

www.melodic.cloud 1 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Title:

Final framework and external APIs

Abstract:

This document describes the final Melodic framework
and the application programming interfaces (APIs)
offered by the framework components. The APIs enables
both the internal inter-component integration as well as
third-party software integrations. With the help of the
external interfaces, third party integrators and developers
can write extensions for the Melodic platform to enhance
existing component functionality or add new feature
components.

We describe APIs offered by various components of the
Upperware and Executionware, the two main modules of
the Melodic middleware platform. An overview of the
scope of potential third party extensions are also given for
selected components. Finally, We also cover CAMEL 2.0,
which is the updated version of the CAMEL modelling
language that is being exploited in the project.

Multi-cloud Execution-ware for

Large-scale Optimised Data-

Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and Communication
Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
31 January 2020

www.melodic.cloud

Deliverable reference:

D2.3

Date:

31 January 2020

Responsible partner:

Simula Research Laboratory

Editor(s):

Kyriakos Kritikos, Feroz Zahid

Author(s):

Feroz Zahid, Yiannis Verginadis,
Ioannis Patiniotakis, Daniel Baur,
Daniel Seybold, Christos Chalaris,
Theodora Mavrodopoulou,
Gregoris Mentzas, Geir Horn,
Amirhosein Taherkordi, Kyriakos
Kritikos, Marta Rozanska, Pawel
Skrzypek, Marcin Prusinski

Reviewed By:

Paweł Szkup, Tomasz Przeździęk

Approved by:

Tomasz Przeździęk

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/delive
rables/D2.3 Final framework and
external APIs.pdf f

http://www.melodic.cloud/
https://melodic.cloud/
http://www.melodic.cloud/deliverables/D2.3%20Final%20framework%20and%20external%20APIs.pdf%20f
http://www.melodic.cloud/deliverables/D2.3%20Final%20framework%20and%20external%20APIs.pdf%20f
http://www.melodic.cloud/deliverables/D2.3%20Final%20framework%20and%20external%20APIs.pdf%20f

www.melodic.cloud 2

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Document

Period Covered M6-30

Deliverable No. D2.3

Deliverable Title Final framework and external APIs

Editor(s) Kyriakos Kritikos & Feroz Zahid

Author(s)

Feroz Zahid, Yiannis Verginadis, Ioannis Patiniotakis, Daniel Baur,
Daniel Seybold, Christos Chalaris, Theodora Mavrodopoulou,
Gregoris Mentzas, Geir Horn, Amirhosein Taherkordi, Kyriakos
Kritikos, Marta Rozanska, Pawel Skrzypek, Marcin Prusinski

Reviewer(s) Paweł Szkup, Tomasz Przeździęk

Work Package No. 2

Work Package Title Architecture and Data Management

Lead Beneficiary Simula Research Laboratory

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 89

http://www.melodic.cloud/

www.melodic.cloud 3

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table of Contents

List of Figures ... 4

List of Tables ... 4

1 Introduction .. 5

1.1 Scope of the Document .. 5

1.2 Structure of the Document ... 6

2 The Melodic Platform ... 7

2.1 Component Integration ... 8

2.2 External Interfaces .. 8

3 Upperware Interfaces ... 10

3.1 CP Generator .. 10

3.2 MetaSolver .. 14

3.3 Optimization Solvers .. 20

3.4 CP Solver .. 21

3.5 LA Solver .. 23

3.6 Utility Generator ...24

3.7 Solver to Deployment ... 26

3.8 DLMS ... 29

3.9 Adapter ... 52

3.10 Event Processing Management (EMS) .. 59

4 Executionware Interfaces ... 72

5 CAMEL 2.0 ... 72

6 External Interfaces and Extensibility .. 77

6.1 Overview .. 77

6.2 Upperware ... 77

Adding a new optimization solver ... 77

Implementing a new DLMS algorithm ... 78

Supporting a new storage technology .. 79

Utility functions ... 80

6.3 Executionware .. 82

http://www.melodic.cloud/

www.melodic.cloud 4

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Supporting a new Cloud provider ... 82

Adding a new data processing framework ... 83

6.4 Extending CAMEL .. 83

7 Conclusions .. 88

References ... 89

List of Figures

Figure 1: Overview of the MELODIC platform architecture... 7

Figure 2: The DLMS Controller interface .. 79

Figure 3: CAMEL update process ...84

List of Tables

Table 1: The REST API offered by the CP Generator ... 10

Table 2: The REST APIs consumed by the CP Generator .. 11

Table 3: The REST APIs offered by the MetaSolver .. 15

Table 4: The REST APIs consumed by the MetaSolver ... 19

Table 5: The REST API offered by the CP Solver .. 21

Table 6: The REST API consumed by the CP Solver ... 22

Table 7: The REST API offered by Solver to Deployment ... 27

Table 8: The REST API consumed by Solver to Deployment .. 28

Table 9: The REST API offered by DLMS ... 29

Table 10: The REST API offered by the Adapter ... 53

Table 11: The REST APIs consumed by the Adapter ... 54

Table 12: The REST APIs offered by EMS .. 59

Table 13: The REST APIs consumed by EMS ... 69

Table 14: Overview of the coverage of CAMEL 2.0 .. 73

Table 15: Comparison between the two CAMEL editors ... 75

http://www.melodic.cloud/

www.melodic.cloud 5

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1 Introduction

MELODIC has produced a multi-cloud platform which is able to deploy and dynamically provision
data-intensive applications. This platform has been evolved in the context of this project’s
lifetime. This included updates to the internal architecture of the platform components and the
gradual introduction of new but planned functionalities. Nevertheless, the overall platform
architecture for MELODIC has not been modified, highlighting its proper design from the very
beginning.

A multi-cloud platform is a software product that constantly changes and might require potential
adjustments and enhancements before getting into the market. Fortunately, the MELODIC
platform is already in the market, which witnesses its implemented ability to provide a robust and
innovative, multi-cloud and data-intensive application management offering. However, this
platform could be further improved in order to increase its added-value and further boost its
market share. Thus, the goal of this deliverable is to highlight what are the main points of
extension to this platform towards enhancing its functionality. Further, it attempts to detail the
interfaces exposed by the MELODIC platform components in form of APIs to facilitate: (a) the
understanding of how this platform operates at the interface layer; (b) based on this
understanding, to enable the proper development or adoption of existing software products or
modules and their integration with the MELODIC platform. Finally, CAMEL 2.0 is presented, which
is the newest version of CAMEL that has been followed for the development of the latest releases
of the MELODIC platform.

This deliverable plays a complementary role with respect to the ones in [1], [2], where the latter are
dedicated to explaining the internal architecture of the main platform modules, i.e., the
Upperware and Executionware. In particular, its focus is mainly on the interface layer and, thus,
does not need to enter details about what is the internal architecture of a certain component and
how it has been realised. However, the joining of the knowledge of all these deliverables will be
the main knowledge and reference point for the whole platform, raising the level of its
understanding as well as clarifying to the ultimate degree how the platform is functioning and
how it can be extended.

1.1 Scope of the Document

This document is intended for the developers interested in learning about the interfaces of the
Melodic components for extending the Melodic platform and providing third-party software
integrations. Parts of the document require basic understanding of how Melodic works, and we
refer readers to the Melodic deliverable D2.2 ‘Architecture and Initial Feature Definitions’ [3] for
more details about the architecture of the Melodic platform.

http://www.melodic.cloud/

www.melodic.cloud 6

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1.2 Structure of the Document

This deliverable is structured as follows. Chapter 2 provides an overview of the Melodic platform
in terms of its high-level architecture, the way its components are integrated and which kinds of
APIs it offers to its potential adopters. Chapters 3 and 4 detail the APIs of the two main modules
of the Melodic platform, i.e., the Upperware and Executionware, respectively. Chapter 5 is
dedicated to analysing the new version of CAMEL 2.0 which is exploited by the MELODIC platform
both for application model editing as well as following the models@runtime paradigm. Chapter 6
explicates the main extension points in Upperware, Executionware as well as CAMEL Chapter 7
concludes this deliverable

http://www.melodic.cloud/

www.melodic.cloud 7

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2 The Melodic Platform

Figure 1: Overview of the MELODIC platform architecture

The Melodic platform is conceptually divided into three main component groups, the Melodic
interfaces to the end users, the Upperware, and the Executionware. The Melodic interfaces to the
end users include tools and interfaces used by the Melodic users to model their applications and
datasets and interact with the Melodic platform. The Melodic modelling interfaces, through the
CAMEL modelling language [4], provide a rich set of domain-specific languages (DSLs) which
cover different modelling aspects, spanning both the design and the runtime of a Cloud
application as well as data modelling traits. Applications and data models created through the
modelling interfaces, in the form of CAMEL, are given as input to the Melodic Upperware. The job
of the Upperware is to calculate the optimal data placements and application deployments on
dynamically acquired Cross-Cloud resources in accordance with the specified application and
data models in CAMEL by considering the current Cloud performance, workload situation, and
costs. The actual Cloud deployments are carried out through the Executionware. The
Executionware is capable of managing and orchestrating diverse Cloud resources, while also
enables support for cross-cloud monitoring of the deployed applications. Besides the three main
component groups, two auxiliary services, for enabling unified and integrated event notifications
as well as warranting secure operations with the Melodic platform, respectively, have been also
designed. An overview of the Melodic architecture is given in Figure 1.

http://www.melodic.cloud/

www.melodic.cloud 8

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2.1 Component Integration

To realise the Melodic platform, different Melodic components need to interact with each other
and exchange information in an efficient and secure manner. Moreover, as the Melodic platform
will be developed as an integration of the available open source technologies, while providing the
required extensions for efficient cross-cloud data-intensive applications, efficient integration
mechanisms are key to successful implementation.

The components in the Melodic platform are integrated through two separate integration layers,
the Control Plane and the Monitoring Plane, each bringing its own set of unique requirements. In
brief, the Control Plane is responsible for controlling actions within a cloud application
management process (e.g., deployment), and, thus, is reliable and transactional. The Monitoring
Plane, on the other hand, senses and aggregates a large amount of monitoring data and, thus,
requires fast data transfer. Based on a detailed evaluation of the integration and adaptation
requirements of each plane, a hybrid solution [3] with two different integration methods has been
derived to ensure that the requirements of the two different planes are completely fulfilled.

The Control Plane implementation is based on an Enterprise Service Bus (ESB) architecture [5]
with process orchestration achieved through Business Process Management (BPM). The ESB
architecture utilises a centralised bus for message propagation between components.
Components publish messages to the ESB, which are then forwarded to all subscribing
components. BPM orchestration is used to orchestrate invocation of methods from underlying
Melodic components in the context of cloud application management processes. To this end, ESB
integration with BPM is a flexible integration method allowing both an easy modification to the
cloud application management process workflows, as well as the reusability of services exposed
by a given component in various processes and features of the system/platform [6]. For the
Monitoring Plane, a queue based message broker has been employed ensuring fast message
delivery [7].

2.2 External Interfaces

The Melodic platform features external interfaces which enable: (a) component integration in the
context of application management processes; (b) third-party software and services to be
integrated with it. As such, these interfaces enable the definition, enactment (data-intensive) and
overall management of multi-cloud applications. Further, they could give rise to, e.g., building a
more complete multi-/cross-cloud application management platform allowing to realise missing
platform features as well as enhancing the platform’s functionality to, e.g., enable interfacing with
additional cloud providers. Due to adopting a service-oriented architecture with an ESB, the
platform’s external interfaces include not only UIs like those mentioned above (CAMEL editor,

http://www.melodic.cloud/

www.melodic.cloud 9

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

metadata schema editor and dashboard) but also REST APIs that encapsulate the functionality of
the platforms components.

These APIs are detailed in the next two chapters. The API analysis is facilitated through the use
of tables which conform to a particular structure, covering the following information per each API
operation:

 Operation’s endpoint and HTTP method

 Input and output parameters

 Examples of a request and response that could be issued and given back when calling

this API operation

Further, this analysis is conducted per each platform component by unveiling both the API that
it exposes as well as the API operations it needs to consume and, thus, interact with (offered by
other platform components). Such information is valuable according to the following directions:

 It sets the main integration points in form of API operations between the platform

components

 Such integration points also unveil how external software could be integrated with

suitable, corresponding platform components by unveiling which API is offered and

consumed by a platform component, it enables third party developers or platform

extenders to replace this platform component with an enhanced implementation of it in

order to increase the added-value of the MELODIC platform.

http://www.melodic.cloud/

www.melodic.cloud 10

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3 Upperware Interfaces

The Upperware module in the Melodic platform allows the reasoning and adaptive provisioning
of multi-/cross-Cloud applications. As mentioned in Chapter 2, Upperware introduces the
necessary functionality for calculating the optimal data placements and application deployments
across Cross-Cloud resources, abiding to requirements and constraints described in a CAMEL
model. These core functionalities are offered by the following Melodic software components: i) CP
Generator; ii) Metasolver; iii) CP Solver; iv) LA Solver; v) Utility Generator; vi) Solver to Deployment;
vii) DLMS; viii) Adapter; and ix) EMS.

In the following sections, we go through each Upperware component and detail the interfaces that
each supplies and consumes, respectively, in form of REST APIs. To be noted here that the
consumed interfaces are either supplied by other Upperware components, the platform’s process
management system or the Executionware. A complete analysis of the Upperware modules can
be found in the deliverables: i) D3.4 - Workload optimization recommendation and adaptation
enactment [1] and ii) D3.5 - MELODIC Upperware [8].

3.1 CP Generator

The CP Generator is the component responsible for constructing the CP (optimisation) model that
needs to be solved by the Solvers coordinated by the Meta-Solver so as to produce the optimal
deployment plan of the user application. To this end, this component offers one API endpoint with
one operation dedicated to the construction of this problem based on the user application‘s
CAMEL model. On the other hand, it consumes two operation APIs: one from the Notification
Service to clarify that the CP model construction has been finished and one from the
Executionware module to fetch the node candidates matching the requirements of each
application component. Table 1 showcases both the offered and consumed API operations of CP
Generator.

Table 1: The REST API offered by the CP Generator

Operation Summary
End Point: /constraintProblem

HTTP Method: POST

Description
This operation can be executed for constructing the CP model for a user
application out of the application’s CAMEL model and the current
offerings from cloud providers.

http://www.melodic.cloud/

www.melodic.cloud 11

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Parameters

applicationId:

String [INPUT] ― The identifier of the application

notificationURI:

String [INPUT] ― The URI of an endpoint to send the result of
Constraint Problem creation.

watermark:

Watermark [INPUT] ― Watermark of the message. Stores information
about origin of the message.

Request Example

{

 "applicationId": "FCR",

 "notificationURI":

"/api/generator/constraintProblemNotification/5dbf4548-f9f1-

11e7-a29c-02420a0a0004/ConstraintProblemNotification",

 "watermark": {

 "user": "mprusinski",

 "system": "Process",

 "date": "2018-01-15T12:41:11+0000",

 "uuid": "5dbf4548-f9f1-11e7-a29c-02420a0a0004"

 }

}

Response Example
HTTP status: 200

no body

In Table 2 we explain the REST APIs consumed by CP Generator.

Table 2: The REST APIs consumed by the CP Generator

Operation Summary
End Point:

/api/generator/constraintProblemNotification/{pro
cessId}/{subjectId}

HTTP Method: POST

Description This operation is used to communicate the result of the CP model
creation (whether successful or not) to the Control Process. The

http://www.melodic.cloud/

www.melodic.cloud 12

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

processId is a definition of the currently running process while the
subjectId is the id of this request.

Offered by: Control Plane

Parameters

applicationId:

String [INPUT] ― The identifier of the application

cdoResourcePath:

String [INPUT] ― The path in the CDO server where CP generator
produced models can be found.

result:

Result [INPUT] ― The result of creating CP model.

watermark:

 Watermark [INPUT] ― Watermark of the message. Stores information
about origin of the message.

Request Example

{

 applicationId = "FCR",

 cdoResourcePath = "upperware-

models/FCRApp1545987428463",

 result = {

 status = "SUCCESS"

 },

 watermark = {

 user = "cpGenerator",

 system = "cpGenerator",

 date = "2018-12-28T08:57:21+0000",

 uuid = "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 },

}

Response Example

HTTP status:

200, no body

http://www.melodic.cloud/

www.melodic.cloud 13

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point:

/api/generator/constraintProblemNotification/{pro
cessId}/{subjectId}

HTTP Method: POST

Description

This method is called per each application component to discover
those cloud offerings (termed as node candidates) that suit all its
requirements.

Offered by: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/findNodeCandidates

Request Example

[{

 "requirementClass": "hardware",

 "requirementAttribute": "ram",

 "requirementOperator": "GEQ",

 "value": "8100",

 "type": "AttributeRequirement"

 }, {

 "requirementClass": "hardware",

 "requirementAttribute": "ram",

 "requirementOperator": "LEQ",

 "value": "10072",

 "type": "AttributeRequirement"

 }, {

 "requirementClass": "hardware",

 "requirementAttribute": "cores",

 "requirementOperator": "GEQ",

 "value": "1",

 "type": "AttributeRequirement"

 }, {

 "requirementClass": "hardware",

 "requirementAttribute": "cores",

 "requirementOperator": "LEQ",

 "value": "1",

 "type": "AttributeRequirement"

 }, {

 "requirementClass": "location",

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/findNodeCandidates

www.melodic.cloud 14

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 "requirementAttribute": "geoLocation.country",

 "requirementOperator": "IN",

 "value": "MD, Europe, RO, Baltic_Region, PT, VA, DK,

SE, Balkan_Peninsula, FR, LI, Scandinavia, BG, LU, RU,

southern_Europe, MC, MK, Benelux, HR, FO, BE, PL,

northern_Europe, AT, SI, IS, BA, HU, LT, RS, UA, CH, CZ, SK,

LV, MT, SM, ME, AL, AD, EE, GR, IT, NO, eastern_Europe,

western_Europe, NL, BY, GB, DE, Iberian_Peninsula, FI, IE,

Nordic_Region, ES",

 "type": "AttributeRequirement"

 }, {

 "requirementClass": "cloud",

 "requirementAttribute": "type",

 "requirementOperator": "EQ",

 "value": "CloudType::PUBLIC",

 "type": "AttributeRequirement"

 }, {

 "constraint": "nodes->forAll(type =

NodeType::IAAS)",

 "type": "OclRequirement"

 }

]

3.2 MetaSolver

The Metasolver is the Upperware component used for coordinating and supporting the Constraint
Problem (CP) solving process. Specifically, the Metasolver undertakes the task of selecting an
appropriate solver for a given CP problem and subsequently verifying that the solution yielded by
this solver is significantly better than the currently deployed one. According to that decision, a
reconfiguration process, based on the new solution, is realised as a new application deployment
topology, across multiple clouds.

The Metasolver offers a certain REST API, as shown in Table 3, which is supplied by one of its core
sub-components named as REST Controller. This API is detailed in the following table. In
summary, it includes operations for assigning solvers to a CP model, evaluating its solution as
well as updating the configuration of event subscriptions and checking the Meta-Solver health
status.

http://www.melodic.cloud/

www.melodic.cloud 15

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 3: The REST APIs offered by the MetaSolver

Operation Summary
End Point: /constraintProblemEnhancement

HTTP Method: POST

Description
This method is called for the assignment of the right solver(s) to a
certain CP model which is identified by the path to the (CDO) Models
Repository.

Parameters

application-id: String [INPUT/OUTPUT]― The identifier of the
application

cdo-models-path: String [INPUT] ― The path in the Models Repository
where models required can be found

result: Notification result [OUTPUT]

status: "SUCCESS", "ERROR"

errorCode: Specific error code

errorDescription: Description of an error

designated-solver [OUTPUT]:
cpsolver,lasolver, milpsolver, nonemilpsolver, none

Request Example

{

 applicationId = "FCR",

 cdoResourcePath = "upperware-models/FCRApp1545987428463"

}

Response Example

{

 applicationId = "FCR",

 result = {

 status = "SUCCESS"

 }

 designated-solver = "cpsolver"

}

http://www.melodic.cloud/

www.melodic.cloud 16

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /solutionEvaluation

HTTP Method: POST

Description
This method is called for evaluating the suitability of a CP model
solution. If the evaluation result is affirmative, then a (re-)configuration
of the user application will be launched.

Parameters

application-id: String [INPUT/OUTPUT]― The identifier of the
application

cdo-models-path: String [INPUT] ― The path in the Models Repository
where models required can be found

evaluation-result [OUTPUT]:
positive, negative, error

Request Example

{

 applicationId = "FCR",

 cdoResourcePath = "upperware-models/FCRApp1545987428463"

}

Response Example

{

 applicationId = "FCR",

 evaluation-result = "positive"

}

Operation Summary
End Point: /updateSolution

HTTP Method: POST

Description
This method is called for updating the solution to a CP model which
could lead to an application’s reconfiguration.

Parameters

application-id: String [INPUT/OUTPUT]― The identifier of the
application

cdo-models-path: String [INPUT] ― The path in the Models Repository
where models required can be found

evaluation-result [OUTPUT]:
positive, negative, error

http://www.melodic.cloud/

www.melodic.cloud 17

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Request Example

{

 applicationId = "FCR",

 cdoResourcePath = "upperware-models/FCRApp1545987428463"

 deployment-result = {

 status = "SUCCESS"

 }

}

Response Example

{

 applicationId = "FCR",

 update-result = {

 status = "SUCCESS"

 }

}

Operation Summary
End Point: /updateConfiguration

HTTP Method: POST

Description
This method is called for evaluating the suitability of a CP model
solution. If the evaluation result is affirmative, then a (re-)configuration
of the user application will be launched.

Parameters

mvv: map [INPUT] ― an associative array (i.e. map) where a current-
config variable (contained in the deployed solution) is mapped to a CP
metric in CP model. This mapping is used for copying the (actual)
values of current-config. variables onto the corresponding CP metrics
of CP model, in order to make them available to solvers for the next
solving iteration.

subscriptions: array [INPUT] ― an array of subscription objects. Each
subscription object is used to instruct Metasolver, to connect to a
specific event broker and subscribe to a certain event topic. Each
subscription object contains the following information:

 topic: String [INPUT] ― The name of event topic where Metasolver
will subscribe

 url: String [INPUT] ― the connection string of the event broker
(including protocol, address, port and other connection parameters)

http://www.melodic.cloud/

www.melodic.cloud 18

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 client-id: String [INPUT] ― An optional client name used to identify
the Metasolver connection when listing the active connections of
an event broker

 type: String [INPUT] ― The type of events sent in this topic. Two
values are expected:

o ‘MVV’: meaning that values of the received events must be
extracted and used to update CP model

o ‘SCALE’: meaning that when an event is received, Metasolver
must request a new reconfiguration iteration to start.

Request Example

{

 ‘mvv’: [

 <sol-var> : <cp-metric>,

 …

],

 ‘subscriptions’:

 [{

 'topic': <string>,

 'url': <string>,

 'client-id': <string>,

 'type': <string>

 },

 …

]

}

Response Example Text/Plain string “OK”

Operation Summary
End Point: /health

HTTP Method: GET

Description Via this operation, the health status of the Meta-Solver can be obtained.

Parameters N/A

Request Example N/A

Response Example N/A

http://www.melodic.cloud/

www.melodic.cloud 19

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

In Table 4, we explain the REST APIs consumed by Metasolver. In summary, this table summarizes
operations dedicated to: (a) informing the control process that a new reconfiguration iteration
must be started; (b) passing to EMS the application’s CP model id.

Table 4: The REST APIs consumed by the MetaSolver

Operation Summary
End Point: /api/Metasolver/deploymentProcess

HTTP Method: POST

Description

This operation is invoked in order to request starting a new
reconfiguration iteration.

Offered By: Control Plane

Parameters

application-id: String [INPUT/OUTPUT]― The identifier of the
application-id: String [INPUT] ― The identifier of the application

use-existing-cp: Boolean [INPUT] ― Boolean flag indicating whether
the current CP model must be reused

cdo-resource-path: String ― The path in the Models Repository where
required CP model resides. Obligatory when useExistingCP=true

result: [OUTPUT]

status: "SUCCESS", "ERROR"

errorCode: Specific error code

errorDescription: Description of an error

process-id: String [OUTPUT] ― The process id in the Control Process

Request Example

{

 applicationId = "FCR",

 use-existing-cp=true,

 cdoResourcePath = "upperware-

models/FCRApp1545987428463",

 username = "…",

 password= "…"

}

Response Example {

 process-id = "FCR_1",

http://www.melodic.cloud/

www.melodic.cloud 20

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 result = {

 status = "SUCCESS"

 }

}

Operation Summary
End Point: /cpModelJson

HTTP Method: POST

Description

This operation is invoked in order to inform EMS about the
application’s CP model path

Offered By: EMS

Parameters cp-model-id: String [INPUT]

Request Example

{

 'cp-model-id', <string>

}

Response Example Plain text value “OK”

3.3 Optimization Solvers

The role of Melodic is to optimize the Cloud resources used by the managed application to
maximize the utility of the application with respect to its owner. The utility can be multi-
dimensional; for instance, the user may simultaneously want to minimize the cost of the Cloud
usage and maximise the performance of the application. Furthermore, the utility can be context
dependent, e.g., if it is required for the application to satisfy a given deadline, then application
performance may be play a more important role in the application utility than cost the closer one
gets to the deadline. Finally, there are constraints that must be respected for the optimal solution.
For instance, there can be a limit on the cost budget for the application deployment.

The context dependency of the solution implies that the optimization problem must be re-solved
whenever the operational context of the application changes. One context parameter can, for
instance, be the number of simultaneous users of the application. This is a random number, and
alternatively to solving the stochastic combinatorial optimization problem every time a user joins

http://www.melodic.cloud/

www.melodic.cloud 21

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

or leaves the deployed application, one may use a stateful solver trying to optimize for the
resources needed in order to serve the average or expected number of users.

The aim of any relevant Solver in deployment reasoning is to find the application configuration
that maximises its utility. The benefit is that the solvers will assign the best possible resources
needed by the application components, and the optimal number of instances needed for each
component. The Melodic platform may accommodate any number of Solvers. The Solvers may
use different methods and algorithms for solving the placement optimisation problem, such as
constraint and linear programming or reinforcement learning.

Below we describe two solvers used in the Melodic framework, namely CP Solver and LA Solver,
and present the APIs provided by each. It must be noted that to their assistance, the Utility
Generator component, described in section 3.6, is responsible for calculating the utility value used
as the optimization criterion for them.

3.4 CP Solver

The CP Solver is a constraint programming (CP) solver which is able to solve CP models that can
contain also non-linear constraints as well as functions. To this end, this component has a
simplified interface which is called each time a new CP model needs to be solved. Similarly, it also
consumes just one API operation, dedicated to informing the control process about the result of
solving the CP model assigned. The two API operations offered and consumed by this component
are detailed in the following two tables, Table 5 and Table 6, respectively.

Table 5: The REST API offered by the CP Solver

Operation Summary
End Point: /constraintProblemSolution

HTTP Method: POST

Description
This operation is called for producing a solution to the CP model via the
CP Solver.

Parameters

applicationId: String [INPUT] ― The identifier of the application

cdoModelsPath: String [INPUT] ― The path in the CDO server where CP
model can be found.

notificationURI: String [INPUT] ― The URI of an endpoint to send the
result of Constraint Problem Solution operation.

http://www.melodic.cloud/

www.melodic.cloud 22

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

watermark: Watermark [INPUT] ― Watermark of the message. Stores
information about origin of the message.

Request Example

{

 "applicationId": "FCR",

 "cdoModelsPath": "upperware-models/FCRApp1545987428463",

 "notificationURI":

"/api/cpSolver/solutionNotification/87e3c8fd-0a7e-11e9-af72-

02420a0a0012/ConstraintProblemSolutionNotification",

 "watermark": {

 "user": "Camunda",

 "system": "Camunda",

 "date": "2018-12-28T08:57:24+0000",

 "uuid": "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 }

}

Response Example
HTTP status: 200

no body

Table 6: The REST API consumed by the CP Solver

Operation Summary
End Point:

/api/cpSolver/ConstraintProblemSolutionNotificatio
n/{processId}/{subjectId}

HTTP Method: POST

Description

This method is called to highlight the finishing of the solving of a CP
model by the CP Solver to the control process.

Offered By: Control Plane

Parameters

applicationId: String [INPUT] ― The identifier of the application

cdoResourcePath: String [INPUT] ― The path in the CDO server where
CP Solver updated models can be found.

result: Result [INPUT] ― The result of creating CP model.

watermark: Watermark [INPUT] ― Watermark of the message. Stores
information about origin of the message.

http://www.melodic.cloud/

www.melodic.cloud 23

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Request Example

{

 applicationId = "FCR",

cdoResourcePath = "upperware-models/FCRApp1545987428463",

 result = {

 status = "SUCCESS"

 },

 watermark = {

 user = "CPSolver",

 system = "CPSolver",

 date = "2018-12-28T08:57:21+0000",

 uuid = "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 },

}

Response Example
HTTP status: 200

no body

3.5 LA Solver

The Learning Automata (LA) solver is a stateful solver that uses reinforcement learning to learn
the average best configuration for the constraint stochastic combinatorial problem at hand. It
works by searching for better alternatives to the configuration already deployed. This is
accomplished through a sequence of interactions with the Utility Generator where the utility of a
proposed configuration will vary depending on the application’s execution context. For instance,
if the solver proposes twice the same configuration, it may receive different utilities because the
number of application users have changed between the two utility evaluations. The goal is to pick
the configuration producing the best average utility value. Once the LA solver can conclude that
a configuration different from the currently deployed configuration yields a better average utility,
this alternative configuration is proposed for deployment to the Metasolver, and the LA Solver re-
starts the search from this.

This has two implications:

1. The solver needs to run continuously to ensure that it will, over time, observe all different

execution contexts of the application;

http://www.melodic.cloud/

www.melodic.cloud 24

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2. The solution found by the LA solver must be deployed to ensure that the solver’s view of

the world when searching for better solutions corresponds with the real measurements

of context metrics reported by the running application.

The LA Solver is written in C++ for performance reasons, and because it is based on a modular LA
framework1 in C++ developed and maintained by UiO. To facilitate its integration with Melodic, it
is encapsulated by a Java component called LA Orchestrator that defines the variables, metrics,
and constraints of the constraint model to be solved based on the CP-model derived from the
CAMEL model of the application to deploy. The metric values are initiated with the average
historical metric values if the application has already been deployed. Then, the model is compiled
and linked with the LA Solver core and started as a stand-alone background application on the
Melodic server.

The LA Solver subscribes to the metric values itself to ensure that the constraints always reflect
the current context, and a configuration candidate to be evaluated will be sent back to the LA
Orchestrator using inter process communication (IPC) based on ZeroMQ2. The LA Orchestrator
component will then evaluate the proposed configuration using the Utility Generator and return
the utility value to the LA Solver via IPC. This means that the communication and interfaces to
the Metasolver and the Utility Generator are managed by the LA Orchestrator, and this component
complies with the same interface as that of the CP-Solver presented in Table 5 and Table 6.

3.6 Utility Generator

The purpose of the Utility Generator is to evaluate each configuration, or solution candidate,
examined by a solver. This is fundamentally done in two steps: The first step identifies the set of
Node Candidates suitable for deploying the components of the given configuration. Remember
that the configuration contains resource requirements of the application components, and the
node candidates are generic virtual machine types the application owner has the accounts and
rights to use for the deployment. The Node Candidate abstraction is important for Cloud providers
that may offer a plethora of variants for the same virtual machine, in particular for academic and
community Clouds where users may upload their own specialisations of standard image types.
Seen from the application component to be deployed, all these specialisations may provide
identical resources to the component, and they are therefore examples of the same Node

1 https://bitbucket.org/GeirHo/la-framework/src/default/
2 https://zeromq.org/

http://www.melodic.cloud/
https://bitbucket.org/GeirHo/la-framework/src/default/
https://zeromq.org/

www.melodic.cloud 25

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Candidate. The Node Candidate abstraction will therefore reduce the search space and speed up
the selection.

The second step of the Utility Generator will calculate the utility value given the set of selected
Node Candidates and other parameters in the configuration proposed by the solver, like the
number of instances of a given component. This step may also include a reconfiguration penalty
calculated by the Data Management Lifecycle System (DLMS) for the reconfiguration of the data
placement implied by moving from the currently running configuration to the proposed, new
configuration. Similarly, the Adapter will also calculate a reconfiguration penalty based on the
complexity of the reconfiguration actions and possible application downtime induced by
adapting the current deployment to the new configuration by stopping and starting virtual
machines and other services.

Owing to the very high number of possible solutions candidates, i.e. new configurations, to be
evaluated, the communication between the Solver and Utility Generator needs to be as fast as
possible. For that reason, the Utility Generator does not expose any REST interface but is invoked
directly as a java library instead.

The simple usage of the Utility Generator consists of two operations. In the following tables, we
explain the interface of the Utility Generator library:

Calling the Utility Generator constructor (once):

public UtilityGeneratorApplication(String camelModelFilePath, String

cpModelFilePath, boolean readFromFile, NodeCandidates nodeCandidates,

UtilityGeneratorProperties properties);

String camelModelFilePath, the identifier of the application

String cpModelFilePath the path to the CP Model

boolean readFromFile, the information if the CAMEL and CP Model
should be read from a file or from the CDO
Models Repository

NodeCandidates nodeCandidates the cache with Node Candidates

UtilityGeneratorProperties properties the Utility Generator Properties

http://www.melodic.cloud/

www.melodic.cloud 26

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Calling evaluate method for each of produced Solutions:

public double evaluate(Collection<VariableValueDTO> solution);

Collection<VariableValueDTO> solution the solution of the Constraint Problem as a
Collection of VariableValueDTO.

where VariableValueDTO is:

public class VariableValueDTO<T extends Number> {

 private String name;

 private T value;

}

The example of the Collection<VariableValueDTO>:

[cardinality_Component_App = 3 , provider_Component_App = 1,

cardinality_Component_DB = 1, provider_Component_DB = 0]

3.7 Solver to Deployment

This component has the main duty to receive the solution to a CP model and to produce a concrete
application deployment (instance) model out of it in CAMEL. This model will then be transformed
into a detailed deployment plan and be executed by the Adapter. To this end, due to the simplified
functionality of this component, only one API operation is offered. Similarly, only one API
operation is consumed so as to communicate the result of the CP-model-to-deployment-model
transformation to the control process. These two API operations that are offered and consumed
by this component are detailed in the following two tables, Table 7 and Table 8, respectively.

http://www.melodic.cloud/

www.melodic.cloud 27

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 7: The REST API offered by Solver to Deployment

Operation Summary
End Point: /applySolution

HTTP Method: POST

Description
This operation is called to initiate the transformation of a CP model
solution to a CAMEL deployment instance model.

Parameters

applicationId: String [INPUT] ― The identifier of the application

cdoModelsPath: String [INPUT] ― The path in the CDO server where CP
model can be found.

notificationURI: String [INPUT] ― The URI of an endpoint to send the
result of Apply Solution operation.

watermark: Watermark [INPUT] ― Watermark of the message. Stores
information about origin of the message.

Request Example

{

 "applicationId": "FCR",

 "cdoModelsPath": "upperware-models/FCRApp1545987428463",

 "notificationURI":

"/api/solverToDeployment/applySolutionNotification/87e3c8fd-

0a7e-11e9-af72-02420a0a0012/ApplySolutionNotification",

 "watermark": {

 "user": "Camunda",

 "system": "Camunda",

 "date": "2018-12-28T08:57:28+0000",

 "uuid": "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 }

}

Response Example
HTTP status: 200

no body

http://www.melodic.cloud/

www.melodic.cloud 28

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 8: The REST API consumed by Solver to Deployment

Operation Summary
End Point:

/api/solverToDeployment/applySolutionNotification
/{processId}/{subjectId}

HTTP Method: POST

Description

This operation enables to inform the control process about the
transformation result from the CP model solution to the application’s
deployment instance model in CAMEL.

Offered By: Control Plane

Parameters

applicationId: String [INPUT] ― The identifier of the application

result: Result [INPUT] ― The result of creating the CP model.

watermark: Watermark [INPUT] ― Watermark of the message. Stores
information about origin of the message.

Request Example

{

 applicationId = "FCR",

 result = {

 status = "SUCCESS"

 },

 watermark = {

 user = "S2D",

 system = "S2D",

 date = "2018-12-28T08:57:21+0000",

 uuid = "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 },

}

Response Example
HTTP status: 200

no body

http://www.melodic.cloud/

www.melodic.cloud 29

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3.8 DLMS

DLMS is a very critical component in the MELODIC platform as it manages the lifecycle of big data.
This management is currently confined to the bookkeeping of metadata about all the big data
manipulated by user applications, the migration of data as well as evaluating deployment
solutions proposed by Solvers in terms of their data management cost. As such, the respective
REST API offered by this platform component includes operations that maps to the realisation of
the aforementioned three main functionalities. Table 9 details this REST API in terms of the
operations that it features.

Table 9: The REST API offered by DLMS

Operation Summary
End Point: /ds

HTTP Method: GET

Description
This operation enables to receive all the metadata about all the data sets
of a user.

Parameters

id: String [OUTPUT] ― the ID of the DS

name: String [OUTPUT] ― the name of the DS

dataSourceType: String [OUTPUT] ― the type of the data source

ufsURI: String [OUTPUT] ― the URI of the under file system (UFS)

mountPoint: String [OUTPUT] ― the mount point for the data set

Request Example /ds

Response Example

[{

 id: 1:

 name: "DS1",

 dataSourceType: "HDFS",

 ufsURI: "http://master:9000/",

 mountPoint: "/melodic/ds1"

 },

…]

http://www.melodic.cloud/

www.melodic.cloud 30

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /ds/id/{id}

HTTP Method: GET, DELETE, PUT

Description
Depending on the HTTP method involved, this operation can enable to
retrieve, delete or update the metadata about a particular data set based
on its ID.

Parameters

id: Long [INPUT/OUTPUT] ― the ID of the data set to be obtained,
deleted and stored. Output only for GET.

name: String [INPUT/OUTPUT] ― the name of the DS

ufsURI: String [INPUT/OUTPUT] ― the URI of the under file system
(UFS)

mountPoint: String [INPUT/OUTPUT] ― the mount point for the data
set

Last 3 parameters are input for PUT and output for GET.

Request Example

 /ds/id/2 → for GET/DELETE

 {

 "id": 2,

 "name": "S3BucketDatas",

 "ufsURI": "s3a://datasourcetest2/bat",

 "mountPoint": "/melodic/S3BucketDatas"

 } → for PUT

Response Example

 {

 id: 2:

 name: "S3BucketData",

 dataSourceType: "S3",

 ufsURI: "s3a://datasourcetest2/bat",

 mountPoint: "/melodic/S3BucketData"

 } → for GET

Status: 200 OK → for DELETE

Status: 204 No Content → for PUT

http://www.melodic.cloud/

www.melodic.cloud 31

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /ds/name/{name}

HTTP Method: GET, DELETE, PUT

Description
Depending on the HTTP method involved, this operation can enable to
retrieve, delete or update the metadata about a particular data set based
on its name.

Parameters

name: String [INPUT/OUTPUT] ― the name of the DS

id: Long [INPUT/OUTPUT] ― the ID of the data set to be obtained,
deleted and stored.

ufsURI: String [INPUT/OUTPUT] ― the URI of the under file system
(UFS)

mountPoint: String [INPUT/OUTPUT] ― the mount point for the data
set

Last 3 parameters are input for PUT and output for GET.

Request Example

 /ds/name/S3BucketData → for GET/DELETE

 {

 "id": 2,

 "name": "S3BucketData2",

 "ufsURI": "s3a://datasourcetest2/bat",

 "mountPoint": "/melodic/S3BucketData2"

 } → for PUT

Response Example

 {

 id: 2:

 name: "S3BucketData",

 dataSourceType: "S3",

 ufsURI: "s3a://datasourcetest2/bat",

 mountPoint: "/melodic/S3BucketData"

 } → for GET

Status: 200 OK → for DELETE

Status: 204 No Content → for PUT

http://www.melodic.cloud/

www.melodic.cloud 32

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /dataModel

HTTP Method: POST

Description
This operation enables to submit a whole CAMEL data model to the
DLMS. In result, the respective metadata (as encapsulated by this
model) will be generated and stored in DLMS.

Parameters

applicationId: String [INPUT] ― the ID of the user application

notificationURI: String [INPUT] ― The URI of an endpoint to send the
result of this operation

watermark: Watermark (optional) [INPUT] ― Watermark of the
message. Stores information about origin of the message

Request Example

 {

 "applicationId": "PeopleFlow2",

 "notificationURI": "/notification/msg"

 }

Response Example Status: 201 Created

Operation Summary
End Point: /migrate/file

HTTP Method: POST

Description
This operation enables to migrate a file from an origin to a destination
path.

Parameters
pathFrom: String [INPUT] ― the origin path of the file to migrate

pathTo: String [INPUT] ― the destination path for the file migration

Request Example

{

"pathFrom": "/melodic/S3BucketDatas/test.txt",

"pathTo": "/melodic/S3Bucket2/"

}

Response Example Status: 200 OK

http://www.melodic.cloud/

www.melodic.cloud 33

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /migrate/dir

HTTP Method: POST

Description
This operation enables to migrate a directory from an origin to a
destination path.

Parameters

pathFrom: String [INPUT] ― the origin path of the directory to migrate

pathTo: String [INPUT] ― the destination path of the directory to
migrate

Request Example

{

"pathFrom": /melodic/S3BucketDatas/",

"pathTo": "/melodic/S3Bucket2/"

}

Response Example Status: 200 OK

Operation Summary
End Point: /migrate/ds

HTTP Method: POST

Description This operation enables to migrate a data set to a destination path.

Parameters
id: Long [INPUT] ― the ID of the DS to migrate

pathTo: String [INPUT] ― the destination path for the DS to be migrated

Request Example

{

 "id": 3,

 "pathTo": "/melodic2"

}

Response Example

Status: 200 OK

http://www.melodic.cloud/

www.melodic.cloud 34

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /cloudprovider

HTTP Method: GET, POST

Description
Depending on the HTTP method involved, this operation can enable to
retrieve metadata about all cloud providers currently handled as well as
to store metadata about a new one.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the cloud provider

name: String [INPUT/OUTPUT] ― the name of the cloud provider

notes: String (optional) [INPUT/OUTPUT] ― some details about this
cloud provider

public: Boolean (optional) [INPUT/OUTPUT] ― indication of whether
this provider supplies a public cloud

All parameters are given as input only for POST

Request Example

{

"name": Google,

"public": "True"

} → for POST

Response Example

 [{

id: 1,

name: "AWS",

notes: "",

public: true

},

…] → for GET

Status: 200 OK → for POST

Operation Summary
End Point: /cloudprovider/search?id={id}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain cloud
provider based on its ID.

http://www.melodic.cloud/

www.melodic.cloud 35

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Parameters

id: Long [INPUT/OUTPUT] ― the ID of the cloud provider being
searched

name: String [OUTPUT] ― the name of the cloud provider

notes: String (optional) [OUTPUT] ― some details about this cloud
provider

public: Boolean (optional) [OUTPUT] ― indication of whether this
provider supplies a public cloud

Request Example /cloudprovider/search/?id=1

Response Example

{

 id: 1,

 name: "AWS",

 notes: "",

 public: true

}

Operation Summary
End Point: /cloudprovider/search?name={name}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain cloud
provider based on its name.

Parameters

name: String [INPUT/OUTPUT] ― the name of the cloud provider being
searched

id: Long [OUTPUT] ― the provider’s ID

notes: String (optional) [OUTPUT] ― some details about this cloud
provider

public: Boolean (optional) [OUTPUT] ― indication of whether this
provider supplies a public cloud

Request Example /cloudprovider/search/?name=aws

Response Example

{

 id: 1,

 name: "AWS",

 notes: "",

http://www.melodic.cloud/

www.melodic.cloud 36

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 public: true

}

Operation Summary
End Point: /cloudprovider/update?id={id}

HTTP Method: PUT

Description
This operation enables to update the metadata about a certain cloud
provider based on its ID.

Parameters

id: Long [INPUT] ― the ID of the cloud provider being updated

name: String [INPUT] ― the (possibly new) name of the cloud provider

notes: String (optional) [INPUT] ― updated notes for the cloud provider

public: Boolean (optional) [INPUT] ― potential change or determination
of whether this provider supplies a public cloud

Request Example

{

"name":"Google",

"public": "True"

}

Response Example Status: 204 No Content

Operation Summary
End Point: /cloudprovider/update?name={name}

HTTP Method: PUT

Description
This operation enables to update the metadata about a certain cloud
provider based on its name.

Parameters

name: String [INPUT] ― the name of the cloud provider being updated

id: Long [INPUT] ― the (potentially modified) ID of the cloud provider

notes: String (optional) [INPUT] ― updated notes for the cloud provider

public: Boolean (optional) [INPUT] ― potential change or determination
of whether this provider supplies a public cloud

Request Example
{

"name":"Google",

"public": "True"

http://www.melodic.cloud/

www.melodic.cloud 37

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

}

Response Example Status: 204 No Content

Operation Summary
End Point: /datacenter

HTTP Method: GET, POST

Description
Depending on the HTTP method involved, this operation enables to
obtain the metadata about all data centres or to store the metadata
about a certain data centre.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the datacenter (DC)

name: String [INPUT/OUTPUT] ― the DC name

regionId: Long (optional) [INPUT/OUTPUT] ― the ID of the region in
which the DC is situated

cloudProviderId: Long (optional) [INPUT/OUTPUT] ― the ID of the DC’s
provider

All parameters are input for POST and output for GET

Request Example

{

 "name": "UK-West",

 "regionId": 3,

 "cloudProviderId": 1,

 "public": "True"

} → for POST

Response Example

[{

 id: 1,

 name: "ca-central-1",

 regionId: 1,

 cloudProviderId: 1

 },

…] → for GET

Status: 200 OK → for POST

http://www.melodic.cloud/

www.melodic.cloud 38

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /datacenter /search?id={id}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain data
centre based on its ID.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the datacenter (DC)
being searched

name: String [OUTPUT] ― the DC name

regionId: Long (optional) [OUTPUT] ― the ID of the region in which the
DC is situated

cloudProviderId: Long (optional) [OUTPUT] ― the ID of the DC’s
provider

Request Example /datacenter/search/?id=1

Response Example

[{

 id: 1,

 name: "ca-central-1",

 regionId: 1,

 cloudProviderId: 1

 },

…] → for GET

{

 id: 1,

 name: "ca-central-1",

 regionId: 1,

 cloudProviderId: 1

}

http://www.melodic.cloud/

www.melodic.cloud 39

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /datacenter/search?name={name}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain data
centre based on its name.

Parameters

id: Long (optional) [OUTPUT] ― the ID of the datacenter (DC)

name: String [INPUT/OUTPUT] ― the name of DC being searched

regionId: Long (optional) [OUTPUT] ― the ID of the region in which the
DC is situated

cloudProviderId: Long (optional) [OUTPUT] ― the ID of the DC’s
provider

Request Example /datacenter/search/?name=ca-central-1

Response Example

[{

 id: 1,

 name: "ca-central-1",

 regionId: 1,

 cloudProviderId: 1

 },

…] → for GET

{

 id: 1,

 name: "ca-central-1",

 regionId: 1,

 cloudProviderId: 1

}

http://www.melodic.cloud/

www.melodic.cloud 40

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /datacenter/update?id={id}

HTTP Method: PUT

Description
This operation enables to update the metadata about a certain data
centre based on its ID.

Parameters

id: Long (optional) [INPUT] ― the ID of the DC being updated

name: String [INPUT] ― the (potentially updated) DC name

regionId: Long (optional) [INPUT] ― the (potentially updated) ID of the
region in which the DC is situated

cloudProviderId: Long (optional) [INPUT] ― the (potentially updated) ID
of the DC’s provider

Request Example

{

 "name":" UK-West",

 "regionId": "5"

}

Response Example Status: 204 No Content

Operation Summary
End Point: /datacenter/update?name={name}

HTTP Method: PUT

Description
This operation enables to obtain the metadata about a certain data
centre based on its name.

Parameters

id: Long (optional) [INPUT] ― the (potentially updated) DC ID

name: String [INPUT] ― the name of the DC being updated

regionId: Long (optional) [INPUT] ― the (potentially updated) ID of the
region in which the DC is situated

cloudProviderId: Long (optional) [INPUT] ― the (potentially updated) ID
of the DC’s provider

Request Example

{

 "name":" UK-West",

 "regionId": "5"

}

http://www.melodic.cloud/

www.melodic.cloud 41

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Response Example Status: 204 No Content

Operation Summary
End Point: /region

HTTP Method: GET, POST

Description
Depending on the HTTP method involved, this operation enables to
either obtain the metadata about all regions handled or to update the
metadata about a specific region.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the region

name: String [INPUT/OUTPUT] ― the name of the region

cloudProviderId: Long (optional) [INPUT/OUTPUT] ― the id of the
provider of this cloud-specific region

All parameters are input for POST and output for GET

Request Example

{

"name":" Washington"

} → for POST

Response Example

[{

id: 1,

name: "Central",

cloudProviderId: 1

},

…] → for GET

Status: 200 OK → for POST

Operation Summary
End Point: /region /search?id={id}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain region
based on its ID.

http://www.melodic.cloud/

www.melodic.cloud 42

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Parameters

id: Long [INPUT/OUTPUT] ― the ID of the region being searched

name: String [OUTPUT] ― the name of the region

cloudProviderId: Long (optional) [OUTPUT] ― the id of the provider of
this cloud-specific region

Request Example /region/search/?id=1

Response Example

{

id: 1,

name: "Central",

cloudProviderId: 1

}

Operation Summary
End Point: /datacenter/search?name={name}

HTTP Method: GET

Description
This operation enables to update the metadata about a certain region
based on its ID.

Parameters

id: Long [OUTPUT] ― the ID of the region

name: String [INPUT/OUTPUT] ― the name of the region being
searched

cloudProviderId: Long (optional) [OUTPUT] ― the id of the provider of
this cloud-specific region

Request Example /region/search/?name=Central

Response Example

{

id: 1,

name: "Central",

cloudProviderId: 1

}

http://www.melodic.cloud/

www.melodic.cloud 43

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /region /update?id={id}

HTTP Method: PUT

Description
This operation enables to obtain the metadata about a certain region
based on its name.

Parameters

id: Long (optional) [INPUT] ― the ID of the region being updated

name: String [INPUT] ― the (potentially updated) region name

cloudProviderId: Long (optional) [INPUT] ― the (potentially updated) id
of the provider of this cloud-specific region

Request Example

{

"name":"Central",

"cloudProviderId":"5"

}

Response Example Status: 204 No Content

Operation Summary
End Point: /region /update?name={name}

HTTP Method: PUT

Description
This operation enables to update the metadata about a certain region
based on its name.

Parameters

id: Long (optional) [INPUT] ― the (potentially updated) region ID

name: String [INPUT] ― the name of the region being updated

cloudProviderId: Long (optional) [INPUT] ― the (potentially updated) id
of the provider of this cloud-specific region

Request Example

{

"name":"Central",

"cloudProviderId":"5"

}

Response Example
Status: 204 No Content

http://www.melodic.cloud/

www.melodic.cloud 44

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /applicationcomponent

HTTP Method: GET, POST

Description
Depending on the HTTP method involved, this operation enables to
either obtain the metadata about all application components or to store
the metadata about a certain application component.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the application
component

name: String [INPUT/OUTPUT] ― the application component’s name

All parameters are input for POST and output for GET

Request Example

{

"name":"ac3"

} → for POST

Response Example

[

{

id: 1,

name: "ac1"

},

…] → for GET

Status: 200 OK → for POST

Operation Summary
End Point: /applicationcomponent/search?id={id}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain
application component based on its ID.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the application
component being searched

name: String [OUTPUT] ― the application component’s name

Request Example /applicationcomponent/search/?id=1

http://www.melodic.cloud/

www.melodic.cloud 45

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Response Example

{

id: 1,

name: "ac1",

}

Operation Summary
End Point: /applicationcomponent/search?name={name}

HTTP Method: GET

Description
This operation enables to obtain the metadata about a certain
application component based on its name.

Parameters

id: Long (optional) [OUTPUT] ― the ID of the application component

name: String [INPUT/OUTPUT] ― the name of the application
component being searched

Request Example /applicationcomponent/search/?name=ac1

Response Example

{

id: 1,

name: "ac1",

}

Operation Summary
End Point: /applicationcomponent/update?id={id}

HTTP Method: PUT

Description
This operation enables to update the metadata about a certain
application component based on its ID.

Parameters

id: Long (optional) [INPUT] ― the ID of the application component
being updated

name: String [INPUT] ― the updated name of the application
component

Request Example

{

"name":"ac4"

}

http://www.melodic.cloud/

www.melodic.cloud 46

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Response Example Status: 204 No Content

Operation Summary
End Point: /applicationcomponent/update?name={name}

HTTP Method: PUT

Description
This operation enables to update the metadata about a certain
application component based on its ID.

Parameters

id: Long (optional) [INPUT] ― the (potentially updated) ID of the
application component

name: String [INPUT] ― the name of the application component being
updated

Request Example

{

"name":"ac4"

}

Response Example Status: 204 No Content

Operation Summary
End Point: /datasource

HTTP Method: GET, PUT

Description
Depending on the HTTP method involved, this operation can enable to
either obtain the metadata about all data sources or to store the
metadata about a certain data source.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the data source

name: String [INPUT/OUTPUT] ― the name of the data source

All parameters are input for POST and output for GET

Request Example

{

"name":"ds3"

} → for POST

Response Example

[{

 id: 1,

 name: "ds1"

 },

http://www.melodic.cloud/

www.melodic.cloud 47

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

…] → for GET

Status: 200 OK → for POST

Operation Summary
End Point: /datasource /search?id={id}

HTTP Method: GET

Description
This operation enables to obtain the metadata of a certain resource
based on its ID.

Parameters

id: Long (optional) [INPUT/OUTPUT] ― the ID of the data source being
searched

name: String [OUTPUT] ― the name of the data source

Request Example /datasource/search/?id=1

Response Example

{

id: 1,

name: "ds1"

}

Operation Summary
End Point: /datasource /search?name={name}

HTTP Method: GET

Description
This operation enables to obtain the metadata of a certain resource
based on its ID.

Parameters

id: Long (optional) [OUTPUT] ― the ID of the data source

name: String [INPUT/OUTPUT] ― the name of the data source being
searched

Request Example /datasource/search/?name=Central

Response Example

{

id: 1,

name: "ds1"

}

http://www.melodic.cloud/

www.melodic.cloud 48

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /datasource /update?id={id}

HTTP Method: PUT

Description
This operation enables to update the metadata of a certain resource
based on its ID.

Parameters
id: Long (optional) [INPUT] ― the ID of the data source being updated

name: String [INPUT] ― the updated name of the data source

Request Example

{

"id":"3"

"name":"ds3"

}

Response Example Status: 204 No Content

Operation Summary
End Point: /datasource /update?name={name}

HTTP Method: PUT

Description
This operation enables to update the metadata of a certain resource
based on its name.

Parameters

id: Long (optional) [INPUT] ― the (potentially updated) ID of the data
source being updated

name: String [INPUT] ― the name of the data source being updated

Request Example

{

"id":"3"

"name":"ds3"

}

Response Example

Status: 204 No Content

http://www.melodic.cloud/

www.melodic.cloud 49

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /applicationcomponent_datasource_affinity

HTTP Method: GET

Description
This operation enables to obtain the affinity between an application
component and a data set.

Parameters

appCompId: Long [OUTPUT] ― the application component’s ID

dsID: Long [OUTPUT] ― the data set’s ID

affinity: Double [OUTPUT] ― the affinity between the application
component and data set

Request Example
N/A

Response Example

[

 {

 acDsKey: {

 appCompId: 1,

 dsID: 1

 },

 affinity: 0.076

 },

…]

Operation Summary
End Point: /datacenterzone

HTTP Method: GET

Description This operation enables to obtain the metadata for all data centre zones.

Parameters
dataCenterId: Long [OUTPUT] ― the ID of the data centre

zone: Long [OUTPUT] ― the ID of the DC’s zone

Request Example N/A

http://www.melodic.cloud/

www.melodic.cloud 50

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Response Example

[

 {

 dataCenterId: 1,

 zone: 16

 },

…]

Operation Summary
End Point: /datacenterzone/search?datacenter_id={id}

HTTP Method: GET

Description
This operation enables to obtain the metadata for the zone involved in
the data centre whose ID is given as input.

Parameters
id: Long [INPUT/OUTPUT] ― the ID of the data centre

zone: Long [OUTPUT] ― the ID of the DC’s zone

Request Example /datacenterzone/search?datacenter_id=1

Response Example

{

 dataCenterId: 1,

 zone: 16

}

Operation Summary
End Point: /datacenterzone/search?zone_id=={zone}

HTTP Method: GET

Description
This operation enables to obtain the metadata for a specific zone based
on its ID.

Parameters
id: Long [INPUT/OUTPUT] ― the ID of the data centre

zone: Long [OUTPUT] ― the ID of the DC’s zone

http://www.melodic.cloud/

www.melodic.cloud 51

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Request Example /datacenterzone/search?zone_id=16

Response Example

{

 dataCenterId: 1,

 zone: 16

}

Operation Summary
End Point: /datacenterzone/update?datacenter_id={id}

HTTP Method: PUT

Description
This operation enables to update the metadata for a specific zone based
on the ID of its mapped data centre.

Parameters
id: Long [INPUT/OUTPUT] ― the ID of the data centre being updated

zone: Long [OUTPUT] ― the updated ID of the DC’s zone

Request Example

/datacenterzone/update?datacenter_id=1

{

 "dataCenterId":"1"

 "zone":"15"

}

Response Example

Status: 204 No Content

Operation Summary
End Point: / dlmsController/utilityValue

HTTP Method: PUT

Description

DlmsDiffBundle: List<DlmsConfigurationDiff> [INPUT] ― this is a list of
configuration differences between the current and proposed solution.
It includes the following internal information per item:

id: Long [INPUT] ― unique identifier for the node candidate

NodeCandidate: String [INPUT] ― the name of the node candidate

http://www.melodic.cloud/

www.melodic.cloud 52

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

cardinality: Integer [INPUT] ― the difference in the cardinality of the
identified component with respect to the current and proposed
solution

results: Double [OUTPUT] ― the actual utility of the deployment solution
examined from the point of view of the DLMS

Parameters
id: Long [INPUT/OUTPUT] ― the ID of the data centre being updated

zone: Long [OUTPUT] ― the updated ID of the DC’s zone

Request Example

[{

 "id":"1",

 "NodeCandidate":"cand1",

 "cardinality":"1"

},

{

 "id":"2",

 "NodeCandidate":"cand2",

 "cardinality":"2"

}]

Response Example

{

"results": “0.5”

}

3.9 Adapter

The Adapter is the component responsible for orchestrating the deployment of a multi-cloud data-
intensive application. Initially, it takes as input a deployment instance model in CAMEL and
transforms it into a detailed deployment plan. After being verified, this plan is then orchestrated
by executing respective deployment commands via using the REST API of the Executionware.
Further, the Adapter is responsible for communicating with the EMS in order to construct and
update the application’s low-level monitoring infrastructure in terms of particular sensors.

Based on the above analysis, from an external point of view, the Adapter offers a single API
operation, dedicated to initiating the application deployment. In addition, it consumes three main
interfaces: (a) one from the Notification Service to inform the control process about the outcome

http://www.melodic.cloud/

www.melodic.cloud 53

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

of the application deployment attempt; (b) one from the Executionware for issuing the
deployment commands; (c) another from the EMS to retrieve the information of the sensors to
deploy in the application component nodes so as to establish the application’s low-level
monitoring infrastructure. As such, the following two tables, Table 10 and Table 11 detail the REST
APIs offered and consumed by this MELODIC platform component.

Table 10: The REST API offered by the Adapter

Operation Summary
End Point: /applicationDeployment

HTTP Method: POST

Description
This operation is invoked in order to initiate the deployment of an
application based on its deployment model instance in CAMEL.

Parameters

applicationId: String [INPUT] ― The identifier of the application

cdoModelsPath: String [INPUT] ― The path in the CDO server where
application model in CAMEL can be found

notificationURI: String [INPUT] ― The URI of an endpoint to send the
result of Constraint Problem creation.

watermark: Watermark [INPUT] ― Watermark of the message. Stores
information about origin of the message.

Request Example

{

 "applicationId": "FCR",

 "cdoModelsPath": "upperware-models/FCRApp1545987428463",

 "notificationURI":

"/api/adapter/deploymentNotification/87e3c8fd-0a7e-11e9-

af72-02420a0a0012/ApplicationDeploymentNotification",

 "watermark": {

 "user": "Camunda",

 "system": "Camunda",

 "date": "2018-12-28T08:57:41+0000",

 "uuid": "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 }

}

Response Example
HTTP status: 200

no body

http://www.melodic.cloud/

www.melodic.cloud 54

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 11: The REST APIs consumed by the Adapter

Operation Summary
End Point:

/api/adapter/deploymentNotification/{processId}/{s
ubjectId}

HTTP Method: POST

Description

This operation enables to inform the control process about the status
of the application deployment (i.e., if it was successful or not).

Offered By: Control Plane

Parameters

applicationId: String [INPUT] ― The identifier of the application

deployedSolutionId: String [INPUT] ― The identifier of the solution
from the CP model that was successfully deployed

result: Result [INPUT] ― The result of deploying the application

watermark: Watermark [INPUT] ― Watermark of the message. Stores
information about origin of the message.

Request Example

{

 "result" = {

 "status" = "ERROR",

 "errorDescription" = "Built plan was rejected by

Plan Validator"

 },

 "watermark" = {

 "user" = "adapter",

 "system" = "adapter",

 "date" = "2018-12-28T09:01:51+0000",

 "uuid" = "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 },

 "applicationId" = "FCR"

}

Response Example

HTTP status: 200

no body

http://www.melodic.cloud/

www.melodic.cloud 55

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /findJobs

HTTP Method: GET

Description

This operation enables to obtain all the deployment jobs for a
particular user

Offered By: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/findJobs

Request Example N/A

Response Example As described in Executionware API description

Operation Summary
End Point: /nodeGroup

HTTP Method: GET

Description
This operation returns all groups of nodes.

Offered By: Executionware

Parameters As described in Executionware API description

Request Example N/A

Response Example As described in Executionware API description

Operation Summary
End Point: /nodeGroup/{node-group-id}

HTTP Method: GET

Description
This operation enables to obtain metadata about a certain node group.

Offered By: Executionware

Parameters As described in Executionware API description

Request Example N/A

Response Example As described in Executionware API description

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/findJobs

www.melodic.cloud 56

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /getProcesses

HTTP Method: GET

Description

This operation enables to retrieve all (deployment) processes for a
particular user.

Offered By: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/getProcesses

Request Example N/A

Response Example As described in Executionware API description

Operation Summary
End Point: /processGroup

HTTP Method: GET

Description

This operation enables to retrieve all groups of (deployment) processes
for a particular user.

Offered By: Executionware

Parameters As described in Executionware API description

Request Example N/A

Response Example As described in Executionware API description

Operation Summary
End Point: /getQueuedTasks

HTTP Method: GET

Description

This operation enables to retrieve all queued (deployment) tasks for a
particular user.

Offered By: Executionware

Parameters
As described in Executionware API description

http://cloudiator.org/rest-swagger/#operation/getQueuedTasks

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/getProcesses
http://cloudiator.org/rest-swagger/#operation/getQueuedTasks

www.melodic.cloud 57

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Request Example N/A

Response Example As described in Executionware API description

Operation Summary
End Point: /getSchedules

HTTP Method: GET

Description
This operation enables to retrieve all schedules for a certain user.

Offered By: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/getSchedules

Request Example N/A

Response Example As described in Executionware API description

Operation Summary
End Point: /addJob

HTTP Method: POST

Description
This operation enables to post a new deployment job.

Offered By: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/addJob

Request Example As described in Executionware API description

Response Example As described in Executionware API description

Operation Summary
End Point: /addNode

HTTP Method: POST

Description
This operation enables to post the generation of a new node.

Offered By: Executionware

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/getSchedules
http://cloudiator.org/rest-swagger/#operation/addJob

www.melodic.cloud 58

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/addNode

Request Example As described in Executionware API description

Response Example As described in Executionware API description

Operation Summary
End Point: /addSchedule

HTTP Method: POST

Description
This operation enables to post the generation of a new schedule.

Offered By: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/addSchedule

Request Example As described in Executionware API description

Response Example As described in Executionware API description

Operation Summary
End Point: /createProcess

HTTP Method: POST

Description

This operation enables to post the generation of a new (deployment)
process.

Offered By: Executionware

Parameters
As described in Executionware API description
http://cloudiator.org/rest-swagger/#operation/createProcess

Request Example As described in Executionware API description

Response Example

As described in Executionware API description

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/addNode
http://cloudiator.org/rest-swagger/#operation/addSchedule
http://cloudiator.org/rest-swagger/#operation/createProcess

www.melodic.cloud 59

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /monitors

HTTP Method: POST

Description
As described in EMS API description (See Section 3.10)

Offered By: EMS

Parameters As described in EMS API description

Request Example As described in EMS API description

Response Example As described in EMS API description

3.10 Event Processing Management (EMS)

The EMS component of the MELODIC platform is responsible for establishing and maintaining a
layered monitoring architecture for the user application managed by this platform. To this end, it
includes API operations which are responsible for: constructing, updating and retrieving the
status of this monitoring architecture. Concerning its interfacing requirements, it needs to
communicate with the control process in order to inform it about the success in the
deployment/updating of the monitoring infrastructure as well as with the Metasolver in order to
indicate the event subscriptions that the latter component needs to listen to. Both the offered and
consumed REST APIs by this component are detailed in the next two tables, Table 12 and Table 13,
respectively.

Table 12: The REST APIs offered by EMS

Operation Summary
End Point: /camelModel

HTTP Method: POST

Description
This operation is invoked by the Upperware control process to notify
EMS Server that a new application CAMEL model is available.

Parameters
application-id: String [INPUT] ― The identifier of the application (also
denoting the related CAMEL model)

http://www.melodic.cloud/

www.melodic.cloud 60

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

notification-uri: String [INPUT] ― The URL to call in order to notify ESB
process of the invocation outcome. This invocation will occur
asynchronously

watermark: WaterMark [INPUT] ― Watermark of the message. Stores
information about origin of the message

Request Example

{

 "applicationId": "FCR",

 "notificationURI":

"/api/ems/camelModelNotification/87e3c8fd-0a7e-11e9-af72-

02420a0a0012/CamelModelNotification",

 "watermark": {

 "user": "Camunda",

 "system": "Camunda",

 "date": "2018-12-28T08:57:41+0000",

 "uuid": "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 }

}

Response Example Text/Plain string “OK”

Operation Summary
End Point: /cpModelJson

HTTP Method: POST

Description
This operation is invoked by Metasolver in order to notify EMS Server
about a CP model update. The input JSON message is used to extract
the path to the application’s updated CP model.

Parameters cp-model-id: String [INPUT] ― The path to application’s CP model

Request Example

{

 "cp-model-id" : <string>

}

Response Example

Text/Plain string “OK”

http://www.melodic.cloud/

www.melodic.cloud 61

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Operation Summary
End Point: /monitors

HTTP Method: POST

Description

This operation is invoked by the Upperware control process in order to
retrieve the Monitors used for deploying sensors in application nodes.

Monitors are an abstraction of sensors deployed in application nodes
(VM, containers etc) and include information like metrics measured,
components, sensors used, sinks and tags.

Parameters

application-id: String [INPUT] ― The identifier of the application (also
denoting the related CAMEL model)

watermark: WaterMark [INPUT] ― Watermark of the message. Stores
information about origin of the message

monitors: array [OUTPUT] ― A list of the Monitors extracted from
CAMEL model. Each Monitor item contains the following information:

metric: String [OUTPUT] ― the measured attribute

 component: String [OUTPUT] ― the component the measurement
refers to

 sensor: map [OUTPUT] ― map containing information about the
sensor that takes the measurements.

There are two sensor types; Pull Sensors and Push Sensors.

Pull Sensor information:

className: String [OUTPUT] ― the class name of the sensor

interval: map [OUTPUT] ― the interval between two successive
measurement reads. This value has the form: { “period”: <integer>,
“unit”: <string> }

configuration: array [OUTPUT] ― array of sensor-specific configuration
name-value pairs. Each pair has the form: { “key”: <string>, “value”:
<string> }

Push Sensor information:

port: Integer [OUTPUT] ― the port where push sensor sends its
measurements

http://www.melodic.cloud/

www.melodic.cloud 62

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

sinks: array [OUTPUT] ― an array with the measurement sinks (used
by ExecutionWare to configure sensors). Each sink item contains:

 type: String [OUTPUT] ― the sink type
 configuration: array [OUTPUT] ― an array of key-value pairs with the

sink configuration. Each pair has the form: { “key”: <string>, “value”:
<string> }

tags: array [OUTPUT] ― an optional array of monitor-specific
configuration name-value pairs. Each pair has the form: { “key”:
<string>, “value”: <string> }

Request Example

{

 "applicationId": "FCR",

 "watermark": {

 "user": "Camunda",

 "system": "Camunda",

 "date": "2018-12-28T08:57:41+0000",

 "uuid": "87e3c8fd-0a7e-11e9-af72-02420a0a0012"

 }

}

Response Example

{

 "monitors": [{

 "metric": "ResponseTime_Sensor",

 "component": "Component_App",

 "sensor": {

 "className": "",

 "configuration": [],

 "interval": {

 "unit": "SECONDS",

 "period": 5

 }

 },

 "sinks": [{

 "type": "JMS",

 "configuration": [{

 "key": "jms.broker",

 "value":

"failover:(tcp://localhost:61616)?initialReconnectDelay=1000

&warnAfterReconnectAttempts=10"

http://www.melodic.cloud/

www.melodic.cloud 63

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 }, {

 "key": "jms.message.format",

 "value":

"de.uniulm.omi.cloudiator.visor.reporting.jms.MelodicJsonEnc

oding"

 }, {

 "key": "jms.topic.selector",

 "value":

"de.uniulm.omi.cloudiator.visor.reporting.jms.MetricNameTopi

cSelector"

 }]

 }]

 }],

 "watermark": {

 "user": "EMS",

 "system": "EMS",

 "date": "2019-09-11T12:19:51+0000",

 "uuid": "9d65b0b6-40a8-11e7-a919-92ebcb67fe33"

 }

}

Operation Summary
End Point: /baguette/registerNode

HTTP Method: POST

Description

This operation is called to inform EMS Server that a new application
node has been deployed. In result, the EMS Server needs to return
installation instructions for the EMS client to be installed in the same
node.

Parameters

id: String [INPUT] ― The new node id as provided by Executionware

name: String [INPUT] ― The new node id as provided by
Executionware

type: String [INPUT] ― The node type as provided by Executionware

providerId: String [INPUT] ― The node cloud service provider id as
provided by Executionware

operatingSystem: String [INPUT] ― The node operating system family
as provided by Executionware

http://www.melodic.cloud/

www.melodic.cloud 64

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

ip: String [INPUT] ― The node public IP address as provided by
Executionware

os: String [OUTPUT] ― the OS for which the following instructions refer
to

instructions: array [OUTPUT] ― array of installation instructions. Each
instruction object contains the following information:

 taskType: String [OUTPUT] ― can be:
o LOG: prints a message in the log,
o CMD: a shell command to execute. If command exit code is

not zero (0) then an error occurs
o CHECK: like CMD but acceptable exit code can be configured.
o FILE: create a new file, write its contents and set executable

flag
 command: String [OUTPUT] ― if taskType=LOG, it is the message to

print in logs. If taskType=CMD, it is the command to execute in shell
 fileName: String [OUTPUT] ― Applicable only when taskType is FILE.

The full path and name of a new file that will be written
 contents: String [OUTPUT] ― When taskType is FILE, it provides the

contents of the new file. When taskType is CHECK, it provides the
error message when command’s exit code is not the right one (see
next).

 executable: boolean [OUTPUT] ― Applicable only when taskType is
FILE. Flag indicating if the new file must be executable or not

 exitCode: integer [OUTPUT] ― Applicable only when taskType is
CHECK. Used in conjunction with ‘match’. If match is:

o true: it gives the expected exit code of the command (i.e.
success)

o false: it gives a forbidden exit code (i.e. failure if command
returns this exit code)

match: boolean [OUTPUT] ― Applicable only when taskType is CHECK.
Used in conjunction with ‘exitCode’. See above

Request Example

{

 "id": "DbComp#1",

 "name": "DbComp1_1",

 "type": "VM",

 "providerId": "1",

 "operatingSystem": "ubuntu",

 "ip": "147.102.1.1",

}

http://www.melodic.cloud/

www.melodic.cloud 65

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Response Example

{

 "os": "LINUX",

 "instructions": [{

 "taskType": "LOG",

 "command": "Create Baguette Client installation

directories",

 "executable": false,

 "exitCode": 0,

 "match": false

 }, {

 "taskType": "CMD",

 "command": "sudo mkdir -p /opt/baguette-client/bin",

 "executable": false,

 "exitCode": 0,

 "match": false

 }, {

 "taskType": "CMD",

 "command": "sudo mkdir -p /opt/baguette-client/conf",

 "executable": false,

 "exitCode": 0,

 "match": false

 }]

}

Operation Summary
End Point: /baguette/stopServer

HTTP Method: GET, POST

Description
This operation shuts down the Baguette Server, closing all connections
to EPAs / EMS clients.

Parameters
N/A

http://www.melodic.cloud/

www.melodic.cloud 66

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Request Example N/A

Response Example Text/Plain string “OK”

Operation Summary
End Point: /ems/shutdown[/{exitApp}]

HTTP Method: GET

Description
This operation allows to shut down the EPM. However, it must be
enabled first in the EMS control service configuration.

Parameters
exitApp: boolean [INPUT] ― It is an optional URL argument. Legal
values are ‘true’ or ‘false’. True forces JVM to also exit (Docker
container will terminate too).

Request Example /ems/shutdown

Response Example Text/Plain string “OK”

Operation Summary
End Point: /ems/topology

HTTP Method: GET, POST

Description
This operation returns information about the currently deployed event
processing network (i.e., the connected EPAs and their roles)

Parameters N/A

Request Example N/A

Response Example

Operation Summary
End Point: /event/send/{clientId}/{topicName}/ {value}

HTTP Method: GET, POST

Description
This operation commands the specified client(s) to create and publish
an event at the specified topic containing the supplied value. This
endpoint is used for event debugging purposes.

http://www.melodic.cloud/

www.melodic.cloud 67

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Parameters

clientId: String [INPUT] ― the client id (as given by Baguette Server) or
‘*’ denoting all connected EPA

topicName: String [INPUT] ― the topic name in event broker

value: Double [INPUT] ― a double precision number representing a
measurement

Request Example /event/send/*/AvgRamMetricContext/45

Response Example

Text/Plain string:

OK

ERROR

EVENT DEBUGGING IS DISABLED

BAGUETTE SERVER IS DISABLED

BAGUETTE SERVER IS NOT RUNNING

Operation Summary
End Point:

/event/generate-
start/{clientId}/{topicName}/{interval}/{lowerValue}-
{upperValue}

HTTP Method: GET

Description

This operation commands the specified client(s) to start generating and
publishing events at the specified interval, for the identified topic,
containing a random value between lower value and upper value range.
This endpoint is used for event debugging purposes.

Parameters

clientId: String [INPUT] ― the client id (as given by Baguette Server) or
‘*’ denoting all connected EPA

topicName: String [INPUT] ― the topic name in event broker

interval: Long [INPUT] ― the interval between event generations in
milliseconds

lowerValue & upperValue : Double [INPUT] ― two double precision
numbers representing the value range for the topic

Request Example /event/generate-start/*/AvgRamMetricContext/5000/0-150

http://www.melodic.cloud/

www.melodic.cloud 68

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Response Example

Text/Plain string:

OK

ERROR

EVENT DEBUGGING IS DISABLED

BAGUETTE SERVER IS DISABLED

BAGUETTE SERVER IS NOT RUNNING

Operation Summary
End Point: /event/generate-stop/{clientId}/{topicName}

HTTP Method: GET

Description

This operation commands the specified client(s) to stop generating and
publishing events. This command cancels out a previous generate-start
command (or is ignored if there is no such previous command). This
endpoint is used for event debugging purposes.

Parameters

clientId: String [INPUT] ― the client id (as given by Baguette Server) or
‘*’ denoting all connected EPA

topicName: String [INPUT] ― the topic name in event broker

Request Example /event/generate-stop/*/AvgRamMetricContext

Response Example

Text/Plain string:

OK

ERROR

EVENT DEBUGGING IS DISABLED

BAGUETTE SERVER IS DISABLED

BAGUETTE SERVER IS NOT RUNNING

Operation Summary
End Point: /health

HTTP Method: GET

Description
This operation enables to get the health status of the EMS, i.e., whether
EMS server is up and running as well as whether connections to this
server can be established.

http://www.melodic.cloud/

www.melodic.cloud 69

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Parameters N/A

Request Example N/A

Response Example
HTTP response code:
 200 OK

In the following table, we explain the REST APIs consumed by EMS.

Table 13: The REST APIs consumed by EMS

Operation Summary
End Point: /notification-uri

HTTP Method: POST

Description

After the Camel model operation is executed, the specified notification
URL is called to signal the Upperware control process that EMS
finished processing the respective CAMEL model and initialised itself.

Offered By: Control Plane

Parameters

application-id: String [INPUT] ― The identifier of the application (also
denoting the related CAMEL model)

result: Notification result [INPUT]

 status: "SUCCESS", "ERROR"
 errorCode: Specific error code
 errorDescription: Description of an error

watermark: WaterMark [INPUT] ― Watermark of the message. Stores
information about origin of the message

Request Example

{

 "applicationId": "/FCRWithDlms",

 "result": {

 "status": "SUCCESS",

 },

 "watermark": {

 "user": "EMS",

 "system": "EMS",

 "date": "2019-09-11T12:19:51+0000",

http://www.melodic.cloud/

www.melodic.cloud 70

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 "uuid": "9d65b0b6-40a8-11e7-a919-92ebcb67fe33"

 }

}

Response Example N/A

Operation Summary
End Point: /updateConfiguration

HTTP Method: POST

Description

This operation is used to send new Metasolver configurations,
regarding the topics it must subscribe to, in order to receive new
metric values (needed to update CP model), or receive events signaling
that reconfiguration of the application must occur. Note that this
operation’s URL/endpoint is specified in the EMS control service
configuration file.

Offered By: Metasolver

Parameters

mvv: map [INPUT] ― an associative array (i.e. map) where a current-
config variable (contained in the deployed solution) is mapped to a CP
metric in CP model. This mapping is used for copying the (actual)
values of current-config. variables onto the corresponding CP metrics
of CP model, in order to make them available to solvers for the next
solving iteration.

subscriptions: array [INPUT] ― an array of subscription objects. Each
subscription object is used to instruct Metasolver, to connect to a
specific event broker and subscribe to a certain event topic. Each
subscription object contains the following information:

 topic: String [INPUT] ― The name of event topic where Metasolver
will subscribe

 url: String [INPUT] ― the connection string of the event broker
(including protocol, address, port and other connection parameters)

 client-id: String [INPUT] ― An optional client name used to identify
the Metasolver connection when listing the active connections of
an event broker

 type: String [INPUT] ― The type of events sent in this topic. Two
values are expected:

http://www.melodic.cloud/

www.melodic.cloud 71

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

o ‘MVV’: meaning that values of the received events must be
extracted and used to update CP model

‘SCALE’: meaning that when an event is received, Metasolver must
request a new reconfiguration iteration to start.

Request Example

{

 "mvv": {

 "AppCardinality": "AppActCardinality"

 },

 "subscriptions": [{

 "topic": "GlobalReconfigurationRule",

 "client-id": "",

 "type": "SCALE",

 "url": "tcp://ems:61616"

 },

 {

 "topic": "AvgResponseTime",

 "client-id": "",

 "type": "MVV",

 "url": "tcp://ems:61616"

 }]

}

Response Example Text/Plain string “OK”

http://www.melodic.cloud/

www.melodic.cloud 72

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4 Executionware Interfaces

The Executionware and its implementation uses the OpenApi3 specification and the Swagger4
toolset for its API documentation. A detailed overview of the REST API is available under
http://cloudiator.org/rest-swagger/ and additional information about the concepts and
functionalities can be found in D4.1 [2] for the cloud provider mapping, in D4.3 [9] for the resource
management and in D4.5 [10] for the data processing. Please note that in order to keep this
deliverable length short, we have not adopted the table-based structure to present the
Executionware’s API in a more compact way than its Swagger documentation. Nevertheless, the
portion of this API consumed by the MELODIC platform has been already presented in the
respective API consumption tables of the CP Generator and the Adapter.

5 CAMEL 2.0

In the context of the Melodic project, CAMEL [4] has evolved to a new version by considering
feedback obtained from user studies in the PaaSage project but also aligning with the goals of
Melodic with respect to big data management. Further, such an evolution was supported through
the experience of the CAMEL developers who were also aware of some initial weaknesses of
CAMEL 1.0.

In its new version, CAMEL is able to cover multiple aspects which are related to the capturing of
all appropriate information for the management of big data and multi-cloud applications. A
summary of all these aspects, which take the form of particular meta-models/sub-DSLs is given
by the following table, which also showcases the respective entities responsible for producing the
models conforming to such meta-models. As it can be seen, the devops is responsible for
modelling the application, its topology and requirements as well as the data that it manipulates.
Further, the devops can also specify a metric and scalability model in order to cover the
monitoring and reconfiguration of his/her multi-cloud application. On the other hand, the system
is responsible for producing instance models for the deployment and monitoring aspects, which
conform to the respective (type) models that have been specified by the devops. It is also
responsible for producing and maintaining the application’s execution model which covers the
application’s history over time. Finally, the admin is another kind of user/entity, who has the
responsibility to maintain the organisation model of the respective user organisation (operating
an instance of the Melodic platform) as well as the metadata model (with the rationale that the

3 https://www.openapis.org/
4 https://swagger.io/

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/
https://www.openapis.org/
https://swagger.io/

www.melodic.cloud 73

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

respective features that can be selected by the devops in formulating platform/resource
requirements or data properties should have been realised in the platform).

Table 14: Overview of the coverage of CAMEL 2.0

Name Coverage Editor /
Modeller

Design /
Runtime

Core Top model, container of other models, application,
attributes

devops /
system

Both

Deployment Application topology (components with their
configuration & communication / placement

dependencies)

devops /
system

Both

Requirement resource, platform, security, location, OS, provider,
scaling, QoS (SLOs & optimisation) requirements

devops /
system

Design

Metric Metric, Sensors, Variables, Metric Templates +
Mathematical metric/variable formulas

devops /
system

Both

Constraint Metric & variable (single) constraints, logical and if-
then composite constraints

devops Design

Scalability Scalability rules, Scaling actions (horizontal), Events
(single & logical/temporal event patterns)

devops Design

Data Data & Data sources devops /
system

Both

Location Physical and cloud-based locations devops /
admin

Design

Unit Units of measurements (single, composite,
dimensionless), dimensions

devops Design

Type Types (numerical ranges, lists, range unions) &
values (int, double, String, boolean)

devops Design

Organisation Organisations, users, roles, policies, user groups, role
assignments

admin Design /
Runtime

Execution state transitions and related actions along with their
causes, measurements, SLO assessments

admin Runtime

Security Security domains, controls, metrics, metric
templates, attributes

devops Design

http://www.melodic.cloud/

www.melodic.cloud 74

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Metadata Ontology-like structure with concepts as well as
data & object properties at type & instance level

admin Design

More details about the different meta-models in CAMEL 2.0 and how they can be used for the
modelling of multi-cloud applications can be found in D2.2 and the project’s confluence site5. In
the latter case, a rather complete documentation is supplied for almost all CAMEL meta-models,
including nice examples with CAMEL’s textual syntax in order to raise the understandability of
the user as well as assist him/her in his/her application modelling task.

To cover all the above types of entities involved in the manipulation of CAMEL models, CAMEL
offers different kinds of interfaces. For the devops and admin users, CAMEL offers two editors to
support them in the editing of CAMEL models. For the system (developers), CAMEL relies on
Eclipse code generation facilities (from ecore models) in order to produce its domain code which
coupled with the CDO6-based model management facilities from the PaaSage project that have
been evolved in Melodic, enables both the generation, updating and storage of CAMEL models in
the CDO model repository.

Focusing on CAMEL editing for devops and admins, the two editors offered by CAMEL include:

 Textual editor: This is an offline editor which enables users to specify CAMEL models that

conform to the textual syntax of CAMEL. The editor offers some nice facilities like syntax

and error highlighting, autocompletion and XMI model generation. The edited models can

then be uploaded in an Melodic platform instance to support the respective application

deployment. To reduce the modelling effort, certain template models have been also

produced, taking the form of metric, unit, type, location and metadata models, which can

be re-used by the users in the modelling of their applications in CAMEL. Such models are

available from CAMEL’s code repository in bitbucket7 and can be imported into the textual

editor’s workspace in order to be immediately exploited. The textual editor’s code is also

available from the CAMEL repository8 while its installation instructions are available from

the project’s confluence site9.

5 https://confluence.7bulls.eu/display/MEL/11+Modelling
6 https://www.eclipse.org/cdo
7 https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel/examples?at=serverless-oxygen
8 https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel?at=refs%2Fheads%2Fserverless-oxygen
9
https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+Camel+2.0+Eclipse+%28oxygen%29+editor+installatio
n

http://www.melodic.cloud/
https://confluence.7bulls.eu/display/MEL/11+Modelling
https://www.eclipse.org/cdo
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel/examples?at=serverless-oxygen
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel?at=refs%2Fheads%2Fserverless-oxygen
https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+Camel+2.0+Eclipse+%28oxygen%29+editor+installation
https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+Camel+2.0+Eclipse+%28oxygen%29+editor+installation

www.melodic.cloud 75

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Web editor: This is a web-based application developed through Eclipse’s RAP technology

which enables the form- and tree-based editing of CAMEL models while catering for the

coverage of both devops and admin users. Especially for the latter, it enables the editing

of organisational models which then also regulate the access to the CDO repository for

devops users. Installation details about this web editor can be found in the project’s

confluence site10. A respective documentation based on CAMEL 1.0 for this editor has

been incorporated in deliverable D3.3 while an update on this documentation for CAMEL

2.0 will be implanted in the project’s confluence site soon. The code of the editor can be

found in project’s bitbucket11 which is currently integrated as part of the Melodic

platform.

A comparison between these two editors is summarised in Table 15

Table 15: Comparison between the two CAMEL editors

Editor Model
Valid.

Aspect CDO
Integr.

CDO
Access
Control

Format Roles Version

Textual  All apart
from

execution

 Textual
(edit.),
XMI

(transf.)

devops 2.0

Web  All apart
from

execution

  Both devops
&

admin

2.0

As it can be seen from the above table, the two editors are quite comparable as they support
model validation and all aspects apart from the system-focused execution one while they at
least cover the devops users. They also support the latest version of CAMEL. The textual editor
allows the editing of models in the CAMEL’s textual syntax while it produces an XMI form of the

10
https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+CAMEL+2.0+Web+Editor+Installation?src=contextnav
pagetreemode
11 https://bitbucket.7bulls.eu/projects/MEL/repos/camel_web_editor/browse

http://www.melodic.cloud/
https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+CAMEL+2.0+Web+Editor+Installation?src=contextnavpagetreemode
https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+CAMEL+2.0+Web+Editor+Installation?src=contextnavpagetreemode
https://bitbucket.7bulls.eu/projects/MEL/repos/camel_web_editor/browse

www.melodic.cloud 76

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

model which is readable but not writeable. On the other hand, the web editor does not directly
enable the editing of CAMEL models in any form but is able to store the models in CDO as well as
to export or import them in any format. Further, it has been integrated with the access control
mechanisms of the CDO repository thus having the ability to control the access to CDO models
in that repository based on the organisation model that is edited by the admin user.

http://www.melodic.cloud/

www.melodic.cloud 77

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6 External Interfaces and Extensibility

6.1 Overview

The Melodic platform has been built in a way that it can cater the needs and plans for the
extensibility in the future. Each of the main component groups in the Melodic, Upperware,
Executionware, and Modelling interfaces, are designed with clear interfaces so that new
functionality can be plugged in by both the platform maintainers and third party developers. At
the component level, ESB integration defines consistent interfaces through which components
interact with each other. This simplifies communication as the individual components need to
conform only to the standard communication interface, and not implement direct
communication between each other. Integration through ESB provides platform for the
extensibility, and reusability.

In the following, we discuss extensibility features of the Melodic platform for each of the main
component groups.

6.2 Upperware

The main extensibility areas in the Upperware involve adding new optimizations solvers for
calculating Cloud application placement and optimization solutions as well as new DLMS
algorithms for data management algorithms, supporting new storage technologies, writing
custom utility functions to optimize solutions as per user defined utility criteria, and extending
CAMEL for, e.g., the coverage of new cloud-related domains/aspects. Each of these Upperware
areas are discussed in detail in the following sub-sections.

Adding a new optimization solver

The solvers all have the same interface towards the Metasolver, as described in Section 3.2. This
makes it easy to insert new solvers and this makes Melodic an attractive platform for further
research. There are currently on-going student projects to build and test two new solvers:

 One algorithm based on a Markov Chain Monte Carlo (MCMC) sampling method called

Parallel Tempering, like simulated annealing, that runs a set of parallel sub-searches over

separate domains. For this reason, it is better than simulated annealing to avoid being

trapped at local minima.

http://www.melodic.cloud/

www.melodic.cloud 78

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 The other solver uses evolutionary methods and Genetic Algorithms to search for a

better, near-optimal solution.

The “No free lunch theorem” simplistically states that there is no optimization algorithm that is
uniformly the best for all different optimization problems [11] . Having an extensible architecture
and demonstrating that new solvers may be easily added if needed by certain cloud application
management problems are therefore essential features of the Upperware for the acceptance of
the Melodic platform as a generalized tool. Further, some exciting research directions can be also
followed like establishing a sophisticated solver selection logic which could even include
considering combinations of solvers to better solve a given optimisation model over cloud
application placement. Such a logic could further increase the added-value of the Meta-Solver as
the implementer of this logic as well as of the Melodic platform being able to produce truly optimal
cloud application placement solutions according to the current context at hand.

Implementing a new DLMS algorithm

DLMS employs algorithms to assign utility values to the proposed deployment solutions by
considering the characteristics of the current application and data components deployment, the
candidate deployment topology, and an internal knowledgebase kept by the DLMS algorithms
(such as historical data access patterns). Each of the DLMS algorithms returns a utility value to
the UtilityGenerator component that are used in the application’s utility function in order to select
the optimal deployment solution among the proposed candidate ones.

Each algorithm is a plugin in the DLMS controller. In this way, new DLMS algorithms can be
designed and incorporated in the DLMS. A new DLMS algorithm can be added by implementing
the AlgorithmRunner interface defined in the DLMSController, as shown in Figure 2: The DLMS
Controller interface.

http://www.melodic.cloud/

www.melodic.cloud 79

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 2: The DLMS Controller interface

Once an algorithm has been implemented, it can be plugged into the DLMSController by
providing the respective name and class implementing the algorithm in the DLMS properties
file. For example, the DLMS properties file will be appended as follows in order to integrate a
new algorithm with the class name
eu.melodic.dlms.algorithm_runners.Algo_SourceAwarenessRunner:

dlms.algorithms[AlgoNUM].name=AlgorithmName

dlms.algorithms[AlgoNUM].className=eu.melodic.dlms.algorithm_runners.Alg

o_SourceAwarenessRunner

where AlgoNUM is the current number of DLMS algorithms, including the new one.

Supporting a new storage technology

The DLMS uses Alluxio12 (formerly Tachyon [12]) as the middleware for the storage technologies
supported by the Melodic cross-Cloud platform.. Alluxio is a rapidly growing open source virtual

12 https://www.alluxio.io/

http://www.melodic.cloud/
https://www.alluxio.io/

www.melodic.cloud 80

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

distributed storage system enabling big data applications to interact with data from a variety of
storage systems and technologies. A new storage technology can be supported in the Alluxio by
writing an implementation for the Under Store using Alluxio’s Under File Storage Extension API.

Building a new under storage connector involves implementing the respective under storage
interfaces (UnderFileSystem and UnderFileSystemFactorinterfaces), declaring the service
implementation, and bundling up the implementation and transitive dependencies in a jar file.
A step-to-step detailed guide is available at Alluxio’s developer pages13.

Utility functions

The utility function is defined by the application owner in the CAMEL model describing the
application’s architectural model. This utility function currently comprises three main metric
variables which are added through a weighted sum approach: (a) one computing the utility as
perceived by the user; (b) one calculating the data reconfiguration penalty; (c) one calculating the
application topology reconfiguration penalty. As such, the user has the capability to change the
weights involved in the computation of the overall utility to better match his/her requirements
and preferences. For instance, in case of a non-big-data application, the weight of the data
reconfiguration penalty can be zero. However, we do foresee in the near future, that it will be
extremely convenient if the weights to the different variables of the utility function are
dynamically inferred. For instance, if there is a significant violation of an application SLO, a higher
weight could be given dynamically to the first variable, the utility perceived by the user, with
respect to the weights of the two other variables as there will be a higher need to remedy this non-
functional fault than to reduce any kind of reconfiguration penalty/cost.

Besides, there are three other extensions which are foreseen, related to some parts of the utility
function or the way it is computed from node candidates:

1. The selection function for the matching Node Candidates. If there is more than one Node

Candidate matching the requirements of an application’s component to be deployed, only

the Node Candicates’ price is currently taken into account and the Node Candidate of the

matching set with the lowest price is selected. There are plans under discussion for

defining this selection function as a separate utility function in CAMEL, potentially

covering additional criteria apart from price, and when such mechanisms are in place,

then it will be easy to change or extend the selection function.

13 https://docs.alluxio.io/os/user/stable/en/ufs/Ufs-Extension-API.html

http://www.melodic.cloud/
https://docs.alluxio.io/os/user/stable/en/ufs/Ufs-Extension-API.html

www.melodic.cloud 81

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2. The data reconfiguration penalty calculated by the Data Lifecycle Management System

(DLMS) is implemented as an aggregation of a set of replaceable algorithms of DLMS, which

take the form of DLMS plug-ins. Hence, to change the way the penalty is calculated requires

to modify the weights given to the (metric) variables representing these algorithms as well

as potentially implementing and adding a new DLMS plug-in algorithm in the form of a

metric variable, if needed. Logically speaking, the use of a weighted sum approach for the

calculation of the overall metric variable representing the data reconfiguration penalty

gives the strength to the user to, e.g., activate and de-activate different DLMS penalty

calculation algorithms as needed through the use of corresponding (relative) weights as

well as to modify their relative importance. While the incorporation of new DLMS plug-in

algorithms witnesses the fact that the Melodic platform is extensible to cover the

requirements of any kind of user. Nevertheless, as in the case of the overall utility, a

promising future work direction could be to dynamically derive the weights given to the

different DLMS (penalty) algorithms based on the characteristics of the data being

manipulated by the user application at hand and the current application context.

3. The application topology adaptation penalty calculated by the Adapter. This expresses how

difficult it is to move from the current application topology to the application topology

induced by the new, proposed configuration. This is a multi-dimensional decision problem

where factors like the number of machines that must be stopped or started counts, where

the Cloud providers hosting the old and the new machines matter, where the difficulty in

establishing secure connections among virtual machines in the topology must be

calculated, and where the state the components to be redeployed may count; e.g. some

must be restarted, which is alright for stateless components, some can be check-pointed

albeit as a cost in time and storage and re-started, and some must be closed and re-started.

Calculating a single penalty value in the unit interval must be done by the Adapter as it is

intrinsically connected with the adapter’s operation. To this end, by considering the

current solution adopted by Melodic, further research is needed in order to explore if the

relevant concepts can be generalized and what the generic problem dimensions are. Then

one faces the challenge how to define this in CAMEL through the exploitation of the

corresponding problem dimensions.

http://www.melodic.cloud/

www.melodic.cloud 82

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

As indicated in section 6.4, CAMEL can be easily extended by following a certain process. It is a
subject of further research whether CAMEL needs to be enhanced to cover the modelling of any
kind of reconfiguration or utility-based metric variable. However, it needs to be stated that based
on the experience from the Melodic project, CAMEL seems to be generic enough to cover any kind
of metric or (metric) variable. As such, the main challenge then remains whether the Melodic
platform is able to support the CAMEL metric/variable specifications. This maps to the ability to
implement and integrate the relevant leaf component metrics/variables. Thus, this goes down to
the ability of the application owner to implement such metrics, when needed, as well as of the
Melodic platform to integrate such metrics, irrespectively of whether these are internal or
external to the application topology.

6.3 Executionware

The modular architecture of the Executionware (i.e., the Cloudiator framework14) relies on the
well-established software technologies OpenAPI15 for its central REST interface and Apache Kafka
for the internal message based communication between Cloudiator agents [2, p. 1], [9, p. 3], [10, p.
5]. Each agent runs within in the Cloudiator framework and follows the micro-service paradigm
with Apache Kafka as central communication channel. Consequently, each individual agent is
taking over a small part of the overall Cloudiator feature set, e.g. allocating new nodes, deploying
Spark applications or orchestrating the monitoring. In this way, the feature set of the
Executionware can easily be extended by enhancing the functionalities of existing agents or
adding new agents to the Cloudiator framework.

Supporting a new Cloud provider

The Node-Agent of Cloudiator presents the central agent to interact with cloud provider APIs.
Therefore, it builds upon the concepts of the provider agnostic interface mapper [2] that are
implemented as the Sword abstraction layer in Cloudiator16.

Consequently, adding new cloud providers requires the extension of the abstraction layer
component Sword with the mapping of the provider specific API calls and the generic interface
provided by Sword.

In case that the added cloud provider supports extra heterogeneous resource kinds besides virtual
machines, such as containers, the Node-Agent needs to be extended accordingly.

14 http://cloudiator.org/
15 https://swagger.io/docs/specification/about/
16 https://github.com/cloudiator/sword

http://www.melodic.cloud/
http://cloudiator.org/
https://swagger.io/docs/specification/about/
https://github.com/cloudiator/sword

www.melodic.cloud 83

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Adding a new data processing framework

The Executionware can be easily extended with additional data processing frameworks. The
features of each data processing framework are encapsulated in its dedicated agents, i.e., the
Spark-Agent provides the required features to orchestrate an Apache Spark cluster [10].
Consequently, adding a new data processing framework is twofold.

First, it requires the implementation of a new data processing agent. The respective agent needs
to provide two functionalities; (i) orchestrating the deployment of the data processing framework
and (ii) implementing the business logic to submit data processing processes to the data
processing framework.

Second, the task description of the Executionware’s REST-API needs to be extended by adding the
new data processing interface17 in the Swagger description18. The Swagger tool support enables
the automatic creation of the respective REST endpoints at the Executionware REST-API. Finally,
the required Protobuf messages19 need to be defined in Cloudiator20 to enable the communication
between the REST interface and the new newly created data processing agent.

D4.5 [10] details the extension of the Executionware with the support for the data processing
framework Apache Spark21 by implementing the respective Spark Agent.

6.4 Extending CAMEL

CAMEL is a live language that is being maintained by a very active community of users. In this
respect, it undergoes constant changes, especially in the context of European projects like
Melodic. In this section, we will attempt to explicate the actual process for updating CAMEL that
starts from its meta-model (ecore model) and goes until the editors produced for it. This process
is depicted in the Figure 3. As it can be seen, the process comprises 4 main tasks, the first of which
are sequentially executed while the last two can be in parallel. Please note that as the last two
steps concern the CAMEL editors, a potential adopter of CAMEL might choose to support the
evolution of just one editor from the two. In this case, one of these two steps will be actually
executed.

17 http://cloudiator.org/rest-swagger/#operation/addJob
18 https://github.com/cloudiator/rest-swagger
19 https://developers.google.com/protocol-buffers/
20 https://github.com/cloudiator/common
21 https://spark.apache.org/

http://www.melodic.cloud/
http://cloudiator.org/rest-swagger/#operation/addJob
https://github.com/cloudiator/rest-swagger
https://developers.google.com/protocol-buffers/
https://github.com/cloudiator/common
https://spark.apache.org/

www.melodic.cloud 84

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 3: CAMEL update process

In order to support the updating of the CAMEL meta-model (and its textual editor), the respective
code22 needs to be imported in the Eclipse Environment. This importing should include all the
relevant directories (having the camel prefix).

The meta-model updating / evolution of CAMEL includes the editing of its ecore model. For this
editing, the Eclipse tree-based (named as “Sample Ecore Model Editor”) or OCL (named as
“OCLinEcore Editor”) editors can be used. The tree-based editor visualises the meta-model in the
form of a tree and allows its updating and expansion by supplying respective differentiated forms
for the editing of different types of meta-model elements. On the other hand, the OCL editor is a
textual editor which enables both the updating of the meta-model and its respective OCL rules.
For non-expert users, it is recommendable to start with the tree-based editor and then, when they
have finished the changes in the meta-model, switch to the OCL editor in order to update or extend
the set of OCL rules already defined for CAMEL. While an expert user could adopt immediately the
OCL editor in order to both update CAMEL’s meta-model and its OCL rules. To open any of these
two editors, the user should right click on the camel.ecore file, choose the “Open With” option and
then the option mapping to one of these two editors.

We should highlight at this point that depending on the meta-model updating, it might not be
required to change the OCL rules. This could be checked by launching the CAMEL ecore model in
the OCL editor. In that case, this editor features an error highlighting facility which immediately
identifies problematic OCL rules (that might be invalidated by the performed meta-model
changes). However, it should be also noted that it could be also the case that OCL rules need to be
modified at the semantic level. In this case, the modeller should be able to check all the relevant
OCL rules in order to assess the necessity for updating them.

We foresee that there can be two types of changes that can be performed in the CAMEL meta-
model:

22 https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel?at=refs%2Fheads%2Foxygen-new

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel?at=refs%2Fheads%2Foxygen-new

www.melodic.cloud 85

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 change of existing packages (mapping to respective aspects covered by CAMEL): in this

case, the modeller should reassure that the changes are correct and appropriate and do not

invalidate any from the packages involved. Eclipse can also assist in this case as both the

tree-based and OCL editors highlight syntactic errors. At the semantic level, the modeller

should be careful not to make changes that break the aspect/sub-DSL integration in

CAMEL. For instance, moving one concept from the domain/aspect it actually belongs to

another aspect is wrong. Similarly, creating a respective concept in a wrong domain is a

mistake. In this respect, it is advocated that the modeller first reads the CAMEL

documentation and the extent of each of its domains before making any changes.

 incorporation of an additional package: this is a quite possible scenario in the case of

extending CAMEL through the coverage of a new aspect. In this case, this new aspect

should be modelled as a sub-package (sub-DSL) of the main package of CAMEL. As in the

context of the previous case, the modeller should be careful not to create any overlapping

with the other packages/domains. In addition, he/she should create cross-references to

both intra-package and other package elements to support the proper integration of the

new package in CAMEL with respect to the existing ones. Finally, to the extent possible,

the modeller should create OCL rules that cover both the new package as well as its relation

to the other packages.

It should be noted that based on the new design of CAMEL, any CAMEL model is assorted with
template models, including those conforming to the meta-data schema. In this respect, in case
that the user requires to modify some metadata related to his/her context, then he/she should
update or extend the metadata (template) model. More details about how this can be done are
supplied in deliverable D3.1. However, it should be noted that this metadata (template) model can
also be updated through CAMEL’s textual editor, due to the integration of the structure of the
metadata schema in the form of a new CAMEL package.

After CAMEL’s meta-model has been updated, including the incorporated OCL rules, if needed, the
respective user should also update the domain code of CAMEL. This can be easily done by
updating first the camel.genmodel file of CAMEL. This is included in the CAMEL’s code
repository23. Eclipse has also a great support for this. In the context of the current workspace, the

23
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel/camel/model/camel.genmodel?at=refs%2F
heads%2Foxygen-new

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel/camel/model/camel.genmodel?at=refs%2Fheads%2Foxygen-new
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel/camel/model/camel.genmodel?at=refs%2Fheads%2Foxygen-new

www.melodic.cloud 86

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

user has just to perform a right click on that file and choose the option “Reload”. The user then
needs to follow the UI-based instructions indicated to him/her. Once this update takes place, the
genmodel is launched in the form of a new tab. The user should just right click on the Camel
element displayed and choose the option “Generate Model Code”. After that, the domain code is
automatically updated. In case that Java-related errors pop up in the end, these can be due to the
deletion of CAMEL elements. In that case, it is recommended to delete all the classes related to
those elements. Alternatively, the user can delete the src directory before regenerating the
model/domain code.

The update of the textual editor is threefold:

 on one hand, the user should update the textual syntax of CAMEL by going into the

camel.dsl directory, then into the src/camel/dsl directory and opening the CamelDsl.xtext

file. It should be noted that the user should have appropriate knowledge and expertise

with respect to Xtext24 in order to perform this.

 on the other hand, the user should update any textual editor feature, when needed, either

due to the update of CAMEL (in case that this update impacts this feature) or due to the

user requirements (such a feature was missing and needs to be enabled). Existing

features can be updated by modifying the code that is included in the src/camel/dsl

subdirectories. Again essential knowledge of Xtext is needed also for performing these

changes.

 Finally, due to new textual editor features related to the visualisation of documentation-

oriented details via hoving over the respective CAMEL elements, the user should attempt

to modify the following, when needed, inside the camel.dsl.ui directory:

o the documentation.xlsx file related to the supply of the documentation-oriented

information for each CAMEL element (class in particular), situated inside the input

subdirectory

o the MyKeywordHovers.xtend file situated inside the src/camel/dsl/ui/hover

directory by catering for the addition of new CAMEL classes and the deletion of

respective code for those CAMEL classes removed

24 https://www.eclipse.org/Xtext

http://www.melodic.cloud/
https://www.eclipse.org/Xtext

www.melodic.cloud 87

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Finally, the update of the web editor is quite involved as it requires the modification of the
respective code in various places. In order not to go into many technical details, we just outline
here what are the main changes needed at the higher level of abstraction:

 updating of existing queries for fetching information related to existing CAMEL classes

 addition of new queries for new CAMEL classes

 updating perspectives and views for existing CAMEL aspects

 creating new perspective and views for new CAMEL aspects and registering them

 updating of the respective access flow for the menu-oriented UI elements subject to the

respective role that has been authenticated initially. Examples for this are the following:

(a) for a devops user, any perspective apart from the organisation can be enabled only

when a respective application is created or launched; (b) when a certain aspect-oriented

model is launched, the respective option in the menu related to the aspect’s perspective

dealing with the opening or importing of such a model is deactivated/disabled.

In the cases of both the textual and web editor, there are also some template models (e.g.,
location model) that are re-used in order to reduce the modeller’s effort. Depending on the places
where the respective changes have occurred in CAMEL, such models need to be updated. In that
case, it is recommended to use the updated textual editor to perform such changes. If the user
has not opted towards updating that editor, then the default tree-based editor of CAMEL can be
used for this purpose.

http://www.melodic.cloud/

www.melodic.cloud 88

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

7 Conclusions

This document has attempted to detail the REST APIs consumed and offered by the MELODIC
platform components. This enabled to raise the understanding with respect to: (a) the way these
components interact with each other at the interface layer; (b) how external software products
can be integrated with the MELODIC platform. It also highlighted what are main extension points
of particular MELODIC platform components which could enable to enhance the current platform
functionality and potentially enable to support new features. As the MELODIC platform is
attempted to be enhanced in different ways in new European project proposals, this can be
considered as the baseline for such an enhancement. Finally, this document shortly analyzed
CAMEL 2.0, the newest version of CAMEL, which has been adopted by the latest releases of the
MELODIC platform.

http://www.melodic.cloud/

www.melodic.cloud 89

Editor(s):
Kyriakos Kritikos & Feroz Zahid

Deliverable reference:
D2.3 Final framework and external APIs

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

References

[1] Yiannis Verginadis et al., “D3.4 Workload optimisation recommendation and
adaptation enactment,” Melodic Project Deliverable, Jan. 2019.

[2] Daniel Baur and Daniel Seybold, “D4.1 Provider agnostic interface definition &
mapping cycle,” Melodic Project Deliverable, Sep. 2019.

[3] Yiannis Verginadis et al., “D2.2 Architecture and Initial Feature Definitions,”
Melodic Project Deliverable, Feb. 2018.

[4] A. P. Achilleos et al., “The cloud application modelling and execution language,” J.
Cloud Comput., vol. 8, no. 1, p. 20, Dec. 2019, doi: 10.1186/s13677-019-0138-7.

[5] Chappell, David, Enterprise Service Bus. O’Reilly Media, Inc., 2004.
[6] J. Sutherland and W.-J. van den Heuvel, “Enterprise application integration and

complex adaptive systems,” Commun. ACM, vol. 45, no. 10, Oct. 2002, doi:
10.1145/570907.570932.

[7] Pieter Hintjens, ZeroMq: Messaging For Many Applications. O’Reilly Media, 2013.
[8] Yiannis Verginadis et al., “D3.5 Melodic Upperware,” Melodic Project Deliverable,

Nov. 2019.
[9] Daniel Baur and Daniel Seybold, “D4.3 Resource Management Layer Prototype,”

Melodic Project Deliverable, Aug. 2018.
[10] Daniel Seybold, Daniel Baur, Floran Held, and Paweł Skrzypek, “D4.5 Data Processing

Layer Prototype,” Melodic Project Deliverable, Jan. 2019.
[11] David H. Wolpert and William G. Macready, “No free lunch theorems for

optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997, doi:
10.1109/4235.585893.

[12] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reliable, Memory
Speed Storage for Cluster Computing Frameworks,” in Proceedings of the ACM
Symposium on Cloud Computing - SOCC ’14, Seattle, WA, USA, 2014, pp. 1–15, doi:
10.1145/2670979.2670985.

http://www.melodic.cloud/

