementation report accompanying the initial software release of the Data
Life-cycle Management System (DLMS). Intended audience are developers and end users who
want a reference to the implementation details of the DLMS and its source code repositories. Most
parts of the document requires knowledge about the DLMS architecture and design as described
in the Melodic deliverable D2.5 [1]. Note that the DLMS is an integrated Melodic Upperware
component and comes pre-installed starting from Release 2.0 of the Melodic platform.

http://www.melodic.cloud/

www.melodic.cloud 7

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2 Functionality

In the following Table 1, we highlight the main functionality offered by the DLMS.

Table 1: Summary of main DLMS functionalities

Functionality Description

Holistic Data
Management

Data Management

The DLMS keeps track of the current locations and characteristics of each
data source registered in Melodic through CAMEL. As Melodic is an
optimisation platform for Cross-Cloud applications and data deployments,
the data source locations (Cloud data centres) can be changed over the
life-cycle of a Cloud application, in accordance with user-defined
requirements and constraints.

Virtualized Data Storage Access and Data Copying / Migrations

DLMS offers virtualised data access through a storage middleware
enabling applications to access data transparently across multiple data
sources that may be using different storage technologies.

Through the DLMS migration service, DLMS offers interfaces for data
movement across data sources. For example, the data migration service
makes it possible to move data transparently from an HDFS data directory
to an S3 bucket.

Unified Namespace

DLMS offers a unified namespace across all internal and external file-
based data sources, such as distributed file systems and key-stores. The
unified namespace makes it possible to access files from any resource in
a Cross-Cloud deployment using a constant unified resource identifier
irrespective of the actual location of the files and the applications
accessing them.

Data-aware
Optimisations

DLMS Algorithms

DLMS employs various algorithms to calculate utility values, which
assists in reaching optimal data-aware deployments in Melodic. The
current implementation of the DLMS algorithms compute utility values
based on historical data access patterns reflecting affinities between

http://www.melodic.cloud/

www.melodic.cloud 8

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

application components and data sources, dataset characteristics,
average network latencies and throughput between data centres, Cloud
provider costs, and predictions from past DLMS decisions. The DLMS
algorithms are discussed in detail in deliverable D2.5 [1].

Data Access
Monitoring

DLMS Agents and Data Access Patterns

DLMS agents are deployed on each VM commissioned by the Melodic
platform. Data accesses are monitored through monitors installed by the
DLMS agents and reported to the event monitoring system in Melodic.
Data access monitoring empowers the DLMS algorithms to assign utilities
based on the observed historical data access patterns of the application
components.

Cloud Network
Performance
Monitoring

Latency and Bandwidth

Latency and bandwidth among Cloud data centres is measured through
network performance agents installed by the DLMS agents on a selected
node in each Cloud data centre used by in the application deployment.

Life-cycle Events

Arbitrary life-cycle events

DLMS agents offer a REST interface to register arbitrary life-cycle events
that can be triggered through the API. The API is also exposed to the user
applications.

http://www.melodic.cloud/

www.melodic.cloud 9

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3 Components and their Interaction

DLMS offers a modular extensible architecture with each component doing a designated job under
the control of the DLMSController. The DLMS component diagram is depicted in Figure 2, where
component interaction through the provided interfaces is shown. All interfaces are exposed via
RESTful APIs. However, in order to reduce the overhead involved in invocation of the DLMS
Controller by the Utility Generator, taking into consideration a large number of candidate
solutions proposed by the Solvers, the DLMS Controller and Utility Generator interface has now
also been implemented as a java library. The java library also includes an intelligent caching
mechanism to further improve performance.

The DataRegistrar interface allows to register the data sources in the DLMS after they have been
modelled, which follows mounting of a given data source under the unified namespace and
storing the information in the DLMS database sub-component. This is automatically done by
dedicated functionality in the DLMSController, which is invoked by the Melodic Upperware
whenever a CAMEL model is available.

UtilityCalculationInterface offers a single method that is called by the Utility Generator with the
proposed solution, in the form of Node Candidates, that is evaluated by the DLMS algorithms for
cost assignments. Individual utility values, based on each algorithm, are then returned to the
Utility Generator. This is an update from the initial DLMS design where the utility values returned
by the individual DLMS algorithms were combined through a weighted function by the DLMS
Controller and a single utility value was being returned to the Utility Generator. In order to provide
more flexibility to the end-users so the individual DLMS algorithms can be employed through
application-level utility functions, DLMS now returns separate utility values calculated by each
DLMS algorithm.

A DataMigrationInterface interface is provided through the REST APIs with copy/move/delete
methods dealing with the data migration between one data source to another and data purging.

http://www.melodic.cloud/

www.melodic.cloud 10

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 2: The DLMS component diagram

The DLMS Controller has access to the information stored in the CAMEL models, as well as
historical information gathered by the DLMS agents, through the Data Catalog, which is also
utilised by the DLMS algorithms. The monitoring information is gathered through the
Executionware Monitoring Services [4], whereas the event processing agents deployed on each
node process monitoring information as events and forward them to the Data Catalog which
subscribes to those events [5]. The DLMS Controller also runs data life-cycle event tasks on VMs
through the DLMS agents upon receiving a request through the designated REST interface.

The DLMS use Alluxio1 (formerly Tachyon [6]) as the middleware for storage technologies. Alluxio
is a rapidly growing open source memory speed virtual distributed storage system enabling big
data applications to interact with data from a variety of storage systems and technologies.
Applications interact with Alluxio-enabled data stores through a specialised client library which
provides access to an Alluxio-based global file system. However, a client library is installed on the

1 Alluxio – Open Source Memory Speed Virtual Distributed Storage – https://alluxio.org/

http://www.melodic.cloud/
https://alluxio.org/

www.melodic.cloud 11

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

commissioned nodes during the deployment of the application frameworks, such as Spark, so no
change in the application code is need when using popular big data frameworks.

3.1 DLMS Agents

The DLMS agents are implemented as Spring2 boot server applications developed in Java.

For all file based data sources, monitors are based on AlluxioMonitor that records read/write
operations to the underlying file systems. In addition, an RDBMS-specific monitor is also available
based on MySQL databases, in accordance with Melodic use-case requirements. However, new
monitors can be added if an unsupported data storage system is used. There is also one
specialised NetPerfMonitor, which is a server/client script that runs on both ends of a
communication channel on the selected VMs in the Clouds, to gather metrics related to the
available latency and network throughput between Cloud data centres. One VM deployed in each
distinct Cloud data centres is used to periodically run NetPerfMonitor and is selected as the first
VM of the corresponding data centre where an application / data component is deployed by
Melodic.

Alluxio Monitor

The Alluxio monitors are implemented as an integrated Java client that is called by the DLMS
agent periodically.

NetPerf Monitor

The Network Performance (NetPerf) [7], [8] monitor is based on a network performance metering
tool, NetPerfMeter, developed by the consortium partner SRL. NetPerfMeter is an open source,
multi-platform transport protocol performance evaluation software. The source code of
NetPerfMeter is available at git3. Furthermore, the open source tool iPerf4 will potentially be
integrated with DLMS, making it possible to select one of the tools for network monitoring.

RDBMS Monitor

We have implemented a reference RDBMS monitor for the MySQL databases. The MySQL
monitor reports data access metrics using MySQL performance schema tables5.

2 http://spring.io/
3 https://github.com/dreibh/netperfmeter
4 https://iperf.fr/
5 https://dev.mysql.com/doc/refman/5.7/en/performance-schema-table-descriptions.html

http://www.melodic.cloud/
http://spring.io/
https://github.com/dreibh/netperfmeter
https://iperf.fr/
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-table-descriptions.html

www.melodic.cloud 12

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3.2 DLMS Controller

The DLMS Controller is implemented as a Spring boot Java application. Table 2 outlines classes
implementing the current DLMS algorithms and their configurable parameters. Parameters are
configured through a file (.properties).

Table 2: The DLMS algorithms

Class Description Configurable Parameters

Algo_CalculateCouplet

Calculate affinity
between application
component and data
sources.

Number of historical records
considered

Weight of data READ and
WRITE is assigned based on
the method employed.
Currently, average weight or
latest higher weight or real-
time prediction methods are
implemented.

Algo_CombineValSelectedRecords

Calculate utility value
based on the cloud
network performance

Update can be based on time
or number of records

Number of historical records
and amount of time
considered

The weight of data can be
calculated based on average
weight or latest higher weight
methods

Algo_ClusterDataCenters

Cluster data centres to
zones that will be used
in computing graph
similarity.

Two different algorithms to
choose from:
AffinityPropagation or
PAMClustering. The number
of clusters need to be
specified for PAMClustering.

http://www.melodic.cloud/

www.melodic.cloud 13

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Algo_ComputeCost Calculate the total cost
of solutions.

Algo_TotalUtilty

Calculates expected total
utility of a proposed
solution based on
previous utility histories.
Uses
Algo_ClusterDataCenters
too.

4 DLMS and Applications

As the underlying unified file system available to the applications is based on Alluxio, applications
can use client libraries provided by Alluxio for file system access. We use the convention that all
file-based data sources are mounted at the time of the data source registration (which is
automatically done reading the CAMEL model provided by the user), under a global namespace
prefixed by /melodic/. So, a data source modelled in CAMEL under the name dsource1 is
mounted at the path /melodic/dsource1.

The paths in Alluxio follow alluxio://server:port/ semantics. For example, a fully qualified
URI of a file file.txt, which is placed on the root of the file system of data source dsource1,
will be alluxio://127.0.0.1:19998/melodic/dsource1/file.txt.

However, when the Alluxio master is configured via a properties file in the Client libraries,
expansion of paths take place automatically, such that /melodic/dsource1/file.txt would
be resolved to the fully qualified URI automatically.

Alluxio provides several different Filesystem APIs and client libraries implemented for various
programming languages. Applications mainly interact with Alluxio through the Alluxio
FileSystem API for which various clients are provided (Java Client, Python, REST API client, Go
Client). A Hadoop compatible FileSystem API is also provided to make sure that applications using
HDFS can be used as is without the need of any change in the application code. Moreover, Alluxio
also provides a FUSE-based POSIX API so applications implemented in any language like C, C++,
Ruby, Perl among others, can interact with Allxuio using standard POSIX APIs like open, write,
read and so on without any Alluxio client integration or setup.

In order to allow for transparent access to the mounted underlying storage systems by the
application developed to run on big data frameworks, such as Spark and Hadoop MapReduce,

http://www.melodic.cloud/

www.melodic.cloud 14

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

some configuration needs to be done when the frameworks are being configured on the
commissioned VMs by the Executionware. These configurations are done by the Executionware,
and the user applications do not need to make changes to the application code written to run
under these frameworks. As Melodic supports integration with Hadoop MapReduce and Spark, we
show configuration examples using HDFS. However, a large number of file systems and
frameworks are supported by Alluxio and can be configured through appropriate initialization
scripts ran be the Executionware.

4.1 Hadoop MapReduce and Spark

 Add the following properties to the core-site.xml file for the Hadoop installation

 Make sure that Alluxio client library is available at all the nodes

 For Spark, the Alluxio client library path needs to be given in conf/spark-defaults.conf

 Note that the above steps are automatically done through initialization scripts run by the

Executionware. Once the big data frameworks are configured, no changes to the application

code are necessary. However, applications can also use standard interfaces to access Allxuio

if required:

<property>

 <name>fs.alluxio.impl</name>

 <value>alluxio.hadoop.FileSystem</value>

 <description>Melodic Alluxio based File System</description>

</property>

spark.driver.extraClassPath=/<PATH_TO_ALLUXIO>/client/alluxio-1.8.0-SNAPSHOT-
client.jar

spark.executor.extraClassPath=/<PATH_TO_ALLUXIO>/client/alluxio-1.8.0-SNAPSHOT-
client.jar

http://www.melodic.cloud/

www.melodic.cloud 15

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4.2 Other Applications

Alluxio-FUSE is a feature that allows to mount the distributed Alluxio File System as a standard
file system on most operating systems. By using Alluxio-FUSE, applications can access Alluxio
without the need of any client integration or setup. Aluxio-FUSE provides standard POSIX based
file system APIs. Any Alluxio path can be mounted using Alluxio-FUSE, as shown below. Again,
such mounting can be done as part of the node setup and initialization scripts run by the
Executionware.

5 Implementation

This section discusses topics related to the code implementing the aforementioned DLMS
functionalities. The DLMS consists of four main artefacts: DLMSController, DLMSWebService,
DLMSUtility java library, and DLMSAgent.

5.1 License

All the source code is released under MPL 2.06 (Mozilla Public License), which has been approved
by the Open Source Initiative in January 2012. The choice of license has resulted from deliberation
over its compatibility with the GNU General Public License and licenses used by the Apache
Software Foundation.

6 https://www.mozilla.org/en-US/MPL/2.0/

FileSystem fs = FileSystem.Factory.get();

AlluxioURI path = new AlluxioURI("/myFile");

// Create a file and get its output stream

FileOutStream out = fs.createFile(path);

// Write data

out.write(...);

// Close and complete file

out.close();

integration/fuse/bin/alluxio-fuse mount mount_point [alluxio_path]

http://www.melodic.cloud/
https://www.mozilla.org/en-US/MPL/2.0/

www.melodic.cloud 16

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5.2 Third-Party Dependencies

DLMS relies on multiple open source projects. Table 3 provides an overview of the DLMS
dependencies.

Table 3: Main dependencies of DLMS

Name Description Link

Spring Boot
Spring boot is a framework to built stand-alone,
production-grade Spring based applications.

https://spring.io/projects/sp
ring-boot

Apache Maven

Apache Maven is a project dependency
management software for Java. It is used for
resolving dependencies and building Java
artefacts.

https://maven.apache.org/

Lombok

Lombok is a Java library that automatically
plugs into the build process to avoid repetitive
code. It autogenerates Java bytecode based on
annotations used in the code.

https://projectlombok.org/

Hibernate
Hibernate is an object relational mapper for
Java. It is used to abstract the database access
logic from an individual database.

http://hibernate.org/

Apache
Commons

Apache Commons is an Apache project focused
on providing reusable, open source Java
software.

https://commons.apache.or
g/

Gson
Gson is a Java library that can be used to convert
Java objects into their JSON representation.

https://github.com/google/g
son

Java Message
Service (JMS)

JMS API provides a common way for Java
programs to create, send, receive, and read an
enterprise messaging system’s messages.

https://docs.oracle.com/jav
aee/6/api/javax/jms/packag
e-summary.html

Apache
ActiveMQ

Apache ActiveMQ is a powerful open source
messaging and integration patterns server. It is
written in Java together with a full JMS.

http://activemq.apache.org/

http://www.melodic.cloud/

www.melodic.cloud 17

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

MySQL
MySQL is an open source relational database
management system.

https://www.mysql.com/

JUnit
JUnit is a unit testing framework for Java. It
uses annotation to identify methods that specify
a test.

https://junit.org/

Mockito

Mockito is an open source testing framework for
Java. It allows the user to create and configure
mock objectives, and it can be used in
conjunction with JUnit.

https://site.mockito.org/

Cloudiator

Cloudiator is a multi-tenant, cross-cloud
orchestration framework. The Cloudiator
component installs DLMS agents on the nodes
provisioned in the clouds.

http://cloudiator.org/

Metrics
Metrics is a java library, which gives
unparalleled insight into what the code does in
production.

https://metrics.dropwizard.i
o/

Alluxio

Alluxio is a virtual distributed storage system. It
bridges the gap between computation
frameworks and storage systems, enabling
applications to connect to numerous storage
systems through a common interface.

https://www.alluxio.org/

H2 Database

H2 Database is an in-memory relational
database management system used by DLMS
agents to store life-cycle events and
corresponding commands to run on the call.

http://www.h2database.com
/html/main.html

Eclipse
Modelling
Framework

The Eclipse Modelling Framework (EMF) is used
to provide the Object Constraint Language
implementation required in the matchmaking
agent.

https://www.eclipse.org/mo
deling/emf/

Javax.xml.bind

Javax.xml.bind provides a runtime-binding
framework for client applications including
unmarshalling, marshalling, and validation
capabilities.

https://docs.oracle.com/jav
ase/7/docs/api/javax/xml/b
ind/package-summary.html

http://www.melodic.cloud/

www.melodic.cloud 18

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5.3 Source Code Repositories

The source code of DLMS is hosted on bitbucket7 under the organisation dlms and dlmsAgent.
Table 4 provides pointers to the repositories.

Table 4: Repositories

Repository Folder Artefact Link

dlms

DLMSController

DLMSWebService

DLMSUtility

https://bitbucket.7bulls.eu/projects/MEL/repos/upper
ware/browse/dlms

dlmsAgent DLMSAgent
https://bitbucket.7bulls.eu/projects/MEL/repos/upper
ware/browse/dlmsAgent

5.4 Documentation

Pointers to all Melodic documentation are available through the Melodic website8. The technical
details about the DLMS design are described in deliverable D2.5 [1].

5.5 Installation and Packaging

The DLMS comes bundled with the Melodic installation package. To ease the installation process,
DLMS uses Docker for both DLMSWebService and DLMSController. The DLMSWebService also
encapsulates interfaces related to the DLMS Migration Service. The DLMSController docker
encapsulates all the required DLMS algorithms.

The DLMS agents are deployed by Cloudiator. For details about the Melodic Executionware, please
consult [9] .

7 https://bitbucket.7bulls.eu/projects/MEL/repos
8 https://melodic.cloud/

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware
https://melodic.cloud/

www.melodic.cloud 19

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5.6 Continuous Integration Platform

The DLMS uses the continuous integration platform implemented for Melodic [9].

6 Summary and Outlook

As the DLMS integration with the rest of the Melodic components has been completed, this opens
up the possibility of comprehensive real-world testing of the DLMS algorithms in the coming
months as use-case applications make use of Melodic Release 2.0. Moreover, new DLMS
algorithms will be added if needed, while the existing ones will be tuned according to the
evaluation.

For data sources that are mounted under Melodic, we also plan to provide a wrapper file system
interface that allows automatic translation of the file system URIs to the unified global namespace
available to the system. A similar proposal is also under consideration at the Alluxio9.

We are also considering a functionality for the final Melodic platform release that will exploit the
data sanitization support offered as a service by the used cloud providers (in case they support it)
through life-cycle events for purging and deleting data securely from cloud providers.

9 https://alluxio.atlassian.net/browse/ALLUXIO-3287

http://www.melodic.cloud/
https://alluxio.atlassian.net/browse/ALLUXIO-3287

www.melodic.cloud 20

Editor(s):
Feroz Zahid

Deliverable reference:
D3.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

References

[1] K. Kritikos, F. Zahid, S. Mazumdar, D. Seybold, and Y. Verginadis, “D2.5 Report on
Data Placement and Migration Methodologies.”, The Melodic H2020 Project
Deliverable D2.5, 2018.

[2] A. Rossini et al., “The cloud application modelling and execution language (CAMEL),”
(10.18725/OPARU-4339) May 2017.

[3] Y. Verginadis et al., “D2.2 Architecture and Initial Feature Definitions.” 2018, The
Melodic H2020 Project Deliverable D2.2.

[4] D. Baur and D. Seybold, “D4.1 Provider agnostic interface definition & mapping
cycle.” The Melodic H2020 Project Deliverable D4.1, 2018.

[5] C. Chalaris et al., “D3.4 Workload optimisation recommendation and adaptation
enactment.”, The Melodic H2020 Project Deliverable D3.4, 2019.

[6] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reliable, Memory
Speed Storage for Cluster Computing Frameworks,” in Proceedings of the ACM
Symposium on Cloud Computing, New York, NY, USA, 2014, pp. 6:1–6:15.

[7] T. Dreibholz, “NetPerfMeter: A Network Performance Metering Tool,” Multipath TCP
Blog, Sep. 2015.

[8] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “Evaluation of A New Multipath
Congestion Control Scheme using the NetPerfMeter Tool-Chain,” in Proceedings of
the 19th IEEE International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Hvar, Dalmacija/Croatia, 2011, pp. 1–6.

[9] P. Skrzypek, “D5.05 Continuous Integration Platform and Guidelines.”, The Melodic
H2020 Project Deliverable D5.05, 2018.

http://www.melodic.cloud/

