
www.melodic.cloud

flattoorage

 Title:

Evaluation Framework and Use Case
Planning

Abstract/Executive summary

The evaluation framework is used to guide the evaluation of
MELODIC, and mechanisms integrated in the different use
cases have been defined. In the scope of each use case, specific
evaluation scenarios for validating and demonstrating the
MELODIC platform are documented.
The evaluation framework is based on four phases inspired by
the Goal/Question/Metric (GQM) method: the planning phase,
the definition phase, the data collection phase, and the
interpretation phase. It will lead to an integration of evaluation
criteria of qualitative (e.g. feedback from business managers)
and quantitative natures (e.g. deployment performance
measurements).
The test case scenarios developed in the scope of WP5 have
been used as a baseline while building the specification of
each evaluation scenario. A utility features method with
concrete examples has also been defined.
The framework identifies appropriate evaluation methods for
the qualitative and quantitative data collection and analysis
and creates as a whole an ‘evaluation tool box’ for the
execution of the use case specific scenarios. Partners
collaboratively defined a set of evaluation scenario activities
and analysed what need to be implemented. This resulted in
in-detail organization and planning of the use case
demonstrations.
The targeted milestone M4 will mark the application of the
initial MELODIC platform in the use cases, and first round of
feedback on its use.
This deliverable should be read by the following persons:
1. Evaluation team – to verify the validity of the described
evaluation framework and plan,
2. Development teams - to confirm the overall feasibility of the
use cases and of the related evaluation based on the MELODIC
platform release plan.
The deliverable reflects the work done in the scope of WP6
(T6.1) until February 2018.

Multi-cloud Execution-ware
for Large-scale Optimized
Data-Intensive Computing

H2020-ICT-2016-2017
Leadership in Enabling and
Industrial Technologies;
Information and
Communication
Technologies
Grant Agreement No.:
731664

Duration:
1 December 2016
30 November 2019
www.melodic.cloud

Deliverable reference:
6.1

Date:
28 February 2018

Responsible partner:
CAS
Editor(s):
Sébastien Kicin

Author(s)
Sébastien Kicin,
Sebastian Schork,
Antonia Schwichtenberg,
Geir Horn, Paweł Gora,
Tomasz Przeździęk, Michal
Semczuk

Approved by:
Jörg Domaschka

ISBN number:
N/A

Document URL:

http://www.melodic.cloud/
deliverables/D6.1 Evaluation
Framework and Use Case
Planning.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2018)3344193 - 25/06/2018

http://www.melodic.cloud/
http://www.melodic.cloud/
http://www.melodic.cloud/deliverables/D6.1%20Evaluation%20Framework%20and%20Use%20Case%20Planning.pdf
http://www.melodic.cloud/deliverables/D6.1%20Evaluation%20Framework%20and%20Use%20Case%20Planning.pdf
http://www.melodic.cloud/deliverables/D6.1%20Evaluation%20Framework%20and%20Use%20Case%20Planning.pdf
http://www.melodic.cloud/deliverables/D6.1%20Evaluation%20Framework%20and%20Use%20Case%20Planning.pdf

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 2

Document

Period Covered M7-15

Deliverable No. D6.1

Deliverable Title Evaluation Framework and Use Case Planning

Editor(s) Sébastien Kicin

Author(s) Sébastien Kicin, Sebastian Schork, Antonia
Schwichtenberg, Geir Horn, Paweł Gora,
Tomasz Przeździęk, Michal Semczuk

Reviewer(s) Daniel Seybold, Amir Taherkordi

Work Package No. 6

Work Package Title Market driven use cases and validation

Lead Beneficiary CAS Software AG

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 112

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 3

Table of Contents
1 Introduction .. 8

1.1 Scope of the Document .. 9

1.2 Overall Evaluation Objectives .. 9

1.3 The Phases of the Melodic Evaluation ... 10

2 The Planning Phase .. 13

2.1 The Melodic Evaluation Groups ... 13

2.2 The Melodic Evaluation Perspectives .. 14

2.3 The Evaluation Objects ... 14

2.3.1 Evaluation Scenario 1: Setup Melodic .. 16

2.3.2 Evaluation Scenario 2: Add Application ... 17

2.3.3 Evaluation Scenario 3: Deploy Application .. 18

2.3.4 Evaluation Scenario 4: Optimization ... 19

2.3.5 Evaluation Scenario 5: Local reconfiguration ... 21

2.3.6 Evaluation Scenario 6: Undeploy Application .. 21

2.3.7 Evaluation Scenario 7: Template-based Utility Function Creation 22

2.3.8 Evaluation Scenario 8: Extended Stress Test ... 23

2.3.9 Evaluation Scenario 9: Backup and Recovery of Melodic .. 24

2.3.10 Evaluation Scenario 10: Monitor System Status .. 25

2.3.11 Evaluation Scenario 11: Platform Security ... 27

2.4 Maximising Utility to Select the Best Application Configuration ... 29

2.4.1 Mastering Optimisation Complexity ... 30

2.4.2 The Application Component Type .. 31

2.4.3 The Requirement Attributes .. 32

2.4.4 Selecting the Node Candidates ... 33

3 The Definition Phase ... 36

3.1 Definition of Measurement Goals ... 36

3.1.1 Technical Perspective .. 37

3.1.2 Business Perspective.. 39

3.2 Definition and Review of Questions ... 41

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 4

3.3 Definition of Metrics .. 41

3.4 Timetable for Executing the Evaluation Framework ... 42

4 The Melodic Use Cases ... 44

4.1 Use case 1: A marketplace for data-intensive apps supporting deployment in multi-cloud
 45

4.1.1 Overview ... 46

4.1.2 Melodic Individual User Roles .. 50

4.1.3 Evaluation Groups ... 52

4.1.4 Applications to be deployed ... 52

4.2 Use case 2a: Data-intensive application for people flow (mobility) monitoring and
analysis based on anonymised signalling data from mobile operator network 54

4.2.1 Overview ... 54

4.2.2 Melodic Individual User Roles .. 58

4.2.3 Evaluation Groups ... 59

4.2.4 Applications to be deployed ... 59

4.3 Use case 2b: Real-time traffic management based on the Floating Car Data and advanced
traffic simulations .. 60

4.3.1 Overview ... 60

4.3.2 Melodic Individual User Roles .. 64

4.3.3 Evaluation Groups ... 65

4.3.4 Applications to be deployed ... 66

4.4 Use case 3: Secure data management ... 67

4.4.1 Overview ... 68

4.4.2 Melodic Individual User Roles .. 73

4.4.3 Evaluation Groups ... 74

4.4.4 Applications to be deployed ... 75

4.5 Use case 4: Genome analysis ... 76

4.5.1 Overview ... 76

4.5.2 Melodic Individual User Roles ... 81

4.5.3 Evaluation Groups ... 82

4.5.4 Applications to be deployed ... 82

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 5

5 Next Steps ... 85

5.1 Questions and Metrics ... 85

5.2 The Data Collection Phase .. 85

5.3 The Interpretation Phase ... 85

6 Conclusion .. 87

7 References .. 88

Annex 1 - Evaluation Components (based on WP5 test scenarios) .. 89

Annex 2 - Utility examples ... 91

Example 1: Combinatorics ... 91

Example 2: Secure Documents: Load distribution over workers .. 93

Example 3: CRM Memory Use ... 104

Example 4: Simulation: Time to completion .. 109

Index of Figures
Figure 1 Melodic evaluation aspects .. 8
Figure 2 The GQM Method .. 11
Figure 3 The overall Melodic evaluation phase ... 12
Figure 4 ISO 25010 Software Product Quality Characteristic [4] ... 37
Figure 5 Quality focus, breakdown to concrete attributes and metrics samples 38
Figure 6 SmartDesign and App Store Architecture ... 47
Figure 7 People flow monitoring application architecture with Melodic ... 55
Figure 8 An architecture of the real-time traffic management system .. 61
Figure 9 Case 3 - Technical architecture .. 69
Figure 10 Case 3 - Technical architecture .. 70
Figure 11 Case 4 - Technical architecture based on frameworks ... 77

Index of Tables
Table 1 Perspectives according to evaluation groups ... 14
Table 2 Evaluation scenario overview .. 15
Table 3 Evaluation components of scenario 1 .. 16
Table 4 Evaluation components of scenario 2 ... 18
Table 5 Evaluation components of scenario 3 ... 18
Table 6 Evaluation components of scenario 4 .. 20

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 6

Table 7 Evaluation components of scenario 5 ... 21
Table 8 Evaluation components of scenario 6 ... 21
Table 9 Evaluation components of scenario 7 .. 22
Table 10 Evaluation components of scenario 8 .. 23
Table 11 Evaluation components of scenario 9 ... 25
Table 12 Evaluation components of scenario 10 ... 25
Table 13 Evaluation components of scenario 11 ... 28
Table 14 GQM goal definition template ... 36
Table 15 Time table for executing the evaluation framework ... 42
Table 16 Case 1 - Business environment ... 47
Table 17 Case 1 - Expected benefits for SmartWe customer ... 48
Table 18 Case 1 - Application provider expected benefits ... 48
Table 19 Case 1 - Cloud provider expected benefits ... 49
Table 20 Case 1 - Platform user expected benefits .. 49
Table 21 Case 1 - Platform administrator expected benefits .. 50
Table 22 Case 1 - Individual user roles ... 50
Table 23 Case 1 - Preliminary list of evaluation group members ... 52
Table 24 Case 1 - Structural application model .. 53
Table 25 Case 2 - Business environment .. 56
Table 26 Case 1 - Expected benefits for deployed application users ... 56
Table 27 Case 1 - Application provider expected benefits .. 57
Table 28 Case 2 - Cloud provider expected benefits .. 57
Table 29 Case 2 - Platform user expected benefits .. 57
Table 30 Case 2 - Platform administrator expected benefits ... 58
Table 31 Case 2 - Individual user roles ... 58
Table 32 Case 2 - Preliminary list of evaluation group members ... 59
Table 33 Case 2 - Structural application model .. 60
Table 34 Case 2 - Business environment .. 62
Table 35 Case 1 - Expected benefits for deployed application users ... 62
Table 36 Case 1 - Application provider expected benefits .. 63
Table 37 Case 2 - Cloud provider expected benefits .. 63
Table 38 Case 2 - Platform user expected benefits .. 63
Table 39 Case 2 - Platform administrator expected benefits ... 64
Table 40 Case 2 - Individual user roles .. 64
Table 41 Case 2 - Preliminary list of evaluation group members ... 65
Table 42 Case 2 - Structural application model .. 67
Table 43 Case 3 - Business environment .. 70
Table 44 Case 3 - Expected benefits for deployed application users ... 71
Table 45 Case 3 - Application provider expected benefits .. 72

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 7

Table 46 Case 3 - Cloud provider expected benefits ... 72
Table 47 Case 3 - Platform user expected benefits .. 72
Table 48 Case 3 - Platform administrator expected benefits ... 73
Table 49 Case 3 - Individual user roles .. 73
Table 50 Case 3 - Preliminary list of evaluation group members ... 74
Table 51 Case 3 - Structural application model ... 75
Table 52 Case 4 - Business environment .. 78
Table 53 Case 4 - Expected benefits for deployed application users .. 79
Table 54 Case 1 - Application provider expected benefits .. 79
Table 55 Case 4 - Cloud provider expected benefits .. 79
Table 56 Case 4 - Platform user expected benefits .. 80
Table 57 Case 4 - Platform administrator expected benefits ... 80
Table 58 Case 4 - Melodic Individual User Roles .. 81
Table 59 Case 4 - Preliminary list of evaluation group members ... 82

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 8

1 Introduction

The deliverable reflects the work done in the scope of WP6 (T6.1) until February 2018. Melodic
needed an efficient evaluation methodology specifying how to obtain feedback from Melodic use
case partners.
Melodic is not the first project raising performance assessment questions of a software platform.
In the past, each ICT project developed under European EC support has been confronted with the
same question: how should the added value, performance and reliability of IT-based prototypes
be assessed? The challenge of this assessment has been actually derived from the fact that IT
systems are usually developed as interfaces between different evaluation aspects. Four aspects
have been identified in relation to the demonstration of the Melodic platform (see figure 1).

Figure 1 Melodic evaluation aspects

User acceptance is the core aspect of Melodic evaluation at this stage of the project in order to be
able to prepare the initial business deployment of the Melodic platform beyond the end of the
project. The functional design needs to be evaluated in detail in order to ensure the practical
relevance of the features developed so far and check their conformity with functional and non-
functional requirements of the use cases and with the specified requirements of the Melodic
platform (see project deliverable D2.1).

The platform solution delivery as such (documentation, support, etc.) is not currently considered
as a high evaluation priority as we are dealing first with a system prototype. The infrastructure
includes both the Melodic components and the actual resources where Melodic is running (e.g.
OpenStack UULM, OpenStack UiO, and ArubaCloud). This infrastructure is clearly scalable and

MELODIC
Platform

Platform
infrastructure

Platform
solution
delivery

User acceptance

Functionnal
design

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 9

will constitute a much more relevant issue while starting the business deployment phase of the
Melodic solution, even if basic feedback could be collected at this stage.

1.1 Scope of the Document

This document presents the Melodic evaluation framework and overall evaluation approach that
will be implemented in WP6 according to the different Melodic use cases. Based on the
Goal/Question/Metric method (GQM), this document is paving the way to the use case
implementations towards final evaluation execution by the end of the project. The “test
scenarios” already used in WP5 are adapted and consolidated as “evaluation scenarios” in this
document. Key technical quality focuses and business priorities are identified in order to prepare
the deployment of detailed appropriated evaluation questions and metrics.
The reasoning challenge is also addressed by presenting the way the approach of “utility
function” can be used to solve software deployment optimisation.
A preliminary description of the architecture of each use case was provided in detail in the
Deliverable D2.1. This document is preparing the related WP6 implementation steps for each use
case by specifying major issues like the targeted business impacts, use case roles and evaluation
participants.

1.2 Overall Evaluation Objectives

Based on the Melodic use cases, the evaluation should demonstrate the main benefits of the
Melodic approach to the European (big data) software industry, including:

 Ability to grow and scale up the applications managed by Melodic through multi-cloud
deployments;

 Possible lower cloud costs due to countering vendor lock-in;
 Optimised efficiency of computation on big data sets dispersed over multiple physical

locations including data location management;
 ability of automatic reconfiguration which enables an application to be more robust and

achieve the delivery of stable service level;
 cross-cloud ability allowing configuration of geographical location;
 less management effort and cost and a higher automation level for adaptive application

provisioning.

Applicability to different scenarios and wider class of problems is the key to receive traction
and acceptance from software professionals and businesses, and attract them.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 10

Each of the industrial consortium partners provides at least one use case scenario and will
execute the related demonstrator to present how Melodic can be used by a variety of
organisations in different contexts. A preliminary description of the architecture of each use case
was provided in detail in Deliverable D2.1. The most typical scenarios explaining the exploitation
model of Melodic will include:

a) Data-intensive application owners seeking to scale-up through the app market
distribution model (use case 1 by CAS);

b) Data-intensive application providers trying to enhance/upgrade their offering (use case 2
by CET);

c) Software providers looking for ways to multiply and integrate the services offered to their
customers (use-cases 3 and 4 by 7bulls).

The use case implementation will demonstrate:
 how Melodic can make highly innovative smart city services, relying on sensitive big-data

of people and vehicle mobility, economically and technically feasible. In particular, the
deployment application will support the intelligent traffic control management system in
managing crises and abnormal situations (CET use case)

 how Melodic will allow big genome data be processed for medical purposes in an
affordable and highly secure way (7bulls first use case)

 how Melodic can ease, speed up and reduce cost of the deployment of cloud enabled
applications distributed by an app store operator (CAS use case)

 how Melodic can help a cloud provider to realise a forward-looking competitive strategy
based on offering a value added multi-cloud service (7bulls second use case).

In all of the above use cases, which implementation method can be replicated and scaled up
without limits, in Europe and beyond, Melodic will improve application performance and cost
effectiveness over a geo-distributed infrastructure.

1.3 The Phases of the Melodic Evaluation

Although there are a number of comprehensive evaluation and validation methodologies in
industry and academia, they often lack the goal-driven nature of businesses, thus not able to
provide valuable conclusions about the real viability and sustainability of the Melodic platform.
From the business perspective, Melodic only provides the means to achieve other business goals,
such as deployment process improvement, reduced error rates, and decreased application
deployment delays.

The Goal/Question/Metric method (GQM) method [1] supports such a business driven quality
improvement and validation approach quite well and has inspired the Evaluation Framework
employed for validating the Melodic platform.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 11

GQM represents a systematic approach for tailoring and integrating goals with models of the
software processes, products and quality perspectives of interest, based upon the specific needs
of the project. The result of the application of the GQM method is the specification of a strategy
targeting a particular set of issues and a set of rules for the interpretation of the measurement
data. The principle behind the GQM method is that evaluation, validation and subsequent
measurement should be goal-oriented.

Along the GQM method, a certain goal is defined which is refined into questions, and metrics that
provide the information to answer these questions. By answering the questions, the measured
data can be analysed to identify whether the goals have been attained. Thus, GQM defines metrics
from a top-down perspective and analyses and interprets the measurement data bottom-up, as
shown in Figure 2.

Using the GQM method, the objects of study are to be clearly identified and then validated
according to a number of goals that enable focus on certain aspects of assessment. Each goal will
be broken down into one or more questions that act as a vehicle for the assessment of the goal.
Finally, in order to analyse and interpret the questions’ results, specific metrics will be defined.

The measurement data is interpreted bottom-up. As the metrics are defined with an explicit goal
in mind, the information provided by the metrics is interpreted and analysed with respect to this
goal, to conclude whether or not it is attained. GQM trees of goals, questions and metrics are
usually built based on the knowledge of experts.

Figure 2 The GQM Method

The Melodic Evaluation Framework contains four phases inspired by the GQM method:

 The Planning phase, during which the overall approach is defined and planned, resulting
in a use case evaluation plan. The evaluation objects are defined (components, processes
or resources under observation) as well as the evaluation groups (people who will
participate in the evaluation process). This phase is performed to fulfil all basic
requirements for conducting the validation successfully, including the definitions of
actors, who will be involved, and the creation of a high-level evaluation plan.

 The Definition phase, during which the measurement scheme is defined (goal, questions
and metrics are defined) and documented.

 The Data Collection phase, during which the actual data collection takes place, resulting

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 12

in collected measurement and data. The data collection forms are defined, filled-in and
stored.

 The Interpretation phase, during which collected data is processed with respect to the
defined metrics into measurement results that provide answers to the defined questions,
after which goal attainment can be evaluated.

At this stage of the project, the planning and the definition phase have been achieved. Figure 3
depicts the different phases and their connection.

Figure 3 The overall Melodic evaluation phase

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 13

2 The Planning Phase

The primary objectives of this phase were to collect all required information for a successful
Melodic evaluation, to define the actors involved in the procedure and to prepare a high-level
validation framework. This framework is supposed to act as guideline for all subsequent phases
and all stakeholders involved.

Three identification steps are involved in the planning phase of the Melodic evaluation:

1. The groups of people who will participate in the evaluation process.
2. The validation perspectives.
3. The objects to be validated.

The following sections describe the preliminary outcome of the planning phase. However, taking
into account possible updates in the prototype development (WP5), these results are indicative
and subject to further revisions until the actual validation phase performed by the end of the
project.

2.1 The Melodic Evaluation Groups

Since the Melodic project is focusing on adaptive provisioning, the evaluation should not only
involve the developers in WP3, WP4 and WP5, but also deployment actors and people who will be
the actual users of the Melodic platform. Therefore, the Evaluation Framework defines three
separate validation roles from the use case partners or from the developers of the Melodic
framework:

 The Melodic developer group: they will form the core validation group with thorough
and in-depth knowledge about software quality.

 The Melodic business manager group: they will answer questions with a special focus
on measurable business impact on adaptive provisioning. This group based on
participants from the use-case partners will be involved through a survey on the
business impact of the Melodic solution.

 The Melodic administrator group: This group will particularly take care of the technical
performance, liability, maintainability, and usability of the platform.

Preliminary lists of participants of evaluation groups for each use case have been identified and
are presented in Chapter 4.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 14

2.2 The Melodic Evaluation Perspectives

Each evaluation object defined in the next section will be validated according to two different
perspectives that are defined below:

1. The Technical Perspective, in which the quality, liability and technical performance of
the Melodic platform will be validated.

2. The Business Perspective, in which the response to the user needs and the business
impact will be examined. The instrumentation used in this perspective is drawn upon
usefulness and feasibility of the proposed deployment operation support.

Administrators and developers will interact directly with the system. Consequently, the
procedure used to evaluate the Melodic platform from the technical perspective should only
target these two groups.

Table 1 provides an overview of the importance of the perspective according to the evaluation
groups.

Table 1 Perspectives according to evaluation groups

Evaluation groups Technical perspective Business perspective

Business Managers +++

Administrators ++ +

Developers +++

In an early phase of the project and in the first iteration of the use case implementation, the
technical perspective is given priority whereas in a later phase of the project and during the
second iteration of the implementation, the business perspective will become more important.

2.3 The Evaluation Objects

After the definition of the Melodic evaluation groups and evaluation perspective, the next step is
the identification and selection of appropriate evaluation objects.

The evaluation of the Melodic platform will cover all the Melodic components:

 CP Generator
 DLMS

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 15

 Esper/Monitoring
 Utility Generator
 Meta Solver
 CP Solver
 LA Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB
 Cloudiator
 REST CLIENT
 CDO Server

Nevertheless, even if all these Melodic platform components are involved in the evaluation
process, they cannot be considered as evaluation objects themselves for use case partners,
neither on business nor on technical perspectives.
The evaluation objects should mainly draw upon the evaluation groups’ needs. The latter are not
directly related to the Melodic component architecture.
The partners agreed to consider “use case evaluation scenarios” as the objects of study. In
particular, each use case should be based on one or more “evaluation scenario”.

An evaluation scenario is based on a “composition of evaluation components”. Evaluation
components are directly related to the test scenarios described in WP5 (see Deliverable D5.04 [2])
and are very similar to them (see evaluation component list in Annex 1). An evaluation scenario
is therefore a selection of evaluation components put in a concrete order of execution. Further
details (like e.g. the number of components included in the application to be deployed and the
number of cloud providers) will be provided by the use case partners in D6.2 in order to get a full
description of the use case.
The following abstract and common evaluation scenarios were identified by the Melodic use
case partners.

Table 2 Evaluation scenario overview

Id. Name Short description

1 Setup Melodic Initial setup and configuration on a blank VM.

2 Add Application Includes configuration of CAMEL model, constraints etc.

3 Deploy Application By using the user interface or the API.

4 Optimisation Under use of the utility function and the scaling mechanisms
of Melodic.

5 Local reconfiguration Define local reconfiguration rules through the use of defined

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 16

scalability rules in the CAMEL model of the application.

6 Undeploy Application By using the user interface or the API.

7 Template-based Utility
Function creation

Evaluation of the editors.

10 Extended Stress Test Evaluation of the capability to scale.

11 Backup and Recovery
of Melodic

e.g., moving Melodic to another VM.

12 Monitor system status Monitoring of the deployment as it is usually done in
server/cloud environments by both developers and IT
administrators (deployment status, application status,
platform status, etc.).

13 Platform Security Validates various security aspects of the Melodic platform.

These scenarios are detailed in the following chapters including a description of the process and
the related selected evaluation components for each of them. Not selected evaluation
components are also clearly identified. Some of the scenarios need to be evaluated sequentially
as they have dependencies. Detailed references to “test scenarios” presented in D5.04 are
provided as far as available.

2.3.1 Evaluation Scenario 1: Setup Melodic

Melodic shall be installed on a blank machine and afterwards configured according to the
partner’s individual needs. The administrator will perform the installation according to the
manuals and documentation provided by the technical partners. Melodic shall be considered
“setup” as soon as installation test scripts confirm that the correct setup and initial configuration
have been accomplished (e.g., adding users, IPs, etc.).

Table 3 Evaluation components of scenario 1

Topic/Evaluation component Selected component
(X)

ID (according to D5.4)

User management
Adding user X 8.1
Removing user 8.2
Updating user password X 8.3
Updating user profile X 8.4
Unified administration procedure

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 17

Unified starting, stopping and restarting of
Melodic platform

X 8.5

Configuring backup 8.6
Executing backup 8.7
Recover Melodic platform 8.8
Monitor Melodic platform 8.9

2.3.2 Evaluation Scenario 2: Add Application

An application shall be added to a Melodic Installation. The (authenticated) evaluating person
uses the UI provided by Melodic to perform all necessary steps:

 definition of CAMEL model for the application
 making binaries of the application available
 storing the CAMEL model in the platform.

This scenario does not include the deployment of the application itself. The scenario can be
considered ‘executed’, when the application is ‘setup’ and deployable.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 18

Table 4 Evaluation components of scenario 2

Topic/Evaluation component Selected component
(X)

Test scenario ID
(see D5.04)

API
Camel model upload X N/A
Initiate deployment process N/A
Get application status N/A
UI
Web based UI for application view: Application
view

X N/A

Web based UI for application view: Deployment
view

 N/A

Eclipse based editor for the CAMEL model: CAMEL
Model validation

X N/A

Eclipse based editor for the CAMEL model: Syntax
completion

X N/A

2.3.3 Evaluation Scenario 3: Deploy Application

An application shall be deployed by a Melodic installation. The (authenticated) evaluating person
(or entity) uses the UI (or API) provided by Melodic to perform all necessary steps in order to get
an already existing application deployed:

The application is considered deployed when Melodic confirms the deployment (i.e. by checking
the UI and Monitoring) and the application (and components) is (are) up and accessible
(application specific verification).

Table 5 Evaluation components of scenario 3

Topic/Evaluation component Selected
component
(X)

Test scenario ID
(see D5.04)

Initial deployment
Installation and deployment of a N-component application on M
different Cloud Providers

X 1.3

Installation and deployment of a N-component application in
Docker containers on M different Cloud Providers

X 1.6

Installation and deployment of a N-component application,
where X components are installed in a Docker container and Y
on a normal VM on M different Cloud Providers

X 1.7

Deployment requirements enforcement. X 1.8

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 19

Installation and deployment of a N-component application on M
different Cloud Providers with more advanced set of
requirements, like non-functional ones.

X 1.9

Reasoning
Linear constraints and optimization solving - CP Solver X 5.1
Linear constraints and optimization solving - MILP Solver X 5.2
Linear constraints and optimization solving - LA Solver X 5.3
Non-linear constraints and optimization solving - CP Solver X 5.4
Non-linear constraints and optimization solving - LA Solver X 5.5
API
Camel model upload
Initiate deployment process X N/A
Get application status X N/A
UI
Web based UI for application view: Application view X N/A
Web based UI for application view: Deployment view X N/A
Eclipse based editor for the CAMEL model: CAMEL Model
validation

Eclipse based editor for the CAMEL model: Syntax completion
BigData management
Big data application deployment optimization X N/A
Big data application deployment execution X N/A
Big data application monitoring and reconfiguration
Data locality awareness - features related to data locality and
data movement.

Performance
Response time while solving complex allocation problems X 6.5
Dynamic scalability within one Cloud - verification of the
execution time

 6.6

Dynamic scalability testing for multi-Cloud feature (using two
different locations)

 6.7

Counting Compute Resource Overhead of Melodic introduced
over its host machine

 6.8

2.3.4 Evaluation Scenario 4: Optimization

Melodic shall handle the reconfiguration of an already deployed and running application
according to the non-functional constraints posed as well as the respective optimisation
objectives specified in the form of optimising a certain utility function. Since this mechanism is
supposed to work (almost) automatically, no actions on the Melodic platform from the evaluating
person are needed. Instead, the scenario is triggered by either stressing the deployed application

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 20

(e.g., in the case of CAS Software AG by using 70-80% of RAM or taking into account more complex
rules) or by simulating such circumstances, e.g., by using the API or the message bus. The
scenario also contains downscaling in case of an overprovisioned environment for the
application.

Table 6 Evaluation components of scenario 4

Topic/Evaluation component Selected
component (X)

Test scenario
ID (see D5.04)

Metric management

Built-in raw metrics collection X 2.1

Custom raw metrics collection X 2.2

Composite metric collection X 2.3

Event generation X 2.4

Global reconfiguration

Attributes of used VM offerings changed X 4.1

Global reconfiguration X 4.2

Reasoning

Linear constraints and optimization solving - CP Solver X 5.1

Linear constraints and optimization solving - MILP Solver X 5.2

Linear constraints and optimization solving - LA Solver X 5.3

Non-linear constraints and optimization solving - CP Solver X 5.4

Non-linear constraints and optimization solving - LA Solver X 5.5

API

Camel model upload

Initiate deployment process

Get application status X

UI

Web based UI for application view: Application view

Web based UI for application view: Deployment view X

Eclipse based editor of the CAMEL: CAMEL Model validation

Eclipse based editor of the CAMEL: Syntax completion

BigData management

Big data application deployment optimization X

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 21

Big data application deployment execution

Big data application monitoring and reconfiguration X

Data locality awareness - features related to data locality and
data movement.

2.3.5 Evaluation Scenario 5: Local reconfiguration

Table 7 Evaluation components of scenario 5

Topic/Evaluation component Selected
component
(X)

Test scenario ID
(see D5.04)

Local reconfiguration

Scale out application X 3.1

Scale in application X 3.2

2.3.6 Evaluation Scenario 6: Undeploy Application

An already deployed and running Application shall be undeployed. The (authenticated)
evaluating person (or Entity) uses the UI (or API) provided by Melodic to perform all necessary
steps in order to undeploy an existing deployed application (manual undeployment triggering on
the deployed application)

The application can be considered undeployed when Melodic indicates the application as
undeployed and the application is not up and accessible any longer.

Table 8 Evaluation components of scenario 6

Topic/Evaluation component Selected
component (X)

Test scenario ID
(see D5.04)

API

Camel model upload

Initiate deployment process

Get application status X

UI

Web based UI for application view: Application view X

Web based UI for application view: Deployment view X

Eclipse based editor of the CAMEL: CAMEL Model validation

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 22

Eclipse based editor of the CAMEL: Syntax completion

BigData management

Big data application deployment optimization

Big data application deployment execution

Big data application monitoring and reconfiguration X

Data locality awareness - features related to data locality and
data movement.

2.3.7 Evaluation Scenario 7: Template-based Utility Function Creation

Melodic offers several possibilities to maintain and extend the underlying model (including
utility function). The evaluating person will evaluate both the metadata schema editor (‘muse’)
and the (CAMEL) application model editor. Muse, for instance, could be used to specify the actual
weights on partial utility functions/metrics while CAMEL editor will take these weights in order
to complete the definition of the overall utility function (or to validate the content of the existing
one). This scenario contains the following steps:

 Viewing the current model/s
 Changing the current model/s
 Updating the applied model/s

This scenario aims to evaluate rudimental functionality as described above, and advanced
(graphical) modelling abilities of Melodic and the provided editors:

 Level of abstraction
 Behaviour with very small and/or very large models

Table 9 Evaluation components of scenario 7

Topic/Evaluation component Selected
component (X)

Test scenario ID
(see D5.04)

API

Camel model upload X

Initiate deployment process

Get application status

UI

Web based UI for application view: Application view X

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 23

Web based UI for application view: Deployment view X

Eclipse based editor of the CAMEL: CAMEL Model validation X

Eclipse based editor of the CAMEL: Syntax completion X

2.3.8 Evaluation Scenario 8: Extended Stress Test

Such an extended stress test is supposed to allow an evaluation of Melodic, especially its
functionalities and components under heavy load. Other than the scaling scenario, the focus lies
on the platform itself.

Every functionality that potentially represents or handles a complex task should be considered
for such an extended stress test.

Table 10 Evaluation components of scenario 8

Topic/Evaluation component Selected
component (X)

Test scenario ID
(see D5.04)

Initial deployment

Installation and deployment of a N-component application
on M different Cloud Providers

X 1.3

Installation and deployment of a N-component application in
Docker containers on M different Cloud Providers

X 1.6

Installation and deployment of a N-component application,
where X component are installed in a Docker container and
Y on a normal VM on M different Cloud Providers

X 1.7

Deployment requirement enforcement. X 1.8

Installation and deployment of a N-component application
on M different Cloud Providers with more advanced set of
requirements, like non-functional ones.

X 1.9

Metric management

Built-in raw metrics collection X 2.1

Custom raw metrics collection X 2.2

Composite metric collection X 2.3

Event generation X 2.4

Local reconfiguration

Scale out application X 3.1

Scale in application X 3.2

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 24

Global reconfiguration

Attributes of used VM offerings changed X 4.1

Global reconfiguration X 4.2

Reasoning

Linear constraints and optimization solving - CP Solver X 5.1

Linear constraints and optimization solving - MILP Solver X 5.2

Linear constraints and optimization solving - LA Solver X 5.3

Non-linear constraints and optimization solving - CP Solver X 5.4

Non-linear constraints and optimization solving - LA Solver X 5.5

API

Camel model upload

Initiate deployment process

Get application status X

Fault handling

Temporary unavailability of Melodic platform components X 6.1

Temporary unavailability of BPM - verifying proper system
behaviour after BPM recovery.

 6.2

Temporary unavailability of Cloud Provider 6.3

High Availability Component configuration X 6.4

Performance

Response time while solving complex allocation problems X 6.5

Dynamic scalability within one Cloud - verification of the
execution time

 6.6

Dynamic scalability testing for multi-Cloud feature (using
two different locations)

 6.7

Counting Compute Resource Overhead of Melodic introduced
over its host machine

 6.8

2.3.9 Evaluation Scenario 9: Backup and Recovery of Melodic

Melodic platform installations shall support both backup and recovery with minimal
administration and/or configuration overhead. Possible use cases are broken platforms or the
necessity to move from one machine to another.
It is currently not decided whether Melodic will support backup and recovery directly or if such

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 25

actions have to be performed manually by the user on the underlying OS. The scenario contains
the following steps:

 Configure Backup
 Perform Backup
 Store Backup data
 (Install Melodic)
 Stop the platform
 Load backup data
 Execute recovery
 Perform verification (e.g., with scripts as in Scenario 1)

Table 11 Evaluation components of scenario 9

Topic/Evaluation component Selected
component (X)

Test scenario ID
(see D5.04)

Unified administration procedure

Unified starting, stopping and restarting of Melodic
platform

X 8.5

Configuring backup X 8.6

Executing backup X 8.7

Recover Melodic platform X 8.8

Monitor Melodic platform 8.9

2.3.10 Evaluation Scenario 10: Monitor System Status

Melodic platform installations shall support the monitoring of the deployment as it is usually
done in server/cloud environments by both developers and IT administrators. The system status
contains:

 Deployment status
 Application and component specific status
 Platform status
 Underlying machine status
 Output of continuous logging information

Table 12 Evaluation components of scenario 10

Topic/Evaluation component Selected
component (X)

Test scenario ID
(see D5.04)

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 26

Metric management

Built-in raw metrics collection X 2.1

Custom raw metrics collection X 2.2

Composite metric collection X 2.3

Event generation X 2.4

API

Camel model upload

Initiate deployment process

Get application status X

UI

Web based UI for application view: Application view X

Web based UI for application view: Deployment view X

Eclipse based editor of the CAMEL: CAMEL Model
validation

Eclipse based editor of the CAMEL: Syntax completion

Fault handling

Temporary unavailability of Melodic platform components X 6.1

Temporary unavailability of BPM - verifying proper system
behaviour after BPM recovery.

X 6.2

Temporary unavailability of Cloud Provider X 6.3

High Availability Component configuration X 6.4

Performance

Response time while solving complex allocation problems X 6.5

Dynamic scalability within one Cloud - verification of the
execution time

X 6.6

Dynamic scalability testing for multi-Cloud feature (using
two different locations)

X 6.7

Counting Compute Resource Overhead of Melodic
introduced over its host machine

X 6.8

Security

Method invocation by programmatic access - Successful
Authentication

X 7.1

Unsuccessful authentication X 7.2

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 27

Successful Authorisation Request X 7.3

Unsuccessful authorisation request X 7.4

Unsuccessful user authorisation with administrator
privileges

X 7.5

Logging within Melodic platform X 7.6

Unified administration procedure

Unified starting, stopping and restarting of Melodic
platform

 8.5

Configuring backup 8.6

Executing backup 8.7

Recover Melodic platform 8.8

Monitor Melodic platform X 8.9

2.3.11 Evaluation Scenario 11: Platform Security

Melodic platform installations shall satisfy the partner’s individual requirements regarding
platform’s operational security. Therefore, a separate security evaluation scenario (decoupled
from other evaluation scenarios) with the following details is planned:

 Rights are correctly handled and clearly separated between different user roles on both
o UI
o and API level

 SSL is used along all available web interfaces
 Authentication and authorisation happen in an appropriate way (per use case)
 Credentials are stored in a safe state-of-the-art way

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 28

Table 13 Evaluation components of scenario 11

Topic/Evaluation component Selected
component (X)

Test scenario
ID(see D5.04)

Fault handling

Temporary unavailability of Melodic platform components 6.1

Temporary unavailability of BPM - verifying proper system
behaviour after BPM recovery.

 6.2

Temporary unavailability of Cloud Provider 6.3

High Availability Component configuration 6.4

Security

Method invocation by programmatic access - Successful
Authentication

X 7.1

Unsuccessful authentication X 7.2

Successful Authorisation Request X 7.3

Unsuccessful authorisation request X 7.4

Unsuccessful user authorisation with administrator
privileges

X 7.5

Logging within Melodic platform X 7.6

User management

Adding user 8.1

Removing user 8.2

Updating user password X 8.3

Updating user profile 8.4

Unified administration procedure

Unified starting, stopping and restarting of Melodic
platform

 8.5

Configuring backup 8.6

Executing backup 8.7

Recover Melodic platform 8.8

Monitor Melodic platform X 8.9

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 29

2.4 Maximising Utility to Select the Best Application Configuration

The key information to run some of the evaluation scenarios described below is the reasoning
process used to identify the best deployment solution. As a whole, Melodic should provide an
application provider with a solution to deliver application and infrastructure services to a large
numbers of final users taking into account various and even evolving requirements and Cloud
Offers (COs). In the scope of WP6, we will consider the cases provided by the Melodic use case
partners as presented in chapter 0. Each of such use case has its own requirements in terms of
optimisation objectives and non-functional constraints. To meet the expectations of users in a
cost-effective manner, the Melodic platform must support numerous deployment management
decisions that satisfy diverse objectives, for example to meet Service Level Objectives (SLOs)
while minimizing overall costs.

The selected infrastructure providers will themselves take over the infrastructure decisions like
concrete final locations of the application and which host can be switched off. However,
allocating virtual hosts to an application in the Cloud, in the context of unpredictable workloads,
involves making deployment reconfiguration decisions for the use case partners, such as when
and where to relocate an application on one or more Cloud offerings.

The deployment change decisions can be made with regards to meeting different objectives.
Considering user satisfaction as a key objective would highly depend on the expectations of the
user and cannot be easily captured and foreseen. Even if an agreed Service Level Agreement (SLA)
is respected, this will not guarantee that the service performance level of the deployed application
is leading to the full satisfaction of the user.

In the scope of the Melodic use cases, we will not consider end user satisfaction as a direct
objective. The objectives and related metrics are provided by the platform users. Use cases
deployment optimisation objectives could be globally related to four measurable overall property
categories:

 service performance which involves objectives in terms of network latency, security,
and response time (possibly limited to the minimum of a Service Level Objective - SLO)

 cost (e.g. infrastructure, operational, setup, migration, and SLO violation cost) (e.g.,
seeking to maximize the return on investment)

 computing power
 service reliability (including availability)

The Melodic use case providers do not expect support for the management of Service Level
Agreement (SLA) as a whole. Anything related to SLA violation should be associated with an SLO
metric that is then formalised in constraints and optimisation objectives.

A “utility-based approach” could be followed in the scope of Melodic to optimise the use case
deployment. This kind of approach has already been applied to a range of applications, from

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 30

workflow scheduling on grids to data centre cooling. It could also be applied to flexible
application deployment in the Cloud. A utility function could be thus defined specifying the
overall goal of the deployment according to the user’s expectations, and a deployment
optimization algorithm explores alternative deployment solutions, to identify the one that
maximizes the user utility as defined in the defined utility function. The focus in Melodic is on
providing quite rich utility functions which incorporate multiple (SLO) metrics while they are
also expressed in such a way that the decision making (i.e., search for an optimised solution) does
not concern only the initial application deployment but also its reconfiguration.

As part of the overall evaluation framework, the following chapters and related annexes provide
guidance and illustrations on an overall "utility based approach" that should be used for
deployment configuration optimisation. This guideline will be crucial for the use case partners
while leading their own Melodic platform implementation prior to final evaluation. The partner
will test the implementation feasibility and relevance of this approach within the next WP6 steps.
At the end, the evaluation results will highly depends on the adequate use of this approach for
each use case.

2.4.1 Mastering Optimisation Complexity

An application is considered to consist of application component instances performing the
application logic. Scalability of the application is ensured by instantiating one or more of the
application types as needed, or more copies of one type. As an example, consider a simple web
shop application consisting of a back end business logic server, a client database server, a
webserver connecting the clients, and optionally a load balancer. Each of these is an application
component type and at the exception of the load balancer, at least one instance of each
component is necessary for the application to run. As more clients come in, more web servers are
needed and with the second web server type instance, a first load balancer must be instantiated.
As the shop grows further, more back end servers may also be needed. The utility of the
application is therefore bound to its ability to serve the business’ clients. When deployed in the
Cloud, each application component will typically be deployed or instantiated in a virtual machine
(VM). One virtual machine may be capable of hosting multiple application components; thereby
the mapping is not necessarily one-to-one between the set of application component instances
and the set of virtual machines used to host the application.

It seems to be a common wish for most users of the Cloud to minimise cost and cost only. The
cost in the Cloud is measured based on the used virtual machines, although in principle, the
scaling of the application and the selection of the virtual machines to be used to host the
application are orthogonal problems. Thus, to make a deployment decision one will need to do a
two-step optimisation:

 Decide on the number of instances needed for each component type under the current

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 31

execution context; and

 Decide on the mapping of these instances to a set of available virtual machines so that
the requirements of the instances grouped on a virtual machine is satisfied.

The first sub-problem may require various trade-offs between several aspects and the utility
function is supposed to provide the application owner’s view on a particular configuration’s
utility for its said purpose. The second part is normally only a selection process where the set of
available virtual machines are filtered based on how each node candidate, which is a generalised
description of a virtual machine, satisfies the (combined) requirements of the application
components that the node candidate is supposed to host. Then, the less costly instance of this
filtered set will be the instantiated virtual machine executing the mapped components.

There are two reasons for this two-step approach:

 Separation of concerns since the two optimisation problems are orthogonal; and

 Scalability in finding the optimal application configuration that maximises the
application utility.

For the second item, it should be noted that the application utility is the ability of the application
itself to satisfy its requirements. This is independent from the virtual machines used to host the
application, but it is generally not dependent on the Cloud provider of the machines and the
location of the virtual machines. The scalability is an issue because the problems are generally
discrete in that one has to choose a value of an application component type attribute from a
discrete set of options. This implies that finding the maximal utility is a combinatorial
optimisation problem. Algorithms for solving such problems are exponential in complexity.
Consider an algorithm exponential with complexity ea n for n variables values to be chosen from.
If one doubles the number of variable values, the time to find a solution increases by a factor of

 (e2a n/ea n)=e(2a n - n)=ea n

which is in general more than twice the time. It is therefore imperative to keep the number of
variables as few as possible and the domain of the variables as small as possible for the problem
to be tractable. The typical example is to decide on the number of instances for an application
component type, which will be one integral variable assigned a numerical value, rather than
deciding on the VM type taken from potentially a huge set of node candidates and leading to one
variable for each instance of the application component type.

2.4.2 The Application Component Type

The application consists of a set of components, which are defined at the type level. Instances of
the types are bound together to form the application logic, and the constraints relates the number
of instances of one application component type to the other types. For instance, if there are more

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 32

than one web server to be deployed, i.e. the cardinality of the web server component type is larger
than unity, then there should also be deployed a load balancer. The list of application component
types will be built dynamically during design phase as the various components are defined.

ApplicationComponentTypes={};

2.4.3 The Requirement Attributes

Each application component type has certain requirement attributes. These can be the number
of cores needed by an instance of this application component, the amount of memory needed by
this component, or the location needed by this component. It can also be the cloud provider
needed, and the number of instances of the component needed in the application configuration.
The set of attributes used in the examples of this notebook is

RequirementAttributes = {Cores, Memory, Provider, Instances};

By default, these are all set to undefined when a new application component type is defined, and
if the type is already defined, nothing will be done.

SetUndefinedRequirements[ComponentID_Symbol] /; Not[MemberQ[ApplicationComponentTypes,

ComponentID]] := (

 Map[(ComponentID[#] ^= Undefined)&, RequirementAttributes];

 AppendTo[ApplicationComponentTypes, ComponentID]

);

SetUndefinedRequirements[ComponentID_Symbol]/; MemberQ[ApplicationComponentTypes ,

ComponentID]:= Null;

Each of the attributes can have either a single value, or be represented by a discrete set of values.
Or be a range from a minimal value to a maximal value. In order to ensure that the attributes are
properly set for a particular application component type several functions are provided. The core
and memory attributes can be treated the same in that they can be either a number or an interval;
in both cases zero is not a valid value.

SetRequirement[TheAttribute_Symbol, ComponentID_Symbol, Value_Integer] /; TrueQ[MemberQ[{

Cores, Memory },TheAttribute] && Positive[Value]]:= (SetUndefinedRequirements[

ComponentID]; ComponentID[TheAttribute]^= Value);

SetRequirement[TheAttribute_Symbol, ComponentID_Symbol, Value_Interval] /; TrueQ[MemberQ[{

Cores, Memory },TheAttribute] && Positive[Min[Value]] && Positive[Max[Value]]] := (

SetUndefinedRequirements[ComponentID]; ComponentID[TheAttribute]^= Value);

The number of Instances of an application component type is a similar attribute; however, in this

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 33

case zero is an allowed value, and the acceptance test on the values will therefore be slightly
different.

SetRequirement[Instances, ComponentID_Symbol, Value_Integer] /; NonNegative[Value]:= (

SetUndefinedRequirements[ComponentID]; ComponentID[Instances]^= Value);

SetRequirement[Instances, ComponentID_Symbol, Value_Interval] /; TrueQ[NonNegative[

Min[Value]] && Positive[Max[Value]]] := (SetUndefinedRequirements[ComponentID];

ComponentID[Instances]^= Value);

The provider attribute is a non-empty set of possible Cloud providers for the instances of this
component type. However, this only applies if the provider is given. It is possible to leave it
undefined if any possible Cloud provider accessible to the application owner can be used.

SetRequirement[Provider, ComponentID_Symbol, Value_List?VectorQ] /; TrueQ[Length[Value]

>0]:= (SetUndefinedRequirements[ComponentID]; ComponentID[Provider]^= Value);

The vector of all the values of all requirement attributes for all application component types is
called the application configuration, and the utility is evaluated for this configuration.

2.4.4 Selecting the Node Candidates

The price to pay for splitting the optimisation problem in two separate parts is that the selection
of node candidates has to be made based on the application configuration, which is the result of
the first optimisation problem, and the selection has to be deterministic reflecting the application
configuration. The most typical aspect of the VM that users want to include in the utility is the
cost of the VM. However, since most users want to minimise cost, it makes sense to select the
cheapest possible VM from the set of node candidates satisfying the requirements of an
application component type when instantiating that type.
A node candidate is described by a set of attributes, where many of these attributes correspond
to the attributes of the application component types. In addition, a node candidate will typically
have assigned a price.

NodeAttributes = { Cores, Memory, Provider, Price };

The node candidate to host an instance of an application component type must provide enough
resources for the instance of that application component type. However, there is nothing
preventing the node candidate to over-provision resources. For instance, if an application
component type needs 4 cores to run, then all node candidates with at least 4 cores will match
this requirement. Note also that although the requirement attributes may be sets or ranges, the
node candidates’ attributes are always fixed values.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 34

The following functions implement the attribute match for the various variants, starting with the
simplest case where a single numerical value is matched with a single numerical value.

AttributeMatchQ[NodeValue_?NumericQ, RequirementValue_?NumericQ]:= TrueQ[RequirementValue

<= NodeValue];

If the requirement attribute value is an interval, the match ensures if the node candidate
attribute’s value is in the interval given by the requirement attribute. Although this would in
principle be correct, one must remember that the requirement is what an instance of the
application component type needs to run, but in theory it would not harm to give the instance
more resources, i.e. exceed the upper bound. Consider as an example the attribute memory: a
component can require [10 GB, 15 GB] to run. It should then obviously not be allocated to a node
candidate offering only 8 GB of RAM, but requiring strict conformance to the interval also it?
excludes a node candidate offering 16 GB of RAM since this is outside the interval required. Thus,
even if the last one GB of RAM will not be used if the application component runs on this node
candidate, the node candidate is certainly able to host the application component and should not
be excluded, also because it would be very strange to find a node candidate offering an amount of
memory in the given interval. The comparison is therefore made against only the lower limit of
the requirement interval.

AttributeMatchQ[NodeValue_?NumericQ, RequirementValue_Interval] := TrueQ[

Min[RequirementValue] <= NodeValue];

The last case to consider is when the requirement attribute is a list for which there must be an
exact match for one of the members. The requirement attribute set will only match if it is a vector,
i.e. a flat list of elements.

AttributeMatchQ[NodeValue_, RequirementValue_List?VectorQ] := MemberQ[RequirementValue,

NodeValue];

It could also be that an application component type attribute is undefined, which means that any
node candidate attribute value should match this attribute

AttributeMatchQ[NodeValue_, Undefined]:= True;

It is obvious from the above definitions of the two sets of attribute types that the match can only
be done on attributes that exist in both sets.

CommonAttributes = Intersection[RequirementAttributes, NodeAttributes];

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 35

Selecting a node candidate for a component type instance is done by matching all set
requirements for the common attributes, and applying the logical AND to the outcome of the tests
for each of the attributes. A node candidate is basically a virtual machine if its entire attributes
match in the sense described above.

NodeCandidateMatchQ[NodeID_Symbol, ComponentID_Symbol]:= Apply[And,

 Map[AttributeMatchQ[NodeID[#], ComponentID[#]]&, CommonAttributes]

];

Finding out which node candidates can be used to host an instance of an application component
is then just checking the node candidate match for each possible node candidate.

SelectNodeCandidates[ComponentID_Symbol, PossibleNodeCandidates_List?VectorQ]:= Select[

PossibleNodeCandidates, NodeCandidateMatchQ[#, ComponentID]&];

This will yield a set of node candidates, but one would normally be interested in the cheapest
node candidate. This requires a pricing model, which has been exemplified in the examples in
Annex 2.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 36

3 The Definition Phase

The definition phase is the second phase of the Melodic Evaluation Framework, and concerns all
activities that should be performed to formally define a measurement scheme.

This phase was already started with the definition of measurement goals, which were derived
from the evaluation objects identified during the planning phase, both from the technical and
business perspectives.

The following steps will be addressed later on in the scope of the upcoming WP6 deliverables. It
will consist in:

 the definition of questions with respect to the measurement goals, to support data
interpretation towards a measurement goal.

 the definition of metrics, which provide all the quantitative information to answer the
questions and the verification of metrics for consistency and completeness.

 the production of a GQM plan that serves as a roadmap that contains indicative goals,
questions, and metrics for executing the Evaluation Framework.

The following sections describe the preliminary results of the definition phase. However, these
results are indicative as part of the overall framework and subject to further specific adjustments
according to the evaluation scenarios.

3.1 Definition of Measurement Goals

The first step in the definition process is the definition of formal measurement goals. These
validation objectives are derived from the evaluation objects and components, which are already
identified in the preceding planning phase. Measurement goals have to be defined in an
understandable way and with a clear structure.

The following table template, Table 14, underpins a generic evaluation goal’s purposes based on
the original GQM method. The Melodic measurement goals were defined accordingly both from
the technical and the business perspective.

Table 14 GQM goal definition template

Analyse Clear evaluation object identification

For the purpose of Understanding, controlling or improving the object?

With respect to The particular object quality focus

From the point of view The concerned evaluation group(s)

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 37

In the context of The environment in which the measurement takes
place

3.1.1 Technical Perspective

Well-known technical software evaluation metrics typically rely on the number of failures (also
called bug or defect) that occur and the time required rectifying the failures. A detailed description
of different software quality metrics and methods for applying the metrics is presented in [3]. The
basic distinction made here is between software product quality, customer satisfaction and
maintenance quality. Most of the metrics presented for product and maintenance quality are first
relevant for evaluation from the developer perspective (mean time to failure, defect density,
defect removal effectiveness, fix backlog and backlog management index, etc.). These metrics are
pragmatically applicable in the scope of WP5 as there is a central issue tracking the system in
place, which can be used for analysing in the long run the failures that occur and the time to solve
them.

However, in the frame of the Melodic technical evaluation that should be led in WP6, we are
mainly targeting evaluation of the components from the user perspective (where the user can be
a developer as well as a deployment administrator but anyway someone consuming the Melodic
platform to deploy a software and not the developer of the Melodic components themselves). In
the scope of this work-package, we will therefore rely on questionnaires and standard monitoring
information to evaluate the overall platform quality.

Following this approach, the measurement goals of Melodic are developed based on the ISO 25010
Software product Quality [4], even if such a conventional framework does not effectively support
Melodic-specific quality aspects and take into account project-specific priorities. The ISO model
offers the core on top of which the priorities can be expressed.

Figure 4 ISO 25010 Software Product Quality Characteristic [4]

As agreed between the use case partners based on the outcome of questionnaires, in the scope of
the Melodic project, we will consider the following key quality parameters while leading
component technical evaluations:

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 38

1. Functional suitability: satisfaction of the stated or implied needs. Measures to be
considered may include functional completeness, correctness and appropriateness.

2. Reliability: the capability of the Melodic platform to maintain its level of performance
under specific conditions. Measures to be considered may include maturity, fault
tolerance, recoverability and availability.

3. Usability: the effort needed for using the platform. Measures to be considered may include
understandability, learnability, operability and attractiveness.

4. Performance: the level of performance exhibited of the platform. Measures to be
considered may include time behaviour and resource utilisation.

Following is an overview of the selected quality focus including a first attempt of breakdown to
concrete attributes and metrics. These attributes and metrics will be identified in details in a later
stage in WP6.

Figure 5 Quality focus, breakdown to concrete attributes and metrics samples

Fu
nc

tio
na

l
su

ita
bi

lit
y

Correctness Number of integration points

Completeness
All necessary methods available

Decidability
Interoperability

Appropriateness

Number of supported platforms, IDEs, Tools

Overall effort for the integration and
implementation

Expressivity
Compliance to standards

U
sa

bi
lit

y

Recognisability
Learnability
Aesthetics

Accessibility
Error protection User Input validation and checking

Pe
rf

or
m

an
ce Time behavior

DB benchmark
Application server benchmark

Real time behavior of context aware access

Resource utilisation
Storage

RAM

R
el

ia
bi

lit
y

Availability Downtime in %

Fault tolerance

Redundancy without affecting application
usage

Exception handling
Traceability of errors

Recoverability Mean time to recover

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 39

According to the focus on these quality attribute categories, we will apply the GQM goal definition
approach to the evaluation components.

This is actually a pattern which will be instantiated according to all the relevant evaluation
components and evaluation groups. This leads to the following measurement goals according to
the evaluation component:

“ Analyse [EVALUATION COMPONENT]

for the purpose of controlling and improving the objects with respect to

1. Functional suitability
2. Reliability
3. Usability
4. Performance”

from the viewpoint of [ADMINISTRATOR OR DEVELOPERS]

in the context of [EVALUATION SCENARIO]”

3.1.2 Business Perspective

The final performance evaluation to be performed is the business impact of Melodic. The use case
partners should evaluate the overall business performance of the integrated platform by referring
to the performance of a similar system employing their current choice in technologies.

The focus will be, for instance, on comparing the delay of typical actions (i.e., selection of
deployment configuration, deployment operation, etc.). The business evaluation in the integrated
case should also consider and refer to the standalone use case scenario processes by considering
both comparable and dissimilar contexts (i.e., by having the various relevant processes running
both on the Melodic system and on a current solution).

From a business point of view, many different goals need to be addressed at different levels. They
can be all integrated into an overall competitive priorities framework but the detailed evaluation
objects will be depending on the individual evaluation cases themselves.

Both SaaS Business Managers and SaaS Deployment administrator profiles have to be considered.

3.1.2.1 Business Priorities

Following is an overview of the Melodic competitive priorities identified by the consortium. They
will constitute the overall measurement goals from a business perspective.

1. Speed: Computation, speed of technical deployment set-up, update or training

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 40

2. Cost reduction: Every organization wants to keep the following kinds of costs low. 1) Set-
up cost: personnel, infrastructure and training cost; 2) Operational cost: infrastructure
operation (e.g., lower cost of cloud), maintenance and personnel cost

3. Quality: for end user: latency; for administrator: increased data confidentiality and
reallocation transparency and improved and predictable application performance for end
users

4. Reliability: Reliability is the ability to provide continuous deployment and reconfiguration
services that can defensibly be trusted within a time-period. This may also encompass
mechanisms designed to increase and maintain the reliability of the Melodic platform. In
the end, from a business perspective, reliability overrides all other factors. It does not
matter how cheap and fast the deployment is: if the final user cannot trust that he will get
the hosted application in time, at the right quality, he will be lost. Reliability inside the
provider organization is also very important as it saves time and money and gives stability
within the organization.

5. Flexibility: This priority is related to the ability to being able to change what, how and
when so that the evaluator is able to evaluate four types of requirements:

 Application flexibility - ability to introduce new or modified applications
 Cloud flexibility - ability to manage a wide or mix variety of Cloud Offers
 Deployment volume flexibility - able to change the level of deployment output

according to needs
 Utility flexibility - ability to change SaaS delivery model

The flexibility of the Melodic platform is also important for the platform user as it speeds up
responses to change, saves time and maintains reliability.

As a whole, a trade-off have to be considered by a Melodic provider. A provider may “sacrifice”
one priority to improve another performance objective. The Melodic competitive priorities have
both external and internal effects that are the interest of business managers and deployment
administrators, respectively.

3.1.2.2 Business Measurement Goals

The business priorities identified above lead to the following measurement goals according to the
use case scenario and to the evaluation group (administrator or business manager):

“ Analyse [USE CASE SCENARIO]

for the purpose of controlling and improving the objects with respect to

1. Speed
2. Cost
3. Reliability

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 41

4. Flexibility
5. Quality

from the point of view of [ADMINISTRATOR OR BUSINESS MANAGER]
in the context of [USE CASE]”

Nevertheless, the quality focuses cannot be fully implemented through the business priorities
and are further defined for each use case (see Chapter 4).

3.2 Definition and Review of Questions

With respect to the measurement goals, questions have to be defined to support data
interpretation towards a measurement goal. As goals are defined at an abstract level, questions
act as refinements of goals to a more operational level, which is more suitable for interpretation.
By answering the questions, one should be able to conclude whether a goal is reached or not.

The questions of the Evaluation Framework will be the basic translation from goals to metrics.
Therefore, the questions will take a central role, not only during definition, but also during
interpretation. Hence, it will be important to make sure that these questions are correct.

3.3 Definition of Metrics

Once the goals have been refined into a list of questions, metrics will be defined in order to provide
criteria for all the quantitative information to answer the questions in a satisfactory way. Metrics
or criteria are a refinement of questions into a quantitative process and/or product
measurements. Furthermore, factors that could possibly influence the outcome of the metrics
have to be identified. Factors that directly influence metrics also influence the answers to the
questions to which the metrics are related. If the influencing factors are not to be considered
during the definition of a measurement scheme, some conclusions or interpretations of the
collected data may not be correct.

The goals, questions, and metrics of the Evaluation Framework have to be consistent and
complete with respect to models of the validation objects. To safeguard this, consistency and
completeness checks will be performed throughout the entire definition phase in project
meetings. This action will be done in order to prevent missing definitions, incomplete, or
inconsistent definitions. It is expected that definitions and metrics will be adjusted to comply
with the respective goals, questions, and metrics definitions.

The mapping from goals to questions and also the mapping from questions to metrics will be
achieved for each evaluation scenario in the scope of the upcoming WP6 deliverable (D6.2 and
D6.6).

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 42

3.4 Timetable for Executing the Evaluation Framework

Below in Table 15 is the interim version of the evaluation preparation and execution timetable,
which has been designed, based on platform release availability. Despite the fact that each
evaluation group and support is unique in its configuration, objectives, validation perspectives,
validation groups, and validation definition, it is vital to define a synchronized timeframe for the
execution of the validation as the Melodic partners will be able to exchange experiences and
lessons learned, further contributing to the continuous improvement of the platform and each
demonstration.

The timetable below represents a rough-grained schedule for the evaluation preparation and
execution and allows each partner to plan more fine-grained activities according to the specific
requirements of the evaluation groups and setup. The implementation activities allow deploying
the evaluation scenarios while the platform releases are becoming available. The evaluation
execution is planned to take place between M28 and M36.

Table 15 Time table for executing the evaluation framework

Month 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Release

R
1.

5

R
2

R
2.

5

R
3

Use case plan

1 - Setup Melodic

2 - Add Application

3 - Deploy Application

4 - Optimization

5 – Local
reconfiguration

6 - Undeploy
Application

7 - Template-based
UF creation

8 - Extended Stress
Test

9 - Backup and
Recovery

10 - Monitor system
status

11 - Platform Security

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 43

Targeted Deliverable
1st feedback

(D6.2)
2nd feedback

(D6.3)

Data collection and
interpretation

(D6.4)

Results
(D6.5)

The definition and review of questions as well as the definition of metrics will take place
according to the deployment plan of the evaluation scenarios. D6.2 will include the outcomes for
evaluation scenarios 1, 2, 3 and 4. The next deliverable D6.3 will address the other evaluation
scenarios. In order to benefits from the latest development outcome from WP5 while starting
evaluation execution, an additional intermediate release (R2.5) is planned for month 28.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 44

4 The Melodic Use Cases

Following the definition of the performance evaluation to be applied in order to show the usability
and sustainability of the developed Melodic platform, this chapter is dedicated to the definition
of specific business scenarios. Covering the use cases and functional requirements collected until
and analysed in the previous deliverables, the business scenarios aim at demonstrating the
important functionalities and their benefits to European Cloud providers and Software SMEs.

Altogether four business demonstrations reflect the main use case topics as defined above.
Therefore, the following four business demonstrations are defined in order to demonstrate the
usability and sustainability of the Melodic platform.

In Melodic, we have carefully selected four use cases, introduced in D2.1, each representing a
separate class of problems addressed by Melodic as well as demonstrating different models of
commercial exploitation.

The CET use case will demonstrate how Melodic will assist CET in providing close to real time
processing of geo-dispersed big data on vehicle mobility for advanced, on-demand modelling of
traffic in cities. Melodic will not only make this innovation technically possible, but also enable
CET to provide such a service to many cities for an acceptable price, both under permanent
contract as well as on demand, e.g., when a large event is planned in the city, or for crisis
management purposes. With the second application, CET will demonstrate how the highly
sensitive data on people mobility, acquired from and stored in different locations, including
private clouds of telecom operators, can be securely accessed for on-demand processing and
delivering affordable data analysis services to SMEs from different sectors, such as e-commerce,
retail or tourism, potentially unlocking innovative data-driven business models in these sectors.

7Bulls, as experienced enterprise-class software system provider, will demonstrate how Melodic
can speed up and simplify the development of big-data applications with two use cases: (1) a
specialised application for processing genome data for medical purposes that imposes strict data
confidentiality requirements. It will benefit from its migration to Melodic through the reduction
of the infrastructure cost for its execution as well as an improvement of its execution time, (2) a
Melodic-powered multi-cloud value-added service for a cloud operator. Under both use cases,
7Bulls will exercise and validate a typical OSS-based exploitation model, where a software
company delivers a solution and supports based on OSS resources. Noteworthy, however, the
latter use case also represents a very interesting exploitation model for Melodic. The platform
can be integrated with the offering of a cloud provider or a cloud broker platform, enabling a value
added service.

CAS in turn will show how a large CRM software provider can integrate Melodic into an internal,
dedicated application store and deployment platform as an innovative way to manage the

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 45

extension and personalisation of the core system. Melodic will provide support for deployment of
data-intensive extensions of the CAS CRM.

All these various use cases have a clear potential for virtually unlimited replication and
adaptation, saving time and money for other data intensive application creators, providers and
users, as well as paving the way for innovative services and business models in cloud and big
data industries. The described use cases reflect the planning until February 2018 (M15).

4.1 Use case 1: A marketplace for data-intensive apps supporting
deployment in multi-cloud

CAS Software AG is a provider of relationship management products. The strategy of CAS ranges
from CRM to xRM (anything Relationship Management), an all-round approach for managing
relations with all kinds of stakeholders: customers, employees, suppliers, partners, etc. The next
step of this strategy is to propose the so called “app-in-app” concept by opening an app-store-like
ecosystem of business apps for project management, work scheduling, contact management, etc.
External developers will be allowed to add their own solutions/apps complementing the CAS
CRM/xRM offering. This ecosystem will provide companies with access to a large selection of
cross-platform web apps and will support data exchange and integration across different apps
driven by the end-user needs. In this way, they can adapt the xRM solutions to the needs of their
employees, tailor the functionalities they actually use on a daily basis, and select the best apps
from different providers without storing all of them on their local computers. The xRM system
operating in this environment will be fed with the data coming from the apps offering new
opportunities in business relation management.

In the future, CAS would like to rely on multiple cloud providers while deploying apps purchased
in their marketplace. The main challenges related to building this ecosystem are high costs of
data storage and processing as well as data security. Typically, companies manage relationships
with different types of stakeholders where the volume of data and security requirements may
vary significantly. Some customer data, like price lists, are treated with more confidentiality than
other. In addition, some customers are more sensitive about the security of their data in general.

Many companies cooperate from multiple locations in virtual teams, teleworking, telecommuting;
yet, they still want to benefit from cloud technology to be able to securely share, process and
synchronize data, in some cases in big volumes, between different physical, remote and mobile
teams.

Importantly, such applications typically require high scalability of computation and data storage
capacities depending on the number of users per each app and the amount of data it generates.
Although any commercial cloud provider offers virtually unlimited scalability, the cost of vendor
lock-in may turn out prohibitive. However, if they could have a tighter control over their data in

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 46

terms of security and confidentiality, access control and location transparency, they would
definitely consider a public multi-cloud for handling peaks in computing and storage demands.

For performance and efficiency as well as demand-driven, managed (controlled) scalability and
portability to multi-cloud, CAS would turn to the Melodic framework to help it manage the
deployment of applications purchased in the marketplace according to the user-defined
requirements. The app store would hold complete information about each app as well as the
resource and security related requirements for deploying it. Then, the Melodic framework would
use this information to identify the data intensity and sensitivity of specific apps and
automatically assign them for supporting the respective application deployment across
heterogeneous multiple cloud infrastructures, including private, and potentially public providers
(for 3rd party apps).

Also, Melodic will be able to identify which components should be hosted together with the
basic CRM/xRM system and which could operate from different locations without affecting
their performance.

For CAS, the main benefit would be to efficiently manage the resources and control the costs
related to running this ecosystem, by hosting different components or apps in different
locations depending on the required security levels and data access constraints.

4.1.1 Overview

4.1.1.1 Technical Architecture

SmartDesign and the CRM backend server OPEN are Java-based and need a Java runtime
environment. Additional apps can be either native apps, which are executed as part of the
SmartDesign process, or HTML apps that are effectively embedded via iFrames1 into the UI. In the
latter case, a JavaScript library can be used to access the CRM’s data. This way, even comparably
complex apps, such as third party calendars, can be developed without the necessity of executing
any additional Java code.

In case of the PicassoSearch, a self-contained Java JAR file is executed on a host that is known
to the OPEN backend server. Technically, the OPEN server regularly updates the PicassoSearch
with the deltas between actual and previous changes. The search is available and triggered within
SmartDesign by a business operation (BO). Figure 6 depicts the overall architecture and
component relations.

1 https://www.w3schools.com/tags/tag_iframe.asp

http://www.melodic.cloud/
https://www.w3schools.com/tags/tag_iframe.asp

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 47

Figure 6 SmartDesign and App Store Architecture

4.1.1.2 Overall Business Environment

Table 16 Case 1 - Business environment

Business role Partner involved

Deployed
application user

Who is the final user of the deployed
application?

CRM platform customers

Application
provider

Who is providing the application to be
deployed?

CAS/third party developer

Cloud provider Who is providing the VMs? CAS

Melodic platform
user

Who is starting deployment execution
and provide the model?

Initiated by the CRM platform
customer/partner but via our
platform

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 48

Melodic platform
administrator

Who is administrating the platform? CAS

4.1.1.3 Expected Benefits

Deployed application user: SmartWe customer

Table 17 Case 1 - Expected benefits for SmartWe customer

Benefit type Benefits description

Speed Increased UI performance (user experience)
 Increased processing time (e.g., for data import and export)

Cost Possibly lower product cost

Reliability Stable user sessions while using the product

Flexibility Resources can be allocated and also removed on-demand
 Reaction to increasing or decreasing user numbers

Quality Increased overall experience due to perfectly balanced application
servers

 No delays, fast initialization times, fast data loading

Application provider: CAS Software AG

Table 18 Case 1 - Application provider expected benefits

Benefit type Benefits description

Speed Serving main product (SmartWe) and Extensions, Apps at
appropriate performance

Cost Reduced operation and hosting cost
 Reduced personnel cost

Reliability Main product SmartWe has high availability

Flexibility New Apps can be added during runtime without stressing existing
resources

Quality Partners and customers experience extensible, performant and
highly available product

Other type of
benefits

 Reaching more (potential) customers with our products (Apps)
 Being able to compete on the mobile/cloud XRM market

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 49

Cloud provider: CAS Software AG

Table 19 Case 1 - Cloud provider expected benefits

Benefit type Benefits description

Speed Fast provisioning of resources

Cost Machines are used efficiently

Reliability Machines always host an available and accessible product
 Machines have high availability leading to high overall quality

Flexibility New instances can be added easily when needed

Quality Resources are dynamically handled for a ‘clean’ operational state

Other type of
benefits

 Being able to compete with other products that already employ
public cloud solutions in the future

 Opening the possibility to employ public cloud offers (at least
additionally) to our current “self-hosting” approach

Melodic platform user: CAS Software AG

Table 20 Case 1 - Platform user expected benefits

Benefit type Benefits description

Speed Fast and responsive UI -> efficient use
 Fast executions after triggering an event -> fast results

Cost Low cost due to short training periods due to easy platform usage

Reliability Platform has high availability

Flexibility Platform can be adjusted and extended to the user’s need
 Different user roles are supported

Quality Users experience an easy to use system and can apply common
patterns of using the platform

 Responsible users are happy to work with the platform

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 50

Melodic platform administrator: CAS Software AG

Table 21 Case 1 - Platform administrator expected benefits

Benefit type Benefits description

Speed Fast reaction to new situations (e.g., new users, new apps)
 Melodic related administration tasks can be done efficiently

-> more time to spend for other tasks

Cost Efficient due to shorter platform usage (=administration) times

Reliability Platform has high availability, reduce time spent on ensuring
availability to a minimum

Flexibility Grows with organizational and technical needs
 Extensible according to administrator's skills

Quality Administrator can work according to his skill level (e.g., scripting,
raw configuration editing etc.)

 Acceptance along employees (users)

Other type of
benefits

 Integrability: platform can easily be integrated (UI and technology-
wise) into existing environments

4.1.2 Melodic Individual User Roles

Table 22 Case 1 - Individual user roles

Melodic generic
role

Use case specific role name (i.e. the
name that the partner will use)2

Description of the role in the use
case (task, working environment,
...)

System
administrator
(responsible for
the initial
installation of
Melodic)

Melodic Administrator,

Administrator, SmartWe Developer

Will install and setup Melodic on
the beta and test systems first.
Usually has other administrative
responsibilities.

Application
model provider

Melodic Developer, Knows own application and is able
to describe and provide such a

2 Bold one (if present) indicates the most generic and probable one

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 51

(providing
application data
into CAMEL)

Application Developer, SmartWe
Developer, CAMEL Developer

CAMEL description (either
handwritten or created with visual
assistance). Can be provided by an
external Application developer or
by an internal SmartWe developer.
External application providers
create a simple CAMEL model
based on a CAS specific template.

Deployment rules
provider (utility
function and
overall
deployment
constraints)

Melodic Developer,

Application Developer, SmartWe
Developer, Deployment Manager,
Ecosystem Manager

Knows most relevant aspects about
own application and is therefore
able to abstract from its very
individual necessities. Can either
be done by an external application
developer that contributes an App
via the AppStore or by an internal
SmartWe Developer and/or
specialized IT staff.

Dataset provider
(providing cloud
offers)

Melodic Developer Since our UCs focus on the private
cloud/static cloud offer approach,
this task is realistically done by
someone that knows CAS
deployment infrastructure very
well.

Melodic end-user
(running
operational
deployment)

Melodic Admin,

SmartWe/App Store/ Administrator

Will trigger deployments. Can be
either a natural person or a
SYSTEM user. In case of the App
Store, a SYSTEM user would be the
case.

Application end-
user (using the
deployed
application)

SmartWe Customer Uses the applications that were
provided for him. Ideally, the
existence of Melodic is completely
unknown to him.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 52

4.1.3 Evaluation Groups

Table 23 Case 1 - Preliminary list of evaluation group members

Last name First name Profile (dev.,
adm. or BM)

Company
Unit

Specific role(s) in the scenario

Schork Sebastian dev, adm, BM DCS Mainly technical, might also
contribute to BM

Schwichtenber
g

Antonia adm, BM DCS knows product development and
product management

Bauer Markus BM DCS Head of DCS

Vuong Julia dev, adm, BM DCS Non-affiliated PM with experience
in all areas

Terhorst Jens Dev DCS SmartWe and App Developer

Ristau Dominik Dev DCS SmartWe and App Developer

Erdei Attila Dev, adm. SQS Tester

4.1.4 Applications to be deployed

SmartDesign (basis application whether standalone or with additional apps)

It is the base technology of CAS Software AG’s cloud solutions. SmartDesign provides a modern
web-based CRM UI that can be employed together with both the company’s cloud-based CRM
backend ‘OPEN’ (resulting in ‘SmartWe’) and the long-standing on premise CRM solution ‘Genesis
World’. SmartDesign is both a product and a technology. By using its own Domain Specific
Language (DSL) further apps within the CRM are supported, allowing customers to extend the
platform to their individual needs. This is where the ‘app store’ UC connects by transferring SD
Apps into the SmartDesign Client. SmartDesign is available as a web app as well as for mobile
devices.

ContextService UI (as an application representative within the app store scenario)

The ContextService UI is part of the company’s context information infrastructure that allows
mobile and web clients to store contextual information to be later used for smart features. The UI

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 53

provides access to this information and is shipped as a comparably small-sized spring boot3
based JAR file. It has been used within early releases as an Application that can be added (and
removed) to an existing SmartDesign installation.

PicassoSearch/SmartSearch (as a big data application)

The PicassoSearch represents a data intensive application that can be added and removed to an
individual SmartDesign installation. The Application can optionally be added to a customer’s
CRM platform which makes it suitable for being handled as an application that can also be used
within the ‘app store’ UC.

The data-intensive character of the application is described in detail below.

4.1.4.1 Data Intensive Aspects

The big data aspect of the CAS UC is subject to releases 2.0 and higher. Here, the PicassoSearch4
as a data intensive application is used. PicassoSearch allows users to perform smart searches
over a large document store featured by elasticsearch5. The capacity of such a store can be up to
10 GB or more. Such a search engine itself works on data previously (and continuously) synced
from the company’s CRM backend.

4.1.4.2 Structural Application Model

Table 24 Case 1 - Structural application model

Criteria Value

SmartDesign.

RAM >= 6 GB

CPU >= 2 Cores

OS Debian Linux

Storage 20 GB

Environment Java 8

3 https://projects.spring.io/spring-boot/
4 https://www.cas.de/nc/de/presse/pressemitteilungen/details/article/erstes-crm-mit-integriertem-fan-
prinzip-aufbruch-in-eine-neue-we-welt.html
5 https://www.elastic.co/de/products/elasticsearch

http://www.melodic.cloud/
https://projects.spring.io/spring-boot/
https://www.cas.de/nc/de/presse/pressemitteilungen/details/article/erstes-crm-mit-integriertem-fan-prinzip-aufbruch-in-eine-neue-we-welt.html
https://www.cas.de/nc/de/presse/pressemitteilungen/details/article/erstes-crm-mit-integriertem-fan-prinzip-aufbruch-in-eine-neue-we-welt.html
https://www.elastic.co/de/products/elasticsearch

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 54

ContextService UI

RAM >= 2 GB

CPU >= 2 Cores

OS Debian Linux

Storage 10 GB

Environment Java 8

PicassoSearch/SmartSearch

RAM >= 8 GB

CPU >= 4 Cores

OS Debian Linux

Storage 40 GB

Environment Java 8

4.2 Use case 2a: Data-intensive application for people flow (mobility)
monitoring and analysis based on anonymised signalling data
from mobile operator network

4.2.1 Overview

CET is a provider of traffic and mobility information services for private businesses and the public
sector. Data about people flows is essential for governmental agencies, cities, municipalities, as
well as private business owners. CET is using anonymised signalling data from mobile operator
network for monitoring and analysis of people presence and travels. It includes analysis such as
counting visitors of selected sites, advanced tourism statistics, origin-destination analysis as
well as concentration measurement of people in real-time.

CET built its mobility tools in Python for its ease of use and availability of various, powerful data
analyses capabilities. These applications however do not support distributed parallel processing
and are limited to single machine. This is serious limitation when it comes to complex, large scale

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 55

spatial-temporal analysis. To overcome this issue CET will develop cloud-ready, scalable
application for mobility analysis which will use a selected Big Data framework for efficient, large
scale distributed computing.

Thanks to such approach CET will be able to use Melodic for optimised deployment and scaling
of the application according to submitted analysis tasks and actual load.

4.2.1.1 Technical Architecture

The application architecture will be based on the big data platforms, such as Hadoop and Spark.
CET will utilise all its experience and knowledge gained over the years of working with mobility
data and implement improved algorithms into this new application. It will be able to take
advantage of the parallel processing capabilities as well as of the Melodic optimised deployment,
scaling and resource management. The application will use source data stored in a Hive/HDFS
file system.

It shall be noted that this is a preliminary planned architecture and functionality of the system
which is subject to adjustments during development process. CET will gradually release
applications and their features.

Figure 7 People flow monitoring application architecture with Melodic

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 56

4.2.1.2 Overall Business Environment

Table 25 Case 2 - Business environment

Business role Partner involved

Deployed application
user

Who is the final user of
the deployed
application?

CET is the only user of the application
however output data is made available for
the CET customers

Application provider Who is providing the
application to be
deployed?

CET

Cloud provider Who is providing the
VMs?

Mobile operator or other cloud provider
approved by mobile operator

Melodic platform
user

Who is starting
deployment execution
and provide the model?

CET

Melodic platform
administrator

Who is administrating
the platform?

CET

4.2.1.3 Expected Benefits

Deployed application user: CET

Table 26 Case 1 - Expected benefits for deployed application users

Benefit type Benefits description

Speed

 Controlled computing time of selected tasks.
 Manageable performance of the application.
 Faster reaction and adaptation.

Cost Decreased cost of testing and deploying of the application.

Reliability Stable performance of the system.
 Increased availability.

Flexibility Resources are added or being released according to the real
load.

Quality High overall quality of the system and implementation
environment.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 57

Application provider: CET

Table 27 Case 1 - Application provider expected benefits

Benefit type Benefits description

Speed Shorter time of testing and deploying of the application.

Cost Decreased cost of testing and deploying of the application.

Reliability Highly available solution.

Flexibility Resources are added or being released according to the real
load.

Quality High overall quality of the system and implementation
environment.

Cloud provider: Mobile operator or private cloud provider

Table 28 Case 2 - Cloud provider expected benefits

Benefit type Benefits description

Cost Decreased cost of the inhouse resources.

Flexibility Avoiding unnecessary use of resources. Resources are added or
being released according to the real load.

Reliability Highly available solution.

Melodic platform user: CET

Table 29 Case 2 - Platform user expected benefits

Benefit type Benefits description

Speed Shorter time of testing and deploying of the application.

Cost Decreased cost of testing and deploying of the application.

Reliability Highly available solution.

Flexibility Resources are added or being released according to the real
load.

Quality High overall quality of the system and implementation
environment.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 58

Melodic platform administrator: CET

Table 30 Case 2 - Platform administrator expected benefits

Benefit type Benefits description

Speed Finding problems faster thanks to platform monitoring.

Cost Reduced administration cost thanks to platform monitoring.

Reliability Reliability ensured by Melodic may simplify administration.

Flexibility Unified way of deploying various applications.

Quality Platform monitoring and other Melodic’s tools may improve the
quality of administration.

4.2.2 Melodic Individual User Roles

Table 31 Case 2 - Individual user roles

Melodic generic role Use case specific
role name

Description of the role in the use case (task,
working environment, ...)

System administrator
(responsible for the
initial installation of
Melodic)

Administrator Person responsible for:

 initial installation of Melodic
 monitoring and maintenance of Melodic
 solving technical issues with Melodic

Application model
provider (providing
application data into
CAMEL)

Developer/ CAMEL
developer

Knows application very well and is responsible
for describing application model and providing
application data in CAMEL

Deployment rules
provider (utility
function and overall
deployment
constraints)

Developer/ CAMEL
developer

Knows application as well as business context
including optimisation goals and is responsible
for providing deployment rules in CAMEL.

Dataset provider
(providing cloud
offers)

Administrator/
CAMEL developer

Person responsible for providing cloud offers
rules in CAMEL.

Melodic end-user
(running operational
deployment)

Administrator Person responsible for:

 installation and launch of the application
 monitoring the application and solving

technical issues

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 59

Application end-user
(using the deployed
application)

Developer /
Product owner

Person responsible for the delivery of the
product.

4.2.3 Evaluation Groups

Following is a preliminary list of evaluators.

Table 32 Case 2 - Preliminary list of evaluation group members

Last name First name Profile Company
Unit

Specific role(s) in the scenario

Przeździęk Tomasz BM CE-Traffic Business and product manager,
evaluating business impact

Novobilský Jiří BM CE-Traffic Business and product manager,
evaluating business impact

Masata Hynek BM/dev/adm CE-Traffic Business and product manager,
designing and developing
application

Ficek Michal dev CE-Traffic Designing and developing
application

Vlčinský Jan dev/adm. CE-Traffic Real-time systems admin,
application developer

Jarmuż Dominika data/dev/adm CE-Traffic Mobility data specialist,
preparation of datasets, testing and
evaluating application

Tatar Kinga data/dev CE-Traffic Mobility data specialist,
preparation of datasets, testing and
evaluating application

Stec Katarzyna data/dev CE-Traffic Junior mobility data specialist

4.2.4 Applications to be deployed

CET will develop Advanced OD matrix analysis application able to calculate country wide detailed
and accurate trip statistics. The application will use signalling data retrieved from mobile
operator and stored in Hive/HDFS file system. The application will be based on the Big Data

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 60

framework to make use of the distributed parallel computing for scalability and high
performance.

4.2.4.1 Data Intensive Aspects

Calculating mobility statistics is a data-intensive task. Signalling data coming from the mobile
operator network as a continuous real-time data stream will be incrementing HDFS warehouse.
Daily amount of retrieved data is about 50 GB. Depending on the project, it may require processing
data from a single day, many weeks or even several months which means processing from 50GB
to several TB of source data. In case of advanced statistics such as origin-destination matrices
the task is even more demanding because of use computationally intensive clustering algorithms
used to improve the accuracy of the results.

4.2.4.2 Structural Application Model

Table 33 Case 2 - Structural application model

Criteria Value

RAM >= 8 GB

CPU >= 2 Cores

OS Ubuntu

4.3 Use case 2b: Real-time traffic management based on the Floating
Car Data and advanced traffic simulations

4.3.1 Overview

Road traffic has an impact on the whole society, economy and environment, so it is crucial to
monitor and analyse it, predict its evolution and manage it properly. However, it is not an easy
task, as road traffic is a complex phenomenon involving many heterogeneous agents (e.g. people,
vehicles, public transport etc.) and depending on many factors (e.g. time of the day, day of the
week, road closures, road works, incidents, weather, mass events etc.). It is also subject to traffic
management policies and operational strategies (e.g. traffic signal settings).

To support monitoring, analysis, prediction and management tasks, it is necessary to have access
to a real-world real-time and historical traffic data. It is also important to be able to perform what-
if analysis (e.g. what happens when road is closed or accident has happened).

In this use case CET will use floating car data (FCD), machine learning and traffic simulations to
address above mentioned challenges and demonstrate how Melodic platform can facilitate these
data- and compute-intensive tasks.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 61

4.3.1.1 Technical Architecture

The development will be based on the following existing applications and data resources:

 Floating car data system, which provides real-time traffic information about speed,
travel-time, delay and level-of-service on the monitored road network.

 Archived traffic information.
 Traffic Simulation Framework (TSF) - application for running traffic simulations in

microscopic and mesoscopic models in a large scale.
 TensorTraffic - TensorFlow-based tool for approximating outcomes of traffic

simulations using neural networks. It uses as an input data produced by TSF.
 Traffic optimization module - application for searching through a large space of

possible traffic signal settings and finding (sub)optimal settings using genetic
algorithms.

The intended traffic management platform will be based on existing components, but it will also
contain new modules for:

 calculating typical traffic profiles based on historical data
 calibrating TSF using typical traffic profiles
 short-term traffic prediction

It shall be noted that this is a preliminary planned architecture and functionality of the system
which is subject to adjustments during development process. CET will gradually release
applications and their features and utilise them to evaluate early versions of Melodic platform.

Figure 8 An architecture of the real-time traffic management system

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 62

4.3.1.2 Overall Business Environment

Table 34 Case 2 - Business environment

Business role Partner involved

Deployed application
user

Who is the final user of
the deployed application?

Traffic management centre, researchers
interested in traffic information

Application provider Who is providing the
application to be
deployed?

CET

Cloud provider Who is providing the
VMs?

Public or private cloud providers

Melodic platform user Who is starting
deployment execution
and provide the model?

End user of the application or CET

Melodic platform
administrator

Who is administrating the
platform?

End user of the application or CET

4.3.1.3 Expected Benefits

Deployed application user: Traffic management centre

Table 35 Case 1 - Expected benefits for deployed application users

Benefit type Benefits description

Speed Controlled computing time of selected tasks.
 Manageable performance of the application.
 Faster reaction and adaptation.

Cost Operations of traffic management system may be cheaper thanks to
optimal configuration and only necessary resources used.

Reliability Stable performance of the system.
 Increased availability.

Flexibility No-vendor lock-in, greater flexibility in choosing cloud provider.

Quality High overall quality of the system and implementation environment.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 63

Application provider: CET

Table 36 Case 1 - Application provider expected benefits

Benefit type Benefits description

Speed Shorter time of testing and deploying of the application.

Cost Decreased cost of testing and deploying of the application.

Reliability Offering highly available solution to the customers.

Flexibility No-vendor lock-in, greater flexibility in choosing cloud offering
according to the customer requirements.

Quality High overall quality of the system and implementation environment.

Cloud provider: Public or private cloud provider

Table 37 Case 2 - Cloud provider expected benefits

Benefit type Benefits description

Cost Decreased cost of the inhouse resources (private cloud providers).

Earnings Increased earnings. Thanks to easy and automatic deploy of the
application to the public cloud Melodic may attract more customers.

Flexibility Avoiding overload of the private cloud.

Reliability Offering highly available solution to the customers.

Melodic platform user: End user of the application or CET

Table 38 Case 2 - Platform user expected benefits

Benefit type Benefits description

Speed Shorter time of testing and deploying of the application.

Cost Decreased cost of testing and deploying of the application.

Reliability Offering highly available solution to the customers.

Flexibility No-vendor lock-in, greater flexibility in choosing cloud offering
according to the customer requirements.

Quality High overall quality of the system and implementation environment.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 64

Melodic platform administrator: End user of the application or CET

Table 39 Case 2 - Platform administrator expected benefits

Benefit type Benefits description

Speed Finding problems faster thanks to platform monitoring.

Cost Reduced administration cost thanks to platform monitoring.

Reliability Reliability ensured by Melodic may simplify administration.

Flexibility Unified way of deploying various applications.

Quality Platform monitoring and other Melodic’s tools may improve the
quality of administration.

4.3.2 Melodic Individual User Roles

Table 40 Case 2 - Individual user roles

Melodic generic
role

Use case specific
role name

Description of the role in the use case (task,
working environment, ...)

System
administrator
(responsible for
the initial
installation of
Melodic)

Administrator Person responsible for:

 initial installation of Melodic
 monitoring and maintenance of Melodic
 solving technical issues with Melodic

Application model
provider
(providing
application data
into CAMEL)

Developer/
CAMEL developer

Knows application very well and is responsible for
describing application model and providing
application data in CAMEL.

Deployment rules
provider (utility
function and
overall
deployment
constraints)

Developer /
CAMEL developer

Knows application as well as customer
requirements including optimisation goals and is
responsible for providing deployment rules in
CAMEL.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 65

Dataset provider
(providing cloud
offers)

Administrator /
CAMEL developer

Person responsible for providing cloud offers rules
in CAMEL.

Melodic end-user
(running
operational
deployment)

Administrator Person responsible for:

 installation and launch of the application
 monitoring the application and solving

technical issues

Application end-
user (using the
deployed
application)

Customer Traffic engineer or operator in the traffic
malmanagement centre or researcher interested
traffic analysis.

4.3.3 Evaluation Groups

Following is a preliminary list of evaluators.

Table 41 Case 2 - Preliminary list of evaluation group members

Last name First name Profile Company
Unit

Specific role(s) in the scenario

Przeździęk Tomasz BM CE-Traffic Business and product manager,
evaluating business impact

Novobilský Jiří BM CE-Traffic Business and product manager,
evaluating business impact

Gora Paweł dev/adm CE-Traffic Designing and developing
application

Vlčinský Jan dev/adm. CE-Traffic Real-time systems admin,
developing application

Jarmuż Dominika data/dev/adm CE-Traffic Mobility data specialist,
preparation of datasets, testing and
evaluating application

Tatar Kinga data/dev CE-Traffic Mobility data specialist,
preparation of datasets, testing and
evaluating application

Stec Katarzyna data/dev CE-Traffic Junior mobility data specialist

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 66

4.3.4 Applications to be deployed

The application’s goal is to analyse traffic data to identify traffic patterns, make traffic
predictions and, finally, optimise traffic.

Traffic data (e.g., FCD) are stored in a database and used for finding profiles of traffic (e.g., free
flow traffic, typical traffic, traffic jam) for different areas and time periods. For each profile, the
Traffic Simulation Framework (TSF) may be calibrated to simulate / predict traffic in given
conditions. Archived data may be also used to train traffic prediction algorithms based on
machine learning (e.g., recurrent neural networks and convolutional neural networks). Also, TSF
may run simulations with different input settings and produce output, such as congestion, travel
times, average speeds, total waiting times, so it may be used to evaluate many traffic control
settings, e.g., traffic signal settings.

However, as the number of control settings is large, it is not easy to find the optimal one. To this
end, the proposed approach takes advantage of AI / machine learning methods, for which TSF
can be used to evaluate a large number (e.g., 100 000) of traffic control settings for each meaningful
traffic conditions profile, in parallel, in a computational cluster. These evaluations are later used
to train machine learning algorithms approximating outcomes of traffic simulations very fast (a
few orders of magnitude faster than by running simulations) and with a very good accuracy (up
to 99%). Thus, it may be possible to rapidly evaluate even larger sets of traffic control settings. For
that purpose, the system may use the TensorTraffic tool. To find the best possible settings, the
system may apply metaheuristics, e.g., genetic algorithms (again, Spark / Hadoop may be useful
to parallelise computations).

The above approach may work well for finding optimal traffic signal settings for typical, recurrent
traffic conditions, so it can be applied offline on meaningful traffic profiles (hence, the time of
running computations is not crucial) producing default settings.

For the real-time traffic management, the system should analyse the current traffic state and
predict the future state. If the detected or predicted state is too different from typical traffic
profiles, real-time traffic data and TSF should be used to find new optimal traffic control settings.

The live traffic management system will consist of the following components:

 TrafficPredict – application for prediction and detection of typical traffic conditions,
 TrafficSimulate – application for traffic simulation based on TSF (also used for generation

of training sets for TensorTraffic),
 TensorTraffic – application for approximating outcomes of traffic simulations,
 TrafficOptimise – application for finding optimal traffic lights settings.

The other components which will be used:

 database for storing archived traffic data,

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 67

 TrafficML – application for training machine learning algorithms,
 TrafficCalibrate – application for calibrating TSF.

4.3.4.1 Data Intensive Aspects

The first data intensive task is to infer typical traffic profiles and train traffic prediction models
using archived floating car data. To do that it is necessary to process the large datasets
originating from a period ranging from a several weeks to a several months and covering road
segments within considered city or agglomeration. Since the data frequency is also high (1
minute) the required computations are data intensive.

Inferred typical traffic profiles will be used to calibrate TSF which is also a data intensive and
compute intensive task. Later, calibrated TSF may generate training sets for machine learning
algorithms for approximating outcomes of simulation. These algorithms require large training
sets, and since they should run for many different areas and traffic profiles, the respective
computations should be considered as data intensive.

4.3.4.2 Structural Application Model

Table 42 Case 2 - Structural application model

Criteria Value

Machine learning applications

RAM >= 8 GB

CPU >= 2 Cores

OS Ubuntu

GPU CUDA supported

Other applications

RAM >= 2 GB

CPU >= 2 Cores, at least 2.5 GHz

OS Ubuntu

4.4 Use case 3: Secure data management

7bulls is an SME provider of middleware for different kinds of organisations. The interests of
7bulls clients will be represented by FCR, a company offering SaaS solutions for secure document
management with full access/flow control and approving operations with digital signature. The
FCR team stems from the banking sector, mainly managers and security architects, making this
solution compliant with the strictest security regulations. The system has been so far

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 68

implemented in finance and medical sectors, where there are large security requirements and the
amount of communication is massive. The companies like FCR are interested in improving their
services, in terms of efficiency and offering a level of security suitable for banks and other
financial institutions. For now, this solution relies on a private cloud but it could actually benefit
from the diversification of resources by using a public cloud with no vendor lock-in.

From the track record of cooperation with infrastructure providers, 7bulls believes that the cloud
operators are not necessarily against the clients sharing their resources between different clouds.
For example, they are willing to open the access to their resources to large clients that generally
use private cloud, but peak moments they desire to use the public cloud in an easy and secure
way. There is a variety of smaller infrastructure providers operating on the local markets, looking
for the added value that would let them maintain their position in the market niche competing
with the giants like Amazon. For demonstrating this model, the interests of this group will be
represented by Dataspace, a Polish company delivering IT infrastructure as a service. Looking for
advantages for letting them stay in the game, companies like Dataspace are willing to integrate
with other operators to offer the value added services on top of the infrastructure to serve certain
use cases that are not served by big players and offer them at a better rate.

4.4.1 Overview

This use-case has a specific focus on value added services for SMEs deployed on top of the cloud
infrastructure. 7bulls will first gather the requirements and plan the deployment of value added
services on the Melodic framework and then execute this scenario. It will be realized with the
participation of an end user (FCR - a company cooperating with 7bulls, providing a SaaS solution
for secure document management), besides a selected cloud services provider. The main goal is
to prepare the Melodic framework for commercial use by implementing the ability to efficiently
allocate the real-life cloud application to run using different cloud providers, to smoothly move
the application from one provider to another and to be able to compare cost of running
applications using different cloud providers. The consecutive iterations (due in month 18, 27 and
33) will deliver feedback to monitor the progress following the Evaluation framework defined in
Task 5.1. The final output of the task will be a fully functional demonstration prototype of the FCR
application integrated with Melodic to handle the operations described above.

4.4.1.1 Technical Architecture

The architecture as-is of FCR application is a typical three-tier architecture, with the following
tiers:

 Client side: a Java applet running within a web browser.
 Server side: Java, Spring, Spring Boot, Spring security.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 69

 SQL database (Postgres, MS SQL, Oracle) and documents stored in the file system in an
encrypted form.

Two types of data are being used in the application.

 Data stored in the relational database: users, permissions, index and metadata for
documents, structure, auditing and so on.

 Data stored in the file system: encrypted documents.

The server-side part of the application could be scaled horizontally and there could be many
instances of the server-side part of the application. This application element is compute intensive
due to the many cryptographic operations. The current architecture of the FCR application is as
follows:

Figure 9 Case 3 - Technical architecture

Melodic will provide an easy to use Multi-Cloud environment for the benefits of both
infrastructure providers and innovative SMEs deploying data-intensive applications in the Cloud.
The document management solution offered by FCR requires Multi-Cloud to provide a highly
secure processing of big data for mass communication of a financial institution with its
customers. It could actually benefit from diversifying the resources by using both private and
public Cloud. With Melodic, it could be a semi-automatic operation. FCR will benefit by optimising
costs (by scaling private clouds to typical, not expected maximal loads) and eliminating vendor
lock-in (using a number of public clouds and not just a single cloud). This model will work for any
organisation using its own private Cloud and has a large commercial potential.

For this use case, we anticipate to use Melodic for scalability of the server-side components using
the Scalability Rule Language (SRL) part of CAMEL. We plan to optimise the cost of the

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 70

infrastructure using Melodic. In addition, the ability of Multi-Cloud application deployment will
be an advantage for the FCR application. The figure below provides the anticipated architecture
of the FCR application deployed on the Melodic framework.

Figure 10 Case 3 - Technical architecture

4.4.1.2 Overall Business Environment

Table 43 Case 3 - Business environment

Business role Partner involved.

Deployed
application user

Who is the final user of
the deployed application?

Any institution that processes large amounts of
documents

Application
provider

Who is providing the
application to be
deployed?

7bulls.com

Cloud provider Who is providing the
VMs?

Cloud providers: AWS, Azure, GCCP

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 71

Melodic platform
user

Who is starting
deployment execution
and provide the model?

End user and owner of the application or
7bulls.com

Melodic platform
administrator

Who is administrating
the platform?

End user and owner of the application or
7bulls.com

4.4.1.3 Expected Benefits

For now, this solution relies on a private cloud but it could actually benefit from the diversification
of resources by using both private and public clouds with no vendor lock-in. Melodic will provide
an easy to use multi-cloud environment for the benefits of both infrastructure providers and
innovative SMEs deploying data-intensive applications in the Cloud. With Melodic, it could be a
semi-automatic operation. FCR will benefit by optimising costs, scaling private clouds to typical,
not expected maximal loads, and eliminating vendor lock-in (using a number of public clouds).
Melodic will offer customers like FCR the increased value by allowing them to:

1. Compare different cloud services provider offers

2. Smoothly move from one cloud service provider to another in case of a better value for
a given price

3. Choose any cloud service provider compatible with Melodic (no vendor-lock)

4. Create disaster recovery installation for applications using different cloud services
providers

Deployed application users

Table 44 Case 3 - Expected benefits for deployed application users

Benefit type Benefits description

Speed Shorter time of app deployment and computing time

Cost More efficient cost calculation

Reliability More reliable method of choosing providers and configuration of app
specific deployment

Flexibility More flexible way of choosing provider for app deployment

Quality Implementation environment of the application with the highest quality
available at the moment

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 72

Application provider: 7bulls.com

Table 45 Case 3 - Application provider expected benefits

Benefit type Benefits description

Speed Shorter time of deployment and installation

Cost Decreased cost of deployment and installation

Reliability More reliable method of choosing providers and configuration of app
specific deployment

Flexibility More flexible way of choosing provider for app deployment

Quality Increased quality of app operation

Cloud provider: AWS, Azure, GCCP

Table 46 Case 3 - Cloud provider expected benefits

Benefit type Benefits description

Speed Delivering only resources that fit best in each case

Cost Optimization of the infrastructure consumed
 More resources to be sold

Reliability Increase customer confidence by providing solutions tailored to their
needs

Flexibility Better management of own resources

Quality Providing only those resources that are adequate to the customer's
expectations

Melodic platform user: End user and owner of the application or 7bulls.com

Table 47 Case 3 - Platform user expected benefits

Benefit type Benefits description

Speed Increased speed of app deployment

Cost Decreased cost of app deployment and usage

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 73

Reliability More reliable and suitable method of choosing providers and
configuration of app specific deployment

Flexibility Better management of resources used for app

Quality Implementation environment of the application with the highest quality
available at the moment

Melodic platform administrator: End user and owner of the application or 7bulls.com

Table 48 Case 3 - Platform administrator expected benefits

Benefit type Benefits description

Speed Increasing speed of deploying apps because of standardized way of such
deployments

Cost Reducing costs of used resources

Reliability Reliance on two independent sources determining the range of resources
needed (CAMEL and service provider)

Flexibility Unified way of deploying apps

Quality Using common standards of quality checking in specific cases

4.4.2 Melodic Individual User Roles

Table 49 Case 3 - Individual user roles

Melodic generic role Use case specific role name (i.e.
the name that the partner will
use)

Description of the role in the use case
(task, working environment, ...)

System
administrator
(responsible for the
initial installation
of Melodic)

Admin Initial installation
 Launching application
 Monitoring
 Maintenance

Application model
provider (providing
application data
into CAMEL)

Developer/Camel developer Providing input data
 Uploading camel file

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 74

Deployment rules
provider (utility
function and
overall deployment
constraints)

Developer/Camel developer Providing input data
 Uploading camel file

Dataset provider
(providing cloud
offers)

Developer/Camel developer Providing input data
 Uploading camel file

Melodic end-user
(running
operational
deployment)

Admin Initial installation
 Launching application
 Monitoring
 Maintenance

Application end-
user (using the
deployed
application)

Customer Case specific

4.4.3 Evaluation Groups

Following is a preliminary list of evaluators.

Table 50 Case 3 - Preliminary list of evaluation group members

Last name First name Profile
(dev.,
adm. or
BM)

Company Unit Specific role(s) in the scenario

Skrzypek Paweł BM/adm 7bulls.com Architect, Business Manager
and
business impact evaluation

Kowalski Grzegorz adm 7bulls.com DevOps

Prusinski Marcin dev 7bulls.com Developing the app

Szkup Paweł dev 7bulls.com Developing the app

Różanska Marta dev 7bulls.com Developing the app

Bankowska Edyta test 7bulls.com Testing and evaluating the
app

Materka Katarzyna BM 7bulls.com Business impact evaluation

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 75

Semczuk Michał BM 7bulls.com Business impact evaluation

4.4.4 Applications to be deployed

The FCR Secure Document Management application is a SaaS solution for secure
document management with full access/flow control and approving operations with
digital signature. The FCR application is designed mainly for the banking sector and is
compliant with the strictest security regulations. The system has been so far
implemented in finance and medical sectors, where there are large security requirements
and the amount of communication is massive. Companies like FCR are interested in
improving their services, in terms of efficiency and security (the level of security suitable
for banks and other financial institutions). For now, this solution relies on a private Cloud
but it could actually benefit from the diversification of resources by using public Cloud
with no vendor lock-in.

4.4.4.1 Data Intensive Aspects

FCR is a provider of SaaS solution for secure document management with full access/flow control
and approving operations with digital signature. The system has been so far implemented in
finance and medical sectors, where there are large security requirements and the amount of
communication are massive. This solution struggles with enormous number of files, which are
collected and stored by institutions. The companies like FCR are interested in improving their
services, in terms of efficiency and security (the level of security suitable for banks and other
financial institutions).

4.4.4.2 Structural Application Model

Table 51 Case 3 - Structural application model

Criteria Value

RAM > 4 GB

CPU > 2 core

OS Ubuntu x64

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 76

4.5 Use case 4: Genome analysis

7bulls will adapt the Melodic framework to process sensitive data that are easy to be partitioned
and anonymised by splitting both data and metadata. Due to recent advances in genome and
protein research, 7bulls has been facing a growing interest in genome/protein data processing
from innovative start-ups, SMEs and small research groups inside larger organizations, both
public and private. Such data processing involves large data that is usually extremely sensitive
with the most sensitive medical data on specific patients. At the same time, this data is easy to
partition and anonymise, not to mention the cryptographic measures. Managing the cost and
time of such analysis would be beneficial. Some of them, like choosing optimal method for
specific patients, must be done in a short time and with reasonable costs known in advance, while
others like research on new general methods of treatments can be done in a longer period with
aggressive cost optimisation.

In this case, Melodic will enable 7bulls to exploit a completely new market segment. Sensitive
data processing presents a fast-growing market, with an increasing number of organisations
interested in this kind of services, from big pharma companies focusing on flexibility, scalability
and security to start-ups or academic research groups that appreciate low entrance and
operational costs as well as no vendor lock-in. By cooperating with academia (University of
Białystok and several research groups in medical universities) as well as selected business
partners, 7bulls has access to this market. 7bulls cooperates with a team of people with academic
background and has contacts with researchers that could work on the scientific aspects of
sensitive data processing, offering access to concrete tools and methods of genome data analysis.

7bulls will use the Melodic framework to develop plugins handling the data/metadata separation,
data partitioning/distribution with proper security mechanisms, as well as provide support for
processing such data on distributed nodes and gathering results. Under the Melodic project, this
technology will be validated for implementation supporting the processing of genome.

4.5.1 Overview

This task is focused on using Melodic for processing partitionable sensitive data. 7bulls will
cooperate with the bioinformatics research group at the University of Bialystok (PL) to verify and
demonstrate how Melodic will enable the distributed processing of the genome data, which come
in a large volume and is usually extremely sensitive. At the same time, this data is relatively easy
to partition, anonymize, and protect through cryptographic measures. The demonstration will
show how Melodic can be used to manage the cost and time of genome data analysis. 7bulls will
develop and verify in iterative cycles a set of specific plugins to support such operations and
further processing of genome, protein data sets. The final output of the task will be a fully

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 77

functional demonstration prototype of the genome analysis application integrated with Melodic
to handle the operations described above.

4.5.1.1 Technical Architecture

Selection of the appropriate data for analysis is one of the important success factors of this use
case. Initially, we will focus on open, publicly available datasets of genome sequence or genome
expression data. One of the considered possibilities is the data from 1000 Genome project. Data
will be stored in the flat file. The architecture of the application will be based on the following
frameworks:

 Spark - fast and generic engine for distributed, large-scale data processing;
 Mesos (optionally) - cluster resource management system that provides efficient

resource isolation and sharing across distributed applications;
 Nvidia CUDA - technology for GPU parallel computing.

A simplified application architecture is presented in Figure 11. It should be noted that this is the
initial concept that might evolve in the later stages of development.

Figure 11 Case 4 - Technical architecture based on frameworks

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 78

4.5.1.2 Overall Business Environment

Table 52 Case 4 - Business environment

Business role Partner involved.

Deployed
application user

Who is the final user
of the deployed
application?

Universities, hospitals and other and other
institutes processing genomic data

Application provider Who is providing the
application to be
deployed?

7bulls.com

Cloud provider Who is providing the
VMs?

Cloud providers: AWS, Azure, GCCP

Melodic platform
user

Who is starting
deployment
execution and
providing the model?

End user and owner of the application or
7bulls.com

Melodic platform
administrator

Who is
administrating the
platform?

End user and owner of the application or
7bulls.com

4.5.1.3 Expected Benefits

7bulls will adapt Melodic to process sensitive data that is easy to be partitioned and anonymised
by splitting data and metadata: genome data sets. Managing the cost and time of analysis would
be very useful - some of them (like choosing optimal method for specific patients) must be done
in a short time and with reasonable costs known in advance. Others (like research on new general
methods of treatments) can be done in a longer period with aggressive cost optimization.
Depending on SME interests, 7bulls will develop plugins in Melodic to handle data/metadata
separation, data partitioning/distribution with proper security mechanisms, support for
processing it on distributed nodes and gathering results.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 79

Deployed application users

Table 53 Case 4 - Expected benefits for deployed application users

Benefit type Benefits description

Speed Shorter time of app deployment and execution time

Cost More efficient cost calculation

Reliability More reliable method of choosing providers and configuration of app
specific deployment

Flexibility More flexible way of choosing provider for app deployment

Quality Implementation environment of the application with the highest quality
available at the moment

Application provider: 7bulls.com

Table 54 Case 1 - Application provider expected benefits

Benefit type Benefits description

Speed Shortened time of installation

Cost Decreased cost of installation

Reliability More reliable method of choosing providers and configuration of app
specific deployment

Flexibility More flexible way of choosing provider for app deployment

Quality Increased quality of app operation

Cloud provider: AWS, Azure, GCCP

Table 55 Case 4 - Cloud provider expected benefits

Benefit type Benefits description

Speed Delivering only resources that fit best in each case

Cost Optimization of the infrastructure consumed
 More resources to be sold

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 80

Reliability Increasing customer confidence by providing solutions tailored to their
needs

Flexibility Better management of own resources

Quality Providing only those resources that are adequate to customer's
expectations

Melodic platform user: End user and owner of the application or 7bulls.com

Table 56 Case 4 - Platform user expected benefits

Benefit type Benefits description

Speed Increased speed of app deployment

Cost Decreased cost of app deployment and usage

Reliability More reliable method of choosing providers and configuration of app
specific deployment

Flexibility Better management of resources used for app

Quality Implementation environment of the application with the highest quality
available at the moment

Melodic platform administrator: End user and owner of the application or 7bulls.com

Table 57 Case 4 - Platform administrator expected benefits

Benefit type Benefits description

Speed Increasing speed of deploying apps because of standardized way of such
deployments

Cost Reducing costs of used resources

Reliability Reliance on two independent sources determining the range of resources
needed (CAMEL and service provider)

Flexibility Unified way of deploying apps

Quality Using common standards of quality checking in specific cases

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 81

4.5.2 Melodic Individual User Roles

Table 58 Case 4 - Melodic Individual User Roles

Melodic generic role Use case specific role name
(i.e. the name that the partner
will use)

Description of the role in the use case (task,
working environment, ...)

System
administrator
(responsible for the
initial installation
of Melodic)

Admin Initial installation
 Launching application
 Monitoring
 Maintenance

Application model
provider (providing
application data
into CAMEL)

Developer/Camel developer Providing input data
 Uploading camel file

Deployment rules
provider (utility
function and
overall deployment
constraints)

Developer/Camel developer Providing input data
 Uploading camel file

Dataset provider
(providing cloud
offers)

Developer/Camel developer Providing input data
 Uploading camel file

Melodic end-user
(running
operational
deployment)

Admin Initial installation
 Launching application
 Monitoring
 Maintenance

Application end-
user (using the
deployed
application)

Customer Each case specific

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 82

4.5.3 Evaluation Groups

Following is a preliminary list of evaluators.

Table 59 Case 4 - Preliminary list of evaluation group members

Last name First name Profile
(dev.,
adm. or
BM)

Company Unit Specific role(s) in the scenario

Skrzypek Paweł BM/adm 7bulls.com Architect, Business Manager
and
business impact evaluation

Kowalski Grzegorz adm 7bulls.com DevOps

Prusinski Marcin dev 7bulls.com Developing the app

Szkup Paweł dev 7bulls.com Developing the app

Różanska Marta dev 7bulls.com Developing the app

Bankowska Edyta adm 7bulls.com Testing and evaluating the
app

Materka Katarzyna BM 7bulls.com Business impact evaluation

Semczuk Michał BM 7bulls.com Business impact evaluation

4.5.4 Applications to be deployed

With the advent of the “Omics” era in the life sciences, researchers gained access to vast amounts
of biological information, including data about genome, proteome, metabolome, transcriptome
and molecular pathways just to name a few. The size of this data has now exceeded well beyond
petabytes or even Exabytes. As an example, the final results from 1000 Genome Project have a
size of more than 200 terabytes of data. The forthcoming initiatives, like the 100,000 Genome
Project27, give strong indications that the amount of data available for analysis will grow
exponentially. To take full advantage of this data, scientists and developers will need to develop
tools and platforms that will enable them to perform calculations on a scale well beyond a small
cluster.

As a part of Melodic use-case, our research team will develop an application prototype that
enables a robust approach for the discovery of synergistic variables in biological datasets, with a
main focus on data from gene expression studies and genome-wide association study (GWAS).

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 83

These datasets are often described with a large number of variables. Only few of those variables
are usually relevant for the phenomena under the researcher's investigation. Therefore, the
identification of variables that are relevant for a given research is an important initial step of data
analysis. The common way to identify the relevant variables is a univariate test for association
between each explanatory variable and the response variable, but the univariate test ignores
variables, which contribute information on the response only in synergy with others.

To successfully detect such relevant variables, it is necessary to examine all the k-tuples of
variables. The multivariate exhaustive search requires huge amount of computations, which have
been impossible since a long time.

Table below shows the number of tests required for 50 000 variables

k Number of Tests

1 5.0 ∗ 104

2 1.2 ∗ 109

3 2.0 ∗ 1013

To overcome this stalemate situation, we will develop a prototype application that:

 can benefit from Cloud computing processing power and scalability (by complying to the
Melodic application model)

 can make use of Graphics Processing Units (CUDA technology) for speeding up
calculations

 applies a novel algorithm developed by the Faculty of Computer Science of Bialystok
University, tailored for this problem

4.5.4.1 Data Intensive Aspects

Complex analysis of big genome data is usually extremely sensitive (most sensitive medical data
on specific patients); at the same time, this data is easy to partition and anonymise, not to
mention their encryption through applying respective cryptographic measures. Managing the
cost and time of analysis would be very useful - some of them (like choosing optimal method for
specific patients) must be done in a short time and with limited costs known in advance, others
(like research on new methods of treatments) can be done in a longer period with cost
optimization.

It is a fast-growing market, with growing number of organisations interested in this kind of
services, from big pharma focusing on flexibility, scalability and security to start-ups or academic
research groups that appreciate low entrance and operational costs and no vendor lock-in.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 84

By cooperating with academia and selected business partners, we have access to this market. We
have a team of people with academic background and contacts with researchers that could work
on the scientific aspects of this (offering access to concrete tools / methods of genome data
analysis).

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 85

5 Next Steps

5.1 Questions and Metrics

In the scope of D6.2 and D6.3, the questions and the related metrics will be defined. The provided
plan will be a roadmap that contains indicative goals, questions, and metrics for executing the
validation as defined in the previous steps. The plan will serve as a guideline for all involved
actors and will provide the basis for the subsequent measurement plans and the analysis actions.

5.2 The Data Collection Phase

The data collection procedures of the Melodic Evaluation Framework will include the way in
which procedures are defined, the way in which data collection forms are applied, and the way in
which tools support the data collection process.

Usually, during the data collection phase, manual, electronic and automated data collection
procedures can be employed. In the Melodic evaluation process, electronic data collection forms
will be used to automatically handle the data entry activities and will comprise an efficient way
of collecting data. Despite the fact that electronic forms require similar effort when compared to
the manual forms, their advantage is that the data does not have to be re-typed into a
measurement database. Electronic forms are a clear improvement over manual forms, as manual
forms should be continuously available, distributed and updated.

According to the timetable presented in Table 15, this phase will take place by the end of the
project in the scope of the preparation of D6.4.

5.3 The Interpretation Phase

This final phase of the Evaluation Framework will include all activities required to actually curate,
store and process the measurement data. In the data interpretation phase, the focus will be
shifted to drawing conclusions regarding the results of the measurement scheme. The
conclusions are usually specific for each object under validation. This is an essential phase since
this step tries to find answers to the questions underlying the measurement scheme.

The interpretation phase mainly concerns processing the collected data into presentable and
interpretable material. The GQM plan provides the basis for preparing feedback sessions:
feedback material should support answering the questions as defined in the Evaluation

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 86

Framework, and based on these answers, one should be able to conclude whether the defined
measurement goals are attained. This process has to be done for each goal under validation.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 87

6 Conclusion

This is the first deliverable of WP6. WP6 as a whole is responsible for the use cases and the
evaluation of the Melodic platform. This deliverable documents the Melodic evaluation
framework, the validation scenario definitions as well as the organization and planning of the
use case demonstrations.

Based on the framework and related methodologies presented in this deliverable, the universal
applicability of Melodic will be demonstrated by four use cases delivered by Melodic partners
relying on big data technologies, but working with different technical constraints and business
models.

The implementation feasibility of these utility features and the related liability of the utility-
based deployment will be evaluated. In order to ensure that they are ready to be deployed by the
integration release, the applications to be used in the use cases will be implemented and modelled
in the new CAMEL release extended with the big data aspect in the scope of the next deliverable
(D6.2). The implementation feedback presented there will flow back to WP2-WP5 to improve and
extend the feature set as new Melodic releases are made available. The use cases themselves will
be a crucial argument by the end of the project to demonstrate Melodic to real potential customers
thus preparing commercial use of the Melodic platform beyond the end of the project.

The final evaluation will provide answers to the following core expectations for Melodic

1. Does the Melodic platform operate and do what it is required to perform?
2. Does a Melodic application run correctly (functional and non-functional)?
3. Does a Melodic application run more efficiently (cost, elapsed time and green)?
4. Is the cost of using Melodic justified by its benefits?

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 88

7 References

[1] V. R. Basili, , G. Caldiera i H. D. Rombach, „THE GOAL QUESTION METRIC APPROACH,” w
Encyclopedia of Software Engineering, 2 Volume Set, 1994.

[2] P. Skrzypek, S. Kicin, K. Materka, A. Schwichtenberg, S. Mazumdar, J. Domaschka, Y.
Verginadis, M. Semczuk i S. Schork, „Integration and Testing Requirements (D5.04),” 2017.

[3] S. H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley
Professional, 2002.

[4] „ISO 25000 Portal,” [Online]. Available: http://iso25000.com/index.php/en/iso-25000-
standards/iso-25010. [Data uzyskania dostępu: 09 February 2018].

[5] J. Nielsen, Usability Engineering, Elsevier, 1994.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 89

Annex 1 - Evaluation Components (based on WP5 test
scenarios)

Initial deployment
 Installation and deployment of a N-component application on M different Cloud Providers
 Installation and deployment of a N-component application in Docker containers on M

different Cloud Providers
 Installation and deployment of a N-component application, where X component are

installed in a Docker container and Y on a normal VM on M different Cloud Providers
 Deployment requirement enforcement.
 Installation and deployment of a N-component application on M different Cloud Providers

with more advanced set of requirements, like non-functional ones.

Metric management
 Built-in raw metrics collection
 Custom raw metrics collection
 Composite metric collection
 Event generation

Local reconfiguration

 Scale out application
 Scale in application

Global reconfiguration
 Attributes of used VM offerings changed
 Global reconfiguration

Reasoning

 Linear constraints and optimization solving - CP Solver
 Linear constraints and optimization solving - MILP Solver
 Linear constraints and optimization solving - LA Solver
 Non-linear constraints and optimization solving - CP Solver
 Non-linear constraints and optimization solving - LA Solver

API

 Camel model upload

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 90

 Initiate deployment process
 Get application status

UI

Web based UI for application view:
 Application view
 Deployment view

Eclipse based editor of the CAMEL:

 CAMEL Model validation
 Syntax completion

BigData management

 Big data application deployment optimization
 Big data application deployment execution
 Big data application monitoring and reconfiguration
 Data locality awareness - features related to data locality and data movement.

Fault handling

 Temporary unavailability of Melodic platform components
 Temporary unavailability of BPM - verifying proper system behaviour after BPM

recovery.
 Temporary unavailability of Cloud Provider
 High Availability Component configuration

Performance

 Response time while solving complex allocation problems
 Dynamic scalability within one Cloud - verification of the execution time
 Dynamic scalability testing for multi-Cloud feature (using two different locations)
 Counting Compute Resource Overhead of Melodic introduced over its host machine

Security

 Method invocation by programmatic access - Successful Authentication
 Unsuccessful authentication
 Successful Authorisation Request
 Unsuccessful authorisation request
 Unsuccessful user authorisation with administrator privileges
 Logging within Melodic platform

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 91

User management
 Adding user
 Removing user
 Updating user password
 Updating user profile
 Unified starting, stopping and restarting of Melodic platform
 Configuring backup
 Executing backup
 Recover Melodic platform
 Monitor Melodic platform

Annex 2 - Utility examples

Example 1: Combinatorics

Consider the problem of deploying an integral number V virtual machines of an integral number
M machine types, and consider first the case where V is larger or equal to M. The way of writing
an integer as a sum of term where the position of the term counts, i.e. 6 = 4 + 2 is considered
different from 6 = 2 + 4 is called a composition in number theory, and the case where zero terms
are allowed is called a weak composition and the count is given by

 CompositionCount[VirtualMachines_Integer?Positive, MachineTypes_Integer?Positive
]/;TrueQ[VirtualMachines>=MachineTypes]:= Binomial[VirtualMachines + MachineTypes -1,
MachineTypes - 1];

The actual configurations can be generated as solutions to the Frobenius equation
 AllCompositions[VirtualMachines_Integer?Positive, MachineTypes_Integer?Positive]:=
FrobeniusSolve[ConstantArray[1,MachineTypes],VirtualMachines]

If there are more machine types than virtual machines to be started, then it is possible to use only
subsets of the machines. The number of subsets with k machines taken from M possible
machines is the binomial coefficient

(
M
k)

For each of these subsets, the number of virtual machines must be decomposed over the subset.

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 92

It is therefore necessary to compose V of exactly k non-zero terms, since the machines not being
use have already been excluded when selecting the subset. The number of compositions is given
by the binomial coefficient

(
V-1
k-1)

Consequently, the number of compositions is obtained by multiplying these two factors and
adding over k representing the number of machine types to use. At most one may use as many
machine types as there are virtual machines to be deployed.

 CompositionCount[VirtualMachines_Integer?Positive, MachineTypes_Integer?Positive]/;TrueQ[
VirtualMachines < MachineTypes] :=

;

Examples
If one needs 6 virtual machines and these can be chosen from 3 different machine types, then the
number of possible configurations is
 CompositionCount[6, 3]
 28

This is all of these configurations enumerated
 AllCompositions[6, 3]

{{0,0,6},{0,1,5},{0,2,4},{0,3,3},{0,4,2},{0,5,1},{0,6,0},{1,0,5},{1,1,4},{1,2,3},{1,3,2},{1,4,1},{1,5,0},{2,0,4},{2,1,3},{2,2,2}
,{2,3,1},{2,4,0},{3,0,3},{3,1,2},{3,2,1},{3,3,0},{4,0,2},{4,1,1},{4,2,0},{5,0,1},{5,1,0},{6,0,0}}

and it can be confirmed that the count is correct by counting the number of elements in this set
 Length[AllCompositions[6, 3]]
 28

Alternatively, let there be 7 machine types to choose with the same 6 virtual machines to be
allocated. The number of compositions is then

 CompositionCount[6, 7]
 924

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 93

It makes no sense to display them, but the number is not too large to be directly enumerated, and
then counted to verify the above formula.

 Length[AllCompositions[6, 7]]
 924

Example 2: Secure Documents: Load distribution over workers

Problem description
The application consists of a file system storing a set of files, a database server indexing these
files, and one or more application servers receiving connections from the users of the application.
The application servers do complicated encryption and decryption on behalf of the users, and the
load on these servers will depend on the number of users and, primarily, the size and content of
the files they are accessing.
In order to ensure experienced application quality, it is desirable to scale horizontally by starting
more application servers if the users’ average response time TR is large. There is an absolute
requirement that TR< Tmax=30 s. For each document, an application level sensor will record the
response time experienced to the users. This will be aggregated to the average response time for
all users on that application server, which will again be aggregated to the average response time

for all application servers in the system. Hence, R(k) is the measured average response time at
sampling iteration k.
The expressed utility is formulated as: Deploy with minimal cost while keeping the average
response time limited.

Pricing model
It is difficult to define an exact cost model, however, given a machine type offered by a provider
it will be possible to monitor the price for this machine at regular intervals, and the cost used in
this model will simply be the number of instances of this machine type multiplied with the unit
price for this machine type.
It should be noted that this is a linear pricing model, and consequently it will be additive: cost(a+b)
= cost(a) + cost(b). The cost of a number of instances of given machine type is therefore given as:

 Cost[MachineType_Symbol, Cardinality_Integer?NonNegative]:= Cardinality *
MachineType[Price];

The cheapest machine type can be selected based on the price alone. Since the function used can

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 94

take several of the smallest elements, it returns a list even if that list is supposed to have only one
single element. It is therefore necessary to pick out the single element that is returned since the
selection function is explicitly confined to the single smallest element.

 SelectCheapest[CandidateMachines_List?VectorQ] := TakeSmallestBy[CandidateMachines,
(#[Price])&, 1][[1]];

A deployment is a set of machines together with the cardinality of each type. The format of the
configuration is a list of lists, where each list has two elements: The machine type followed by
the cardinality. Given that the provided argument matches this format, computing the cost of the
configuration is straightforward as it is simply applying the above cost function to each element
and then add the results together.

 Cost[Deployment_List] /; VectorQ[Deployment, MatchQ[#,{_,_Integer?NonNegative}]&]:= Total[
Map[Apply[Cost, #]&, Deployment]];

Example
For the toy example of this notebook only two machine types will be defined
 NodeCandidates = {mBig, mXXL};

and their prices are

 mBig[Price]^= 6;
mXXL[Price]^= 10;

The cost of using, say, 5 big machines and 2 extra-large machines is then given by

 Cost[{{mXXL,2},{mBig,5}}]
 55

while the cost of swapping the number of machines of the two types should be higher

 Cost[{{mXXL,5},{mBig,2}}]
 64

In total, this corresponds to 7 = 5 + 2 machines. Interestingly there are many ways 7 machines can
be divided among the two machine types

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 95

 machines = AllCompositions[7,2]
 {{0,7},{1,6},{2,5},{3,4},{4,3},{5,2},{6,1},{7,0}}

If the first number corresponds to the big machine and the second to the extra-large machine,
then the cost of these configurations can be computed as

 Map[Cost[{{mBig,#[[1]]},{mXXL,#[[2]]}}]&,machines]
 {70,67,64,61,58,55,52,49}

The configurations can be sorted according to to cost, which confirms the intuition that
configurations with more big machines are less costly than configurations with more extra-large
machines.

 CostSortedDeployments = SortBy[machines, Cost[{{mBig,#[[1]]},{mXXL,#[[2]]}}]&]
 {{7,0},{6,1},{5,2},{4,3},{3,4},{2,5},{1,6},{0,7}}

Utility dimension cost: Marginal cost approach
In general, adding another application server increases the cost, and decreases utility. However,
one has to realise that the marginal cost of a new machine is dependent on the number of
machines already started. Consider for instance that the current cost of the running machines is
1000€/hour. Adding a new machine adding, say, 10€/hour to this cost might not cause a huge
change in utility.
Let D(k) be the current deployment running in iteration k, and let D(k+1) be the new deployment
proposed at this step.The change in cost utility can be modelled by saying that the current cost
utility is decremented by a factor for the change in marginal cost.

 cost(D(k))/cost(D(k+1))

If the cost of the new configuration is higher than the current, this factor will be less than unity
and give a reduced utility. However, if the cost of the next deployment is less than the current
deployment the factor will be larger than unity and resulting in a higher utility, but it is necessary
to ensure that the utility stays bounded in the interval [0,1]. This will be discussed in the next
section.

Utility
The resulting utility, using the scale factor, may be defined as

 Ucost(D(k+1)|D(k))=Ucost(D(k) |D(k-1))*cost(D(k))/cost(D(k+1))

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 96

The issue here is that the utility is not unique but conditioned on the full sequence of different
deployments tried. Conceptually, a deployment is a node in a fully connected graph. The marginal
cost factor can be seen as weights on the edges of this graph, and the utility assigned to a
particular configuration depends on which vertex in the graph the configuration moved away
from. The result is that the utility of a configuration is Markov process.
Had it been possible to enumerate all deployments, one could have calculated the utility as the
expected utility for each deployment. In practice, one will need to define the utilities as the search
algorithm of the solver tries different configurations, and not all configurations may be tried. One
can therefore either give the utility of a configuration as the average of the utilities obtained by
moving to the deployment based on this configuration, or use a solver that accepts a stochastic
utility value, i.e. two successive proposals of the same configuration give two different utility
values. This latter approach is assumed in the following implementation.
The benefit of this approach is that it is insensitive to the number of configurations. Had the cost
been bounded, one could have use an absolute cost utility. However, even if the machine types
possible will probably stay fairly constant, the total number of machines can be increased as
needed, with the result that it is not possible to compute an upper bound on the cost (unless there
is a constraint putting a cap on the highest possible cost).
With the above reasoning, one must first define the utility of the initial configuration to some
reasonable element. A natural thing to start a deployment of this application would be to start
with one virtual machine and the cheapest machine.

 InitialDeployment = {{SelectCheapest[AllowedMachines],1}}
 {{SelectCheapest[AllowedMachines],1}}

And the cost utility of this deployment is then set to perfect.
 Utility[MarginalCost, InitialDeployment] = 1;

The cost utility function takes the new deployment based on the given configuration and the old
deployment, and calculates and define the new utility value for the new configuration making
sure that the utility is capped at unity.
 Utility[MarginalCost, CurrentDeployment_List, NewDeployment_List]/;(VectorQ[
CurrentDeployment, MatchQ[#,{_,_Integer?Positive}]&] && VectorQ[NewDeployment,
MatchQ[#,{_,_Integer?Positive}]&]) := (Utility[cost, NewDeployment] = Min[Utility[MarginalCost,
CurrentDeployment]* Cost[CurrentDeployment] / Cost [NewDeployment], 1]);

Assume that the next deployment is one consisting of only one extra-large machine, then the cost
utility will be
 Utility[MarginalCost, InitialDeployment, {{mXXL,1}}]//N

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 97

 0.3
The utility of a mixed deployment following this will be even worse, not surprising since it
contains the same extra-large machine,
 Utility[MarginalCost, {{mXXL,1}},{{mBig,1},{mXXL,1}}]//N
 0.230769
and so one could try to make a deployment with two big machines
 Utility[MarginalCost, {{mBig,1},{mXXL,1}},{{mBig,2}}]//N
 0.5

Utility dimension cost: Cost bound
As an alternative to the preceding approach trying to view a new deployment based on a new
configuration relative to the current deployment, one may try to estimate the cost utility directly.
One approach is to say that the requested configuration is implemented only by using the
cheapest possible machine type. This cost is then the lower bound for the average cost of a
machine in the given configuration. The ratio between the lowest cost and the average cost could
then be the utility. This will obviously be unity if only the cheapest machines are used in the new
deployment candidate, and decrease with the increasing cost of the machines without forcing an
upper bound on the allowed cost.
 Utility[CostBound, NewDeployment_List]/;(VectorQ[NewDeployment,
MatchQ[#,{_,_Integer?Positive}]&]) := With[
 { minprice = Min[Map[(#[Price])&,NodeCandidates]],
 cardinality = Total[Map[#[[2]]&, NewDeployment]]},
 minprice / (Cost[NewDeployment]/ cardinality)
];

Utility dimension: response time
The first observation is that adding more application servers will decrease the average response
time, simply because the measured total response time is then divided by more servers. Just
looking at the cardinality of the sets, let | D(k) | be the number of machines in the current
deployment, and then for the new deployment candidate of size | D(k+1) | average response time
calculated from the measurement will be

 (k+1)≈ |D(k)|* (k))/|D(k+1)|

The cardinality of a configuration is just adding together the number of machines ignoring their
different types.

 DeploymentCardinality[Deployment_List]/; VectorQ[Deployment,
MatchQ[#,{_,_Integer?Positive}]&] := Total[Map[#[[2]]&, Deployment]];

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 98

It should be noted in passing that the deployment cardinality is used because the average
response time is measured per deployed machine without taking into account the machine
properties. Normally, the more information that can be encoded in the utility function, the more
representative it gets. Given that the response time in this use case is dependent on the time it
takes to decode a file, the number of cores may be more important than the number of machines.
Computing the average response time over the deployed cores could allow less, but more
powerful, machines to be deployed.
The next step is then to map this changed response time to a utility. The response time will never
be less than zero, and the upper limit is set as Tmax, hence the interval for the response time is
closed. Furthermore, it must be noted that there must be a desired nominal value for the response
time. The reason is simply that one may always over-provision application servers, and push the
response time down to the level of what would be experienced by one single user per application
server. This contradicts the requirement to minimise cost. Hence, the response time should be
controlled around a good value that is acceptable response time, but not the lowest possible to
avoid incurring unnecessary cost. Let Tnominal be the acceptable value, and then the highest utility
will be when the measured average response time is close to this value. The utility will be lower
if the response time is better than this value because of the over-provisioning of resources, and
the utility will be lower if the measured average response time is larger than the nominal value.
The two parameters for the response time calculations are

 T[nominal]=20;
T[max] = 30;

The Beta distribution B(α, β) is normally a good model for a family of functions bounded on the
interval [0,1], and the expectation of the distribution is

 E{B(α, β)}=α/(α+β)

In general, one may say that the shape parameter β pushes the distribution to the left and lower
values and the parameter α pushes it to the right. Given the mapping of the interval [0,30] ↦ [0,1],
the expectation of the distribution should be Tnominal/Subscript[T, max] = 20/30. This creates a
binding between α and β:

 E{B(α, β)}=α/(α+β)=Tnominal/Tmax

α =Tnominal/Tmax (α+β)

(1-Tnominal/Tmax)α=Tnominal/Tmax β

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 99

(Tmax/Tnominal-1)α=β

Some example forms based on various values of α is given in the next figure

 Plot[Table[PDF[BetaDistribution[α,(T[max]/T[nominal]-
1)*α],x],{α,{3,5,7,9}}]//Evaluate,{x,0,1},Filling->Axis,LabelStyle->Directive[FontFamily-
>"Times",Background->White]]

Visually, it seems that the blue curve corresponding to α=3 is a good value for this model limiting
over provisioning and limiting the utility allocated to response time values higher than the
nominal value.

 α=3;

As can be seen from the figure, it needs to be normalised on the maximal value to be a utility in
the range [0,1]. For symmetric distributions or high parameter values, the peak value will be
located approximately at the expectation, but for skewed distributions, this is not the case, and
the peak value has to be computed numerically.

 BetaNormalisation= NMaximize[{N[PDF[BetaDistribution[α,(T[max]/T[nominal]-

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 100

1)*α],x]],0<=x<=1},x][[1]]
 1.8783

The response time utility function is illustrated below

 Plot[PDF[BetaDistribution[α,(T[max]/T[nominal]-1)*α],x]/
BetaNormalisation,{x,0,1},Filling->Axis,
LabelStyle->Directive[FontFamily->"Times",Background->White]]

The resulting utility based from the change in configuration using Equation (3).

 UR(k+1|D(k),D(k+1), (k))=B(α,α(Tmax/Tnominal-1), (k+1)/Tmax) =

B(α,α(Tmax/Tnominal-1),((|D(k)|* (k))/|D(k+1)|)/Tmax)

The implementation of this utility function is straightforward.

 Utility[response, CurrentDeployment_List,
 NewDeployment_List, AverageResponseTime_?NumericQ] /;
(VectorQ[CurrentDeployment, MatchQ[#,{_,_Integer?Positive}]&] &&
VectorQ[NewDeployment, MatchQ[#,{_,_Integer?Positive}]&] &&
TrueQ[0<=AverageResponseTime<=T[max]]) :=
PDF[BetaDistribution[α,(T[max]/T[nominal]-1)*α], ((DeploymentCardinality[CurrentDeployment
] * AverageResponseTime) /

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 101

DeploymentCardinality[NewDeployment]) / T[max]]/BetaNormalisation;

Although this is a possible formulation, it can currently not be supported by CAMEL. One
alternative that would be feasible could be to define this utility as a part of slightly rotated ellipsis
passing through the three points (0,0), (Tnominal/Tmax,1), (1,0) since an ellipse is only defined in terms
of squares that can be implemented in CAMEL. One may even achieve something similar with a
second order polynomial fit to these points.

 QuadraticFit = Fit[{{0,0},{T[nominal]/T[max],1},{1,0}},{1,x,x^2},x]
 1.1598*10-16+4.5 x-4.5 x2

 Plot[QuadraticFit, {x,0,1}]

The issue is again that it may overshoot somehow at the maximum value
 NMaximize[QuadraticFit, x]
 {1.125,{x->0.5}}
and it does not mange the non-centrality of the problem.

 N[T[nominal]/T[max]]
 0.666667

However, it does pass through unity at the nominal response time.
 QuadraticFit /. {x->T[nominal]/T[max]}

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 102

 1.

Rather than normalising the quadratic function, it would be better to use the minimum operator
and accept that there will be a flat region in the middle.

Overall utility
The overall utility function is then just a normal weighted sum of these two part utilities for a
parameter ζ giving the relative weight of the two parts.

 U(k+1|n,ν, (k))=ζ*Ucost(k+1|n,ν)+ (1-ζ)*UR(k+1|n,ν, (k))
The default value is to place equal importance on the two parts.

 Options[Utility]={ζ->0.5};

The signature of the utility function is basically the same as for the response time utility, with the
added option of setting the weight parameter.
 Utility[SD,CurrentDeployment_List, NewDeployment_List,
AverageResponseTime_?NumericQ, OptionsPattern[]] /;
(VectorQ[CurrentDeployment, MatchQ[#,{_,_Integer?Positive}]&] &&
VectorQ[NewDeployment, MatchQ[#,{_,_Integer?Positive}]&] &&
TrueQ[0<=AverageResponseTime <=T[max]]) :=
OptionValue[ζ]*Utility[cost, CurrentDeployment, NewDeployment] + (1-
OptionValue[ζ])*Utility[response, CurrentDeployment, NewDeployment, AverageResponseTime];

Numerical experiment
Assume that there are few users, and the first reading of the response time measurement,
indicating few users and a response time of 3 seconds. There are three possible approaches:
Increase with one machine, decrease the machine count, or stay with the current configuration:
 Utility[SD,InitialDeployment, {{mBig,3}}, 3]
 0.168575

 Utility[SD, InitialDeployment,{{mBig,1}},3]
 0.516573

 Utility[SD,InitialDeployment,InitialDeployment,3]
 0.516573
In other words, there is a slight preference to reduce with one the deployed number of machines
for this measured response time. Assume instead that there were many users in the system and
the response time increased to, say, 25 seconds, then the utility would be.
 Utility[SD, InitialDeployment, {{mBig,3}}, 25]

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 103

 0.281219

 Utility[SD,InitialDeployment,{{mBig,1}},25]
 0.995264

 Utility[SD,InitialDeployment,InitialDeployment,25]
 0.995264

This result may be a little counter-intuitive, but coming from the fact that there is not too large
distance between the nominal value of 20s and the measured average response time of 25s.
However, if the average response time is measured to 28s, the picture changes.

 Utility[SD, InitialDeployment, {{mBig,3}}, 28]
 0.307006

 Utility[SD,InitialDeployment,{{mBig,1}},28]
 0.892919

 Utility[SD,InitialDeployment,InitialDeployment,28]
 0.892919

If one wants the decision to be made already at measured 25s response time, while keeping the
nominal value of the response time at 20s, one could change the emphasis paid to the response
time by decreasing the weight of the cost part. This may make good sense in this application
where user satisfaction is more important than cost.

 Utility[SD, InitialDeployment, {{mBig,3}}, 25 ,ζ->0.05]
 0.234317

 Utility[InitialDeployment,{{mBig,1}},25, ζ->0.05]
 0.991002

 Utility[SD,InitialDeployment,InitialDeployment,25, ζ->0.05]
 0.991002

This shows that the cost must be de-emphasised significantly for a good decision to be made, and
even then the conclusion is not that significant. If 25s is considered a point where a scaling
should have been made, then the nominal response time should be decreased to ensure that a
scaling decision is taken earlier.
For larger systems the effect of one machine more or less will not change the utility significantly,
which is natural given that the cost will almost not change, and therefore emphasising the
response time measurement more will help to scale also in this case, but relatively little.

 Utility[SD, InitialDeployment, {{mBig,150}}, 28]

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 104

 0.00340076

 Utility[SD,{{mBig,150}}, {{mBig,149}}, 28]
 0.382397

 Utility[SD, {{mBig,150}}, {{mBig,151}}, 28]
 0.408619

 Utility[SD,{{mBig,150}}, {{mBig,150}}, 28,ζ->0.05]
 0.746879

 Utility[SD,{{mBig,150}}, {{mBig,149}}, 28, ζ->0.05]
 0.720514

 Utility[DS,{{mBig,150}}, {{mBig,151}}, 28, ζ->0.05]
 0.770416

Example 3: CRM Memory Use

Problem description
The application consists of two application component types: The worker computer and a load
balancer distributing the incoming users onto the set of workers. There must be at least two
worker instances for redundancy, and not more than 6 workers are allowed. The users’ activities
reflects in increased memory consumption on the worker machines, and the more users allocated
to a machine the more memory it needs to serve all the users. The number of users is a slowly
changing stochastic process, and one may therefore assume that there will be approximately as
many users tomorrow as it was today.
When the memory consumption of a machine reaches 80%, the application will start swapping
and the response time seen by the users will be prohibitively slow. Hence, the goal is to provide
more workers early enough to prevent this situation of starvation. At the same time, cost is the
main concern, and it is desired to use as few and as inexpensive machines as possible.
Inexpensive typically implies limited memory, which is fine if the number of users are few. The
application utility has therefore been stated as
Minimise deployment cost while keeping the memory consumption of each machine less than
80%
The application should consequently measure the number of users in total, the number of users
per machine, and the absolute and relative memory use per machine.
A machine having live sessions with one or more users cannot be stopped. Hence, without an
active collaboration of the load balancer, there is no way to concentrate the allocation of users on
the least number of machines. Consider for instance that there has been many users, and 6 worker
machines are deployed, but most of these users have logged off and only 5 users remains when a
6th user arrives. Even though each of the 5 machines serving each of the 5 existing users could

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 105

accommodate the new user allowing one server to be shut down, a perfect load balancer would
allocate the new user to the unused machine as it is the best balance of the load in the system.
Hence, reconfiguring the system by changing the number of worker machines or by changing the
deployed machine type to cheaper machines is therefore not possible without the collaboration
of the load balancer.
However, the users typically reflect a zero-to-zero pattern in that there are no users of the
application at night. This means that it will be possible to reconfigure the deployment of the
application for the next day’s run based on the measurements obtained from today’s run.

Cost utility
As can be seen from the utility statement, the cost is the only thing to minimise for this
application. At the same time, there is a bound on the number of worker machines, and therefore
consequently a minimum, Cmin, and maximum cost, Cmax. A standard linear and normalised cost
utility function is therefore proposed for a deployment D(k):

UCRM(D(k))=1 - (cost(D(k))-Cmin)/(Cmax-Cmin)

Here Cminis the cost of using a single machine of the cheapest possible type and Cmaxis the cost of
using 6 machines of the most expensive type. The cost is computed using the configuration cost
of a configuration consisting only of one machine type. The computed cost will be remembered
since it is no reason to recompute it at the evaluation of the utility unless the node candidate set
has changed.

 MinCost[CRM,TheNodeCandidates_List?VectorQ]:=
(MinCost[CRM,TheNodeCandidates] = Min[Map[Cost[{{#,1}}]&,TheNodeCandidates]]);
MaxCost[CRM,TheNodeCandidates_List?VectorQ]:=
(MaxCost[CRM,TheNodeCandidates] = Max[Map[Cost[{{#,6}}]&,TheNodeCandidates]]);

The utility is then a direct implementation of equation (8) for the current set of node candidates
given a global list.

 Utility[CRM, NewDeployment_List]/;
(VectorQ[NewDeployment, MatchQ[#,{_,_Integer?Positive}]&]) :=
(1 - (Cost[NewDeployment] - MinCost[CRM, NodeCandidates])/
(MaxCost[CRM,NodeCandidates]-MinCost[CRM,NodeCandidates]));

Optimisation
It should be evident from the introductory discussion that the optimisation process entails
setting the requirement attributes on the application component types such that the utility of the

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 106

application is maximised. Here the utility is pure cost. Furthermore, there is one and only one
application component type to consider: The worker. Based on the attributes assigned for the
worker, a different type of node candidate will be chosen for deploying the workers, and the cost
is a direct result of the choice of the node candidate and the number of worker instances.
From the problem description, it follows that the amount of memory provided by the worker
machines is the essential quantity. However, neither the amount of users nor their distribution of
the workers can be controlled by Melodic. Only the amount of resources provided can be
controlled. This leads to the following considerations:
Assuming that the memory requirement attribute of the worker application component type is
an interval, one may take the lower bound of this interval to be be chosen by the solver: RAMLow.
The total memory consumed should at the same time be less than 80% of the total amount of RAM
provisioned, and consequently one must have that the lower limit of the memory for a worker is
less than 80% of the worker’s total memory. This leads to the upper bound of the memory for each
worker instance to be RAMUpper= RAMLow/0.8. It is typically needed to have some security margin
since the number of users will change dynamically over the day, and yesterday’s maximum
number of users may be today’s minimum number of users. The discount factor should therefore
be a tunable parameter λ ∈ [0, 0.8] of the problem. It should be selected based on realistic
measurements taken from the running application, and the simulated choices made by Melodic.
Based on this reasoning, there are two variables of the problem: The lower limit of memory per
worker, RAMLow, and the number of worker Instances. The memory requirement attribute for the
worker application component type is then given as the interval

Memory ∈ [RAMLow, RAMLow/λ]
Options[Utility]=Join[Options[Utility],{λ->0.7}];

Adding together the absolute maximum memory actually used for each of the current workers,
gives the least amount of actual memory RAMTotal needed in the system. This lower bound can be
provided by one or more worker instances. However, since RAMTotal is the actual use, and actual
use should not exceed a relative fraction of λ of the total provided RAM in the system, one must
obviously satisfy the constraint (written to ensure that the left hand side is a constant number
and the right hand side contains the variables)

RAMTotal/λ<= RAMLow * Instances

It should be noted that the above is assuming the perfect load balancing, so that the memory
provided by each worker machine is used more or less to the same degree. If the load balancer is
manipulated to pack more users on less machines, then essentially RAMTotal/λ may be needed on
a single worker machine.
At the same time, it should be an automatic constraint set based on the available node candidates

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 107

since it could be that there is an upper limit, i.e. a constraint on the upper bound of the memory
requirement in equation (9). The effect of such a constraint on the problem will then be to force
an increase in the number of instances because of the constraint (10). The domain of the Instances
variable is confined to be an integral value in the interval [2, 6], and so there are no constraints
necessary to ensure that the number of worker Instances stays within the limits of this domain.
The actual utility is a function of the assignment to the variables RAMLow and Instances for the
worker application component type, which is the only variables of this problem. The utility
function is therefore defined in terms of these two variables. It first sets the RAMLow as a
requirement for the CRMWorker component according to equation (9) above, and then uses the
pure cost utility to evaluate the utility of a deployment consisting of only the cheapest machine
type satisfying the memory requirements. In Melodic, the decision on the two variables’ values
and the first step will be done by the solver, whereas the machine type selection and the cost
evaluation will be done by the utility generator component.

 Utility[CRM, RAMLow_Integer?Positive, Instances_Integer?Positive, OptionsPattern[]]:= Block[{},
 SetRequirement[Memory, CRMWorker, Interval[{ RAMLow, Ceiling[RAMLow / OptionValue[λ]]}]
];
 Utility[CRM,{{ SelectCheapest[SelectNodeCandidates[CRMWorker, NodeCandidates]],
Instances }}]
];

When a new reading for the total memory consumption over all deployed machines comes in
every night, the Melodic upperware needs to find a new configuration satisfying this application
context. In practice, the optimisation problem is solved with the memory metric as fixed value.
The default upper bound on the memory consumption is defined first, and set equal to the default
option for the utility calculation as defined in the optimisation part above.

 Options[Upperware]^={λ->(λ/.Options[Utility])};

Then the optimisation problem is the constrained optimisation problem in the two variables. Note
that instances is an application component type attribute and it cannot be assigned a value by
the solver since this will have global precedence and the set requirement function will assign a
value to the number of instances, i.e. the equation “instances = Undefined” will be understood as
“5 = Undefined” and we cannot reassign a number. The solver variable instance is therefore called
Cardinality in the upperware implementation.

 Upperware[CRM, RAMTotal_Integer?Positive, OptionsPattern[]]:= NMaximize[
 {Utility[CRM, RAMLow, Cardinality, λ->OptionValue[λ]
],RAMTotal/OptionValue[λ]<=RAMLow*Cardinality && 1<=RAMLow&&

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 108

RAMLow<=Max[Map[(#[Memory])&,NodeCandidates]]*OptionValue[λ] &&
2<=Cardinality&&Cardinality<=6 },
 {RAMLow,Cardinality}∈Integers,MaxIterations->1000];

Example
To test the above optimisation modelling, the set of machines of the past example is extended,
and some memory size is associated with the various machine types. The price model is also
extended for the new machines

 NodeCandidates = Join[{mXXS, mXS, mSmall}, NodeCandidates];
MapThread[(#1[Price]^=#2)&,{{mXXS, mXS, mSmall},{1,3,5}}];
MapThread[(#1[Memory]^=#2)&, {NodeCandidates, {1,4,8,16,32}}];

Assume that one fine night the observed memory consumption was 9 GB of RAM, and then the
cost optimal configuration would be

 Upperware[CRM, 9]
 {0.847458,{RAMLow->8,Cardinality->2}}

This follows from the different ways 9 GB can be provided:

- It can be provided by two machines since at least two machines must be used, each with
more than 4.5 GB RAM. This can be satisfied by mSmall, which has 8 GB of RAM, or more
costly by mBig and mXXL. The cost of this configuration will be

 Cost[{{mSmall,2}}]
 10

- Using one machine more reduces the requirement for each machine to 3 GB RAM, and this
can be satisfied most cost effectively by the mXS machine having 4 GB of RAM. However,
the constraint (10) requires that the total RAM in the deployment must be 9 GB/λ = 9 GB/0.7
= 12.85 GB. Consequently, three machines of 4 GB is excluded because then a too high ratio
of memory would be used. The cheapest combination for satisfying this requirement
would then be to use three mSmall machines, but then it is obviously cheaper to use only
two mSmall machines.

- Given the issue that this application defines one and only one application component type,
it is not possible to provide different combinations of machines. For instance using two
mXS machines and one mSmall machine will provide 2 * 4 GB + 8 GB = 16 GB, which is
sufficient. Alternatively, one could provide one mSmall, one mXS, and one mXXS machine,
and provide 8 GB + 4 GB + 1 GB = 13 GB. These combinations will cost

 Cost[{{mXS,2},{mSmall,1}}]

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 109

 11

 Cost[{{mXXS,1},{mXS,1},{mSmall,1}}]
 9

As can be seen from the above considerations, it would be beneficial to allow inhomogeneous
machines for the current price model, but to allow such combinations, different application
component types must be defined. These should have different requirements for memory, and
there should be a constraint saying that the sum of instances over all types should be larger or
equal to the minimum two. However, this would also make the problem much harder to solve (and
the solver needs more than 100 iterations even for this simple toy example).

Example 4: Simulation: Time to completion

Problem description
In order to generate a training set for machine learning algorithms predicting traffic, it may be
necessary to run data farming experiments fed by the data where different scenarios are
simulated for a diverse set of parameters. Data farming experiments are typically conducted by
an orchestrator that keeps track of which parameter tuples that have been simulated, and makes
sure to start new simulations on a pool of worker machines as soon as one worker finishes a
simulation job. This is also known as high throughput computing. The orchestrator first decides
on various parameter sets to simulate, implicitly defining the number of simulations to run.
Furthermore, these simulations should all complete within a certain time limit, deadline. The
utility of the data farming experiment can simplistically be formulated as

Complete all simulation experiments by the deadline at minimal cost.

Statistical completion time model
It is in general hard to predict how long a simulation run will take because it can depend on the
given simulation parameters, and how these affect the data processing, and the data being
processed. The simulation run time is therefore a random variable. Furthermore, if the workers
are running on shared resources, like an organisation’s works stations managed by HTCondor or
in the Cloud, other activities on the shared hardware will also affect the execution time.
Consequently, one cannot predict the duration of a simulation run, but one may measure it and
use the statistical model to estimate the probable experiment end time based on the amount of
resources available.
The empirical cumulative density function (CDF) is defined by the measurements. It has a
quantile, q1-θ, which is a time such that the probability of exceeding this simulation time is given
as θ for a parameter θ ∈ [0, 1]. Let S(k) be the number of simulations remaining at time k when one

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 110

simulation terminates. If there are W worker cores, then one may assume that the simulations
will be equally distributed on the worker cores, and that each worker core has S(k) / W simulations
to do before the experiment finishes. At probability 1 - α these simulations will take a time
S(k)/W q1-θ<=TRemaining=TDeadline - TNow

Where the upper bound is given by the necessity to complete all simulations by the deadline. Only
the number of worker cores, W, can be changed by Melodic in order to make the deadline, and
thus this is the only variable of the problem.
The design parameter θ is a balance between the necessity to finish by the deadline and the cost
one is willing to take to make the deadline. Setting θ low means that it is very unlikely that the
deadline will not be met, but more worker cores will be necessary. The default is a compromise
saying that the deadline may not be met in 5% of the simulation experiments.

 Options[Upperware]={θ->0.05};

The initial estimates for the quantile can either be obtained from historical data, or one has to
wait a certain number of simulations before starting to optimise according to the constraint (11).

Cost utility
The cost utility is similar to the cost bound utility defined for the secure documents use case
above, at the exception that it will use the number of cores as criterion. Hence, the minimal price
is given by the machine type that has the least cost per core.

 MinCost[Sim, TheNodeCandidates_List?VectorQ]:= (MinCost[Sim, TheNodeCandidates]=Min[
Map[(#[Price]/#[Cores])&,TheNodeCandidates]]);

For a given deployment, the number of cores must be calculated and the average cost per core of
the proposed deployment compared with the minimal cost per core in the available set of node
candidates.

 Utility[Sim, NewDeployment_List]/;(VectorQ[NewDeployment,
MatchQ[#,{_,_Integer?Positive}]&]) := With[
 { NoCores = Total[Map[(#[[1]][Cores])&, NewDeployment]] },
 MinCost[Sim, NodeCandidates] / (Cost[NewDeployment] / NoCores)
];

The problem with this approach is that the most core efficient machine will be selected. Always!
This means that a machine that has many cores can have a lower price per core than another
machine with less cores, although it may be globally cheaper to use many machines with few

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 111

cores. A very simple and direct cost function is therefore be a better alternative.

 Utility[Sim, NewDeployment_List] /;(VectorQ[NewDeployment,
MatchQ[#,{_,_Integer?Positive}]&]) := 1/Cost[NewDeployment];

Optimisation
There must be an automatic constraint to ensure that the number of cores per instance is less or
equal to the maximum number of cores of any of the node candidates.

 MaxCores[Sim, TheNodeCandidates_List?VectorQ]:=
(MaxCores[Sim, TheNodeCandidates]=
Max[Map[(#[Cores])&, TheNodeCandidates]]);

Since there is only one application component type and therefore all instances will be deployed
in the same node candidate type and the requirements is the minimum number of cores a node
candidate must have. It will select the cheapest node candidate that supports the
 Utility[Sim, NumberOfCores_Integer?Positive,
Cardinality_Integer?Positive] := Block[{},
 SetRequirement[Cores, SimWorker, NumberOfCores];
 Utility[Sim, {{ SelectCheapest[SelectNodeCandidates[SimWorker, NodeCandidates]],
Cardinality }}]
];

The execution context changes whenever a simulation run terminates as this will lead to an
updated number of simulations remaining, and a new quantile value, both at a reduced time to
the deadline. Based on this, the lower bound on the total cores available can be computed from
the constraint (11).
 Upperware[Sim, SimulationTimes_List,
RemainingSimulations_Integer?NonNegative, RemainingTime_Integer, OptionsPattern[]] /;
VectorQ[SimulationTimes, NumericQ] := With[
 { LowCores = RemainingSimulations * Quantile[EmpiricalDistribution[SimulationTimes], 1-
OptionValue[θ]] / RemainingTime,
 UpperCores = MaxCores[Sim, NodeCandidates] },
 NMaximize[{Utility[Sim, NumberOfCores, Cardinality],
 LowCores <=(NumberOfCores * Cardinality) && 1<=NumberOfCores && NumberOfCores <=
UpperCores && 1 <= Cardinality && Cardinality<=Ceiling[LowCores] }, {NumberOfCores,
Cardinality}∈Integers, MaxIterations->1000,Method->"SimulatedAnnealing"]
];

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 112

Example
A model for the number of cores on the node candidates must be defined in order to solve the
optimisation problem. A very simple model is adopted where the number of cores broadly
depends on the amount of memory each node candidate has.

 MapThread[(#1[Cores]^=#2)&, {NodeCandidates, {1,2,4,8,12}}];

In addition, there must be a model for the simulation run times. There is no reason to believe that
the simulations are dependent. In reality, the parameter sets will be more or less linked, which is
an argument for a common expected run time, but the factors affecting the variation is clearly
independent of the simulation parameters, and if this is the main cause of the various simulation
times. It is therefore reasonable to assume that the execution times will be Poisson distributed
around the mean execution time, assumed to be 3 minutes or 180 seconds. 300 samples are drawn
for the example.

 SimExecutionTime = RandomVariate[PoissonDistribution[180], 300];

The quantile can be directly computed
 q95=Quantile[PoissonDistribution[180], 0.95]
 202

If there are 200 simulations to go, it amounts to quite some seconds.

 200*q95
 40400

Assuming that the results should be available in one hour, the number of cores needed can be
computed

 200*q95/3600 //N
 11.2222

The configuration can then be computed with the upperware for this application

 Upperware[Sim, SimExecutionTime, 200, 3600]
 {0.1,{NumberOfCores->12,Cardinality->1}}

This confirms the calculation done by hand with respect to the total number of cores. It may be

http://www.melodic.cloud/

Editor(s):
Sébastien Kicin

Deliverable reference:
6.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 113

surprising to see that only the largest machine is chosen. Looking at the cost efficiency of the
node candidate cores:

 Map[N[#[Price]/#[Cores]]&, NodeCandidates]
 {1.,1.5,1.25,0.75,0.833333}

Thus there is not a big difference in the cost of cores. However, 12 cores can either be provided by
one of the mXXL machines, or two mBig machines, 6 of the mXS machines, and 12 of the mXXS
machines, with the respective cost of the configurations

 Cost[{{mXXL,1}}]
 10

 Cost[{{mBig,2}}]//N
 12.

 Cost[{{mXS,6}}]//N
 18.

 Cost[{{mXXS,12}}]//N
 12.

Consider then that the problem is the same, but we need the results after 15 minutes. In this case
the number of cores needed would be

 200*q95/(15*60) //N
 44.8889

 Upperware[Sim, SimExecutionTime, 200, 15*60]
 {0.0277778,{NumberOfCores->8,Cardinality->6}}

Again, the various alternatives can be investigated by hand. Providing 45 cores will require 4
mXXL machines, 6 mBig, 12 mSmall, 23 mXS, and 45 mXXS. The respective costs of these
configurations are
 MapThread[Cost[{{#1,#2}}]&,{NodeCandidates,{45, 23, 12, 6, 4}}]
 {45,69,60,36,40}

Showing that the configuration with 6 mBig machines will be the less costly way to provide this
number of cores.

http://www.melodic.cloud/

