

www.melodic.cloud

laIle

 Title:

Integration release and initial test
environment

Abstract

A reliable multi-cloud project should provide to the customer a
high-quality platform that allows to run data-intensive applications
in a geographically distributed infrastructure; it should ensure the
security and privacy of data, enable transparent deployment of
applications on the multi-cloud infrastructure and minimise the
risk of failure in a live environment. These very requirements are
met within the Melodic project.
The Melodic platform will enable data-intensive applications to run
within defined security, cost, and performance boundaries
seamlessly on geographically distributed and federated cloud
infrastructures. Melodic will thereby realise the potential of
heterogeneous cloud environments for big data and data-intensive
applications by transparently taking advantage of distinct
characteristics of available private and public clouds, dynamically
optimise resource utilisation, consider data locality, conform to the
user’s privacy needs and service requirements, and counter vendor
lock-in. This document presents the two integration releases of
Melodic (release 1.0 and release 1.5) and defines the corresponding
testing components including the testing environments.

Multi-cloud Execution-ware

for Large-scale Optimized

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016
30 November 2019

www.melodic.cloud

Deliverable reference:

5.07

Date:

31 May 2018

Responsible partner:

7bulls

Editor(s):

Edyta Bańkowska

Author(s)

Edyta Bańkowska

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:
http://www.melodic.cloud/deliverables/
D5.07 Integration release and initial test
environment.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2018)3343964 - 25/06/2018

http://www.melodic.cloud/
http://www.melodic.cloud
http://www.melodic.cloud/deliverables/D5.07%20Integration%20release%20and%20initial%20test%20environment.pdf
http://www.melodic.cloud/deliverables/D5.07%20Integration%20release%20and%20initial%20test%20environment.pdf
http://www.melodic.cloud/deliverables/D5.07%20Integration%20release%20and%20initial%20test%20environment.pdf

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 2

Document
Period Covered M6-18

Deliverable No. D5.07

Deliverable Title Integration release and initial test environment

Editor(s) Edyta Bańkowska

Author(s) Edyta Bańkowska

Reviewer(s) Kyriakos Kritikos, Feroz Zahid, Tomasz Przeździęk

Work Package No. 5

Work Package Title Integration and security

Lead Beneficiary 7bulls

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 56

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 3

Table of Contents

1 Introduction .. 5

1.1 Integration releases.. 5

1.2 Structure of the document .. 6

2 Components – The Melodic Architecture ..7

2.1 Software Components ... 8

3 Testing environments ... 9

3.1 Environment at Ulm .. 9

3.2 Environment in 7bulls... 10

3.3 Environment in Simula .. 10

4 The Melodic platform installation guide ... 11

4.1 Requirements for Melodic's machine .. 11

4.2 Installation steps .. 12

4.3 Useful aliases ... 15

5 Testing Guide ... 16

5.1 How to execute Test Cases with attached CAMEL Models ...16

5.2 How to execute Test Cases with attached CP Models ...18

6 Test Cases .. 18

6.1 Executed Test Cases ...19

6.2 All Test Cases created during Release 1.0 and 1.5 .. 23

7 Bugs ... 25

7.1 Reported bugs ... 25

8 Summary .. 28

9 References .. 29

Appendix A - Test Cases Release 1.0 and Release 1.5 ... 30

A.1 Release 1.0 ... 30

A.2 Release 1.5 ... 43

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 4

Index of Tables
Table 1: Main components used in the Melodic project, with particular relevance for testing 8

Table 2: Specification of the Ulm environment .. 10

Table 3: Specification of the 7bulls environment .. 10

Table 4: Specification of the Simula environment ... 11

Table 5: requirements for Melodic's machine .. 11

Table 6: open port numbers required by Melodic .. 12

Table 7: List of all executed Test Cases for the first release ...19

Table 8: List of all executed Test Cases for the Release 1.5 ... 21

Table 9: Categories of test cases in first release and release 1.5 .. 23

Table 10: Reported bugs during release 1.0 ... 25

Table 11: Reported bugs during release 1.5 .. 27

Index of Figures
Figure 1: Overview of the Melodic architecture .. 7

Figure 2: Overview of the Upperware Components .. 8

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 5

1 Introduction

This document presents information about the two integration releases of the Melodic project,
initial testing environments, processes of testing, reported bugs and created test cases. This work
has been done during the first sixteen months of the project and briefly shows the steps of the
test process of the project. It covers release 1.0 delivered as planned at the end of the first year of
the project and release 1.5 delivered at the end of the sixteenth month of the project.

The test cases include initial deployment testing, global reconfiguration and local
reconfiguration testing, metric management testing, and reasoning related testing. Apart from
functional requirements, also non-functional testing requirements are covered in order to verify
the proper implementation of the non-functional features of the Melodic system. The non-
functional testing test cases include testing of fault handling, performance testing, security
testing, and other non-functional testing.

The document starts with an overview of the Melodic software components. Next, the
configurations of the environments are described, followed by an installation guide, a testing
guide and a description of executed Test Cases. The last main chapter relates to the reported
bugs.

1.1 Integration releases

For the Melodic project, as presented in Description of Action, three releases was planned:
 Release 1 – planned for 30 November 2017
 Release 2 – planned for 30 November 2018
 Release 3 – planned for 30 November 2019

Based on a requirement review and scope planning during the Melodic Plenary Meetings in Oslo
07.06.2017 and in Warsaw 18.09.2017, it was decided to add a supplementary integration release,
called release 1.5. The first integration release, as presented in the Description of Action should
only integrate underlying frameworks without changing their features. To make it possible to
fully evaluate use case applications after the first release, the additional release 1.5 was
introduced with a set of new features and improvements.

The scope of release 1.0 is as follows:

 Integration of the selected components from the underlying frameworks
 New integration layer using Enterprise Service Bus (ESB) and Business Process

Management (BPM) orchestration
 Docker containers introduction and microservice architecture for Melodic
 Rewriting the Adapter component and improving the CP Generator component

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 6

The scope of release 1.5 is as follows:

 Introduction of a new approach to optimization of the cloud deployment, limiting the
possible solution space to speed up solution finding

 A new, more flexible and advanced monitoring and reporting solution based on Esper
(instead of the Metric Collector from the PaaSage1 framework).

 All components of the Melodic platform implemented in Docker images and run within
Docker Swarm to allow for very easy and flexible deployment of the platform itself

 Advanced utility functions for use case applications designed and implemented

To achieve high quality of the software products, ensure security and privacy, enable transparent
deployment of software and minimise the risk of failure in the real world, appropriate software
testing tools and techniques will be used for both releases.

1.2 Structure of the document

This deliverable describes the two integration releases and their initial test environments, and
contains the following information which, structured in the subsequent chapters:

 Chapter 2, ‘Components – The Melodic Architecture’: A brief summary of the Melodic
architecture along with the release 1.0 and 1.5 components

 Chapter 3, ‘Testing environments’: Information about the environments currently used in
the project

 Chapter 4, ‘The Melodic platform installation guide’: Requirements and steps on how to
install the Melodic platform

 Chapter 5, ‘Testing Guide’: Detailed instructions on how to execute Test Cases;
 Chapter 6, ‘Test Cases’: A comparison of all executed Test Cases during release 1.0 and 1.5,

as further detailed in Appendix A, ‘Test Cases Release 1.0 and Release 1.5’
 Chapter 7, ‘Reported bugs’: Information about all bugs which have been detected during the

testing of release 1.0 and release 1.5

The deliverable ends with a short summary (Chapter 8).

1 https://www.paasage.eu/

http://www.melodic.cloud/
https://www.paasage.eu/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 7

2 Components – The Melodic Architecture

Figure 1 presents an overview of the Melodic architecture. The figure also covers the high-level
interaction between the Melodic components, while a detailed architecture is presented in
“D2.2 Architecture and initial feature definitions” [1]. The main Melodic sub-systems are:

● Upperware: Applications and data models created through the modelling interfaces, in the
form of CAMEL, are given as input to the Melodic Upperware. The job of the Upperware is
to calculate optimal data placements and application deployments on dynamically
acquired Cross-Cloud resources in accordance with the specified application and data
models in CAMEL, as well as in consideration of the current Cloud performance, workload
situation, and costs. An overview of the Upperware Components is shown in Figure 2,
further detailed in [1].

● Executionware: The Executionware is responsible for the actual deployment of the Cloud
application and its monitoring infrastructure, as well as the corresponding publishing of
measurement information to the Upperware.

● Integration layer: The components in the Melodic platform are integrated through two
separate integration layers, the Control Plane and the Monitoring Plane (blue boxes in
Figure 1), each bringing its own set of unique requirements.

Figure 1: Overview of the Melodic architecture

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 8

Figure 2: Overview of the Upperware Components

2.1 Software Components

Table 1 lists central components in Melodic for release 1.0 and 1.5, including their key features
and the sub-systems they belong to. D2.2 provides further details [1].

Table 1: Main components used in the Melodic project, with particular relevance for testing
Component Description, key feature Sub-system Framework

CP Generator Profiling of the application and preparation of the
constraint programming (CP) model

Upperware PaaSage

CP Solver Solving all types of problems encoded in the CP
model using gradient descent approach.

Upperware PaaSage

Solver-To-
Deployment

Transforming CP models encompassing the
solution produced by solvers to a provider-specific
deployment model.

Upperware PaaSage

Adapter Deployment control and adaptation of multi-cloud
applications

Upperware PaaSage

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 9

Cloudiator2 Cloudiator
(server part)

Deploying an application and
infrastructure to the Cloud
Providers.

Executionware Cloudiator is
the result of
the PaaSage
project and
was extended
in the Cactos
project.

Cloudiator
(VM part)

Components deployed on the
created Virtual Machines (VMs)

Camunda3 with
status/event
service

Camunda is an open-source workflow engine
written in Java that can execute business
processes

Integration
layer

Melodic

ESB Ensure communication between all components
(The exception is CDO [1])

Integration
layer

Melodic

ESPER Gathering metrics Upperware Melodic

3 Testing environments

A testing environment is a setup of software and hardware for the testing teams to execute test
cases. In other words, the environment supports test execution with hardware, software and
network configured. Such environments may vary significantly in size: the development
environment is typically an individual developer's workstation, while the production
environment may be a network of many geographically distributed machines in data centres, or
virtual machines in cloud computing. The code, data, and configuration may be deployed in
parallel, and need not be connected to the corresponding tier; For example, pre-production code
may connect to a production database.

We used two different testing environments for release 1.0 at 7bulls and Ulm, respectively. In
addition, for release 1.5 we used an environment at Simula. The corresponding parameters of the
testing environments are provided in Section 3.1 to Section 3.3. Non-functional and functional
testing were executed on the same, common set of environments at 7bulls, Ulm or Simula.

3.1 Environment at Ulm

For Melodic release 1.0, we used two virtual machines (VMs) for testing on which we installed the
Melodic platform, using the OpenStack-based Ulm datacentre "Omistack". The specification for
the Ulm environment is provided in Table 2.

2 http://cloudiator.org/

3 https://camunda.com/

http://www.melodic.cloud/
https://en.wikipedia.org/wiki/Workflow_engine
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Business_process
https://en.wikipedia.org/wiki/Business_process
http://cloudiator.org/
https://camunda.com/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 10

Table 2: Specification of the Ulm environment

Resource Details

CPU 16 cores

RAM 128 GB

Storage 200 GB SSD, 400 GB HDD

OpenStack version Ocata

Virtualization KVM (Xen and Docker hosts are planned)

Host OS CentOS 7

Network interfaces 10GbE

3.2 Environment in 7bulls

Similarly as for the Ulm environment, two VMs were created on Aruba at 7bulls for release 1.0
testing. The specification of the 7bulls environment is provided in

Table 3.

Table 3: Specification of the 7bulls environment

Resource Details

CPU X86_64/20 cores

RAM 40 GB

Storage 800 GB HDD

Virtualization VMware

Host OS Linux 14.10 for chef/16.04 for Docker

Network interfaces 1 GB/s

3.3 Environment in Simula

During release 1.5, all tests were executed on the Simula environment. For the Simula
environment, four VMs were created, as further detailed in Table 4.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 11

Table 4: Specification of the Simula environment

Resource Details

CPU Intel E5-2630 v4 @ 2.20GHz / 2 / 20, 40
threads in total

RAM 128 GB

Storage 186.3 GB SSD, 1.8 TB HDD

Virtualization KVM / Linux kernel v4.10

Host OS Ubuntu Linux 16.04 LTS (amd64)

Network interfaces 2 GB/s

4 The Melodic platform installation guide

Melodic, by improving performance, security, and scalability of Cloud applications, and in
particular the data-intensive ones, will be directly beneficial to the Cloud application users.
Melodic’s multi- and Cross-Cloud application deployment features, will make it easier for the
application developers to develop Cloud applications that can be tailored to the Cloud application
user’s preferences, be privacy-aware, and offer predictive services under a dynamically changing
context and user load. In addition, as Melodic promises to improve cost-effectiveness of the
Cloud applications by leveraging the economically best available Cloud offers from a variety of
Cloud providers, low-cost Cloud services will in turn be offered to the end users due to open
competition. Finally, Melodic will also foster innovation among Cloud providers and application
developers, as once the vendor lock-in is overcome, the competitive advantages of the big
providers should diminish. In this way, only the most competitive services in the market will
prevail, which will be most beneficial to the Cloud users. This section describes how to install the
Melodic platform from scratch.

4.1 Requirements for Melodic's machine

Table 5 details the hardware and operating system requirements for the current Melodic
software, while Table 6 specifies the port numbers being used by Melodic.

Table 5: requirements for Melodic's machine

OS Memory Storage

Ubuntu 16.04 RAM: 16GB+ 20GB+

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 12

Table 6: open port numbers required by Melodic

Port Number Protocol Component Purpose

22 TCP SSH Console

8080-8099 TCP Components REST endpoints of
Melodic components
(CP Generator, CP
Solver, Solver-to-
Deployment, Adapter,
ESB)

9001-10000 TCP

2036, 3306 TCP CDO MySQL database

80 TCP UI Cloudiator's web
interface

4001 TCP Lance ETCD registry

9000 TCP Colosseum Cloudiator’s REST API

8080 TCP Axe Time-series database

33034 TCP Lance RMI registry

4.2 Installation steps

- Login to the created virtual machine, for example using: ssh username @<VM's IP >

- Run the following command to download Melodic from the git repository (installation files):

git clone https://bitbucket.7bulls.eu/scm/mel/utils.git

- Edit Melodic installation script by using a text editor like vi:

vi ~/utils/melodic_installation/installMelodic.sh

- Configure the NODEGROUP value, for example using your own login:

NODEGROUP=jdoe

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/scm/mel/utils.git

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 13

- Run the Melodic installation script (this installs Melodic and Cloudiator on the same VM):

~/utils/melodic_installation/installMelodic.sh install

- After installation, a new ".profile" is created in the home directory of the user. Load it by
executing the following commands:

cd ~/

. .profile

- Verify that the Melodic configuration files contain the proper IP addresses (check files under
~/conf). In particular, if you are running Cloudiator on a different host you need to update
Cloudiator's IP address in the eu.melodic.integration.mule.properties file. Make sure that the
Cloudiator IP address is also correctly changed in the following files:

eu.melodic.integration.bpm.properties

eu.melodic.integration.mule.properties

eu.melodic.upperware.adapter.properties

eu.melodic.upperware.cpSolver.properties

eu.melodic.upperware.generator.properties

eu.melodic.upperware.solverToDeployment.properties

 Example:

Updating Cloudiator IP (example: eu.melodic.integration.mule.properties file):

adapter.http.host=5.249.145.169

adapter.http.port=8097

#we change Cloudiator IP in this section

cloudiator.http.host=5.249.145.169

cloudiator.http.port=9000

cloudiator_proxy.http.host=0.0.0.0

cloudiator_proxy.http.port=8089

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 14

- Add Cloud Provider credentials to allow Melodic to download Provider Offers in the adapter
configuration file. For instance, if you want Melodic to manage amazon machines, you need to
edit file:

~/conf/eu.melodic.upperware.adapter.properties

 Provide values to the following attributes:

clouds.endpoints.ec2=

clouds.logins.ec2=

clouds.passwords.ec2=

- Add API key to the generator configuration file (an API key allows access to Cloudiator's API). It
can be received from the Cloudiator installation.

For example: cloudiatorV2.apiKey=abcdefghijk12345687

Now the machine is ready to download and run the latest Docker images from the Melodic
artefact repository. To download and start the components, simply use the following command:

ddeploy

Running this for the first time can take some time as Docker Swarm is being initialised. After the
above command, components should be started. You can check the status by running the
following two commands:

dps

mping

The screenshot below shows a part of the output after executing the dps and mping commands:

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 15

The process GUI should now be available at:

http://{PUBLIC_MELODIC_IP}:8095 (admin:admin)

The status of the Colosseum (Cloudiator) service can be checked with:

sudo service colosseum status

The log of Cloudiator can be found at:

/var/log/colosseum.log

The Cloudiator GUI should be available at:

http://{PUBLIC_CLOUDIATOR_IP}/ui (john.doe@example.com : admin:admin)

The script to restart Coudiator with full wipe out of Colosseum data is available under:

~/cloudiator_reset.sh

4.3 Useful aliases

Below you find some useful commands to manage Melodic components.

 Commands:

dps – displays running Docker containers (alias for sudo Docker images)

mping – tests connection to each of the components

drestart – stops and then starts all of the Melodic's components

dundeploy – stops all components

ddeploy – starts all components

~/logs$ tail -300f <component_name>.log – displays the log of the selected component

sudo docker stop <component_ID> – stops selected component

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 16

5 Testing Guide

This section refers to the procedures, and in particular provides a manual, for performing all
activities within the testing processes. Each Test Case has attached CAMEL or CP models. Every
created and included model specifies either the testing application, including requirements,
topology, metrics and credentials in case of CAMEL models, or the constraint optimisation
problem to be solved during deployment reasoning in case of CP models.

5.1 How to execute Test Cases with attached CAMEL Models

This section presents the Quality Assurance guide of testing Test Cases with attached CAMEL
models.

1. Login to the machine with the Melodic platform installed
2. Download the jar file from:

https://s3.console.aws.amazon.com/s3/object/melodic.testing.data/cdo-uploader-
1.0.1SNAPSHOT-jar-with-dependencies.jar

Download cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar

a. In "/home/user/", create the hidden directory ".paasage" and put into this directory
the configuration file for CDO named eu.paasage.mddb.cdo.client.properties which
can be downloaded from:
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/?region=us-east-

1&tab=overview
b. In the eu.paasage.mddb.cdo.client.properties configuration file, change the IP

address with the one of your virtual machine for the "host" property
c. In the terminal use the command:

 java -jar cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar
3. Create the directory "models" in "/home/user/"
4. From https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/ download the

CAMEL provider model files AmazonEC2.xmi and OpenStackUlm.xmi
5. Navigate to the "/home/user/models" directory and create the following sub-directory

structure: "upperware-models/fms"
6. Move the downloaded CAMEL providers models AmazonEC2.xmi and OpenStackUlm.xmi

to the "/home/user/models/upperware-models/fms" directory
7. Download the respective CAMEL model needed for the test case from:

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data in Melodic's JIRA
(required CAMEL Model is always attached in Test Case)

8. Move the downloaded CAMEL model (having a .xmi postfix) into the "/home/user/models"
directory

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/object/melodic.testing.data/cdo-uploader-1.0.1SNAPSHOT-jar-with-dependencies.jar
https://s3.console.aws.amazon.com/s3/object/melodic.testing.data/cdo-uploader-1.0.1SNAPSHOT-jar-with-dependencies.jar
http://cdo-uploader-1.0.0-snapshot-jar-with-dependencies.jar/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/?region=us-east-1&tab=overview
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/?region=us-east-1&tab=overview
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 17

9. By using the tools SoapUI or Postman execute the following steps:
a. Create new REST project with URL

 http://<VM's IP>:8088/api/frontend/deploymentProcess and body:

Sample body

In "CamelModelName" user can use: "OneComponentApp" or "TwoComponentApp"

Rest of the body doesn't need to be changed

{ "applicationId": "CamelModelName", "watermark": {

 "user": "User-Test",

 "system": "UI",

 "date": "2016-02-28T16:41:41+0000",

 "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002671"

 }

}

b. Using the POST method, start the process of deploying an application using the

selected provider. For example, if we use the website:
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-
1#Instances:sort=launchTime we can check the created instances.

c. For OneComponentApp, we copy the public URL of the created virtual machine and
copy it to a new window in our browser. Then the AWS web page should be
displayed. The AWS installation is included in the AmazonEC2.xmi Provider Model.
We do not have to install it manually.

d. Check that TwoComponentApp is created and installed on one provider (i.e. AWS).
One virtual machine is created for the database and a second virtual machine is
created for an application. We can open the AWS web page (as before), copy the IP
of the application VM, and enhance it as follows:
http://Virtual_machine_IP:9999/demo/all. If we open this URL on another web
browser tab, the application website should be displayed.

e. For the Test Cases where the user selects two different providers, one virtual
machine is created on one provider and a second virtual machine on another
provider. We can use as a first provider for example AWS, and as a second provider
Omistack: https://omistack.e-technik.uni-ulm.de/dashboard/auth/login/). Then we
can use the link: http://Virtual_machine_IP:9999/demo/all (as before) to deploy.

http://www.melodic.cloud/
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#Instances:sort=launchTime
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#Instances:sort=launchTime
http://virtual_machine_url:9999/demo/all
http://virtual_machine_url:9999/demo/all

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 18

5.2 How to execute Test Cases with attached CP Models

This section presents the Quality Assurance set of steps to be followed when executing Test
Cases with attached CP models.

1. Upload the CP model’s .xmi file to the machine's file system where the CP Generator
resides (for example: melodic@<VM's IP>/logs/UserTest_temp)

2. Execute the procedure by sending POST message to the CP Generator to the
constraintProblemSolutionFromFile URL.

a. By using the tools SoapUI or Postman execute the following step:
o Create the REST project with URL

 http://<VM's IP>:8093/constraintProblemSolutionFromFile and body:

Sample body

{ "applicationId": "Test",

"fileModelsPath": "/logs/UserTest_temp/CpModelName.xmi",

 "watermark": {

 "user": "ebankowska",

 "system": "test",

 "date": "2017-09-28T16:41:41+0000",

 "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002671"

 }

}

b. Proceed to melodic@<VM's IP>/logs and display the log by using for example vi,
i.e., vi cpsolver.log.

6 Test Cases

The test process starts at the very beginning of a project life cycle. During the Analysis and
Design phase, the test team starts producing a Test Plan, as this should be prepared as early as
possible. A Test Plan contains test cases, which are described in detail in the “D5.10 Quality
Assurance Guide” deliverable [3]. The Test Plan should also explicate the dependencies between
the Test Cases (if needed), by clarifying which Test Cases should be executed before others. This
whole exercise has three main benefits:

● It allows the test team to understand the system to be developed
● It serves as a review of the system specifications and requirements

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 19

● It eases solving issues, as all parties (the test team and the development teams) have the
same base data (the test data; input parameters for test cases, necessary to execute test
cases and to reproduce bugs, if occurring during test case execution).

A test case describes how to perform a specific test. The test case includes a set of test data, pre-
conditions, expected results and post-conditions targeting a certain implementation, developed
for a specific purpose or for the condition mapping to the test such as the execution of a program
path, or to verify compliance with a specific requirement. Test cases are created by the test team,
either its members or the test leader.

6.1 Executed Test Cases

This section presents two lists of executed Test Cases for the Melodic releases 1.0 and 1.5,
correspondingly. In particular, Table 7 shows the identifier of the executed test cases for release
1.0, including a summary of each test case (where ‘T’ equals True/A Positive Test Case, and ‘F’
equals False/A Negative Test Case) in terms of its task corresponding identifier and name4, as
well as its execution status. The content of the group column is explained in Section 6.2.
Similarly, Table 8 shows the executed test cases for release 1.5. For the first release, 20 Test Cases
were executed with status “passed” and 1 with status “failed” (due to an old version of Cloudiator).
For release 1.5, 21 Test Cases were executed with status “passed” and one with status “failed”.

Table 7: List of all executed Test Cases for the first release

KEY Summary Type Group Status

MT-4 T1.1[T] Installation and
deployment of a simple
application on one Cloud
Provider

Functional Initial deployment Passed

MT-8 T1.1[F] Installation and
deployment of a simple
application on one Cloud
Provider

Functional Initial deployment Passed

MT-5 T1.2[T] Installation and
deployment of a two-component
application on two different
cloud providers

Functional Initial deployment Passed

4 The ‘Key’ and ‘Summary’ fields correspond to the internal identification and naming used in the Melodic team’s JIRA.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 20

MT-9 T1.2[F] Installation and
deployment of a two-component
application on two different
cloud providers

Functional Initial deployment Passed

MT-6 T1.3[T] Installation and
deployment of a two-component
application on two different
Cloud Providers

Functional Initial deployment Passed

MT-51 T5.1[T] Linear constraints and
optimization solving – CP Solver

Functional Reasoning related Passed

MT-54 T5.4[T] Non-linear constraints
and optimization solving – CP
Solver

Functional Reasoning related Passed

MT-31 T6.1[T] Temporary unavailability
of particular components

Functional Reasoning related Passed

MT-42 T6.1[F] Temporary unavailability
of particular components

Functional Reasoning related Passed

MT-44 T6.3[F] Temporary unavailability
of Cloud Provider

Functional Reasoning related Passed

MT-34 T6.4[T] High Availability
Component configuration

Functional Reasoning related Passed

MT-41 T6.4[F] High Availability
Component configuration

Functional Reasoning related Passed

MT-45 T6.5[T] Response time while
solving allocation problems

Non-
functional

Performance Passed

MT-60 T7.5[T] User authentication Other non-
functional

Logging Passed

MT-66 T7.6[T] Logging within MELODIC
platform

Other non-
functional

Unified
administration
procedures

Passed

MT-57 T8.2[T] Removing user Other non-
functional

User
management

Passed

MT-58 T8.3[T] Updating user password Other non-
functional

User
management

Passed

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 21

MT-59 T8.4[T] Updating user profile Other non-
functional

User
management

Passed

MT-61 T8.5[T] Unified starting, stopping
and restarting of MELODIC
platform

Other non-
functional

Unified
administration
procedures

Passed

MT-63 T8.7[T] Executing backup Other non-
functional

Unified
administration
procedures

Passed

MT-56 T8.1[T] Adding user Other non-
functional

User
management

Failed

Table 8: List of all executed Test Cases for the Release 1.5

KEY Summary Type Group Status

MT-87 T2.3[T] Composite metric
detection (1st Level Event
Processing)

Functional Metric
management

Passed

MT-88 T2.3[F] Composite metric
detection (1st Level Event
Processing)

Functional Metric
management

Passed

MT-89 T2.5[T] Composite metric
detection (2nd Level Event
Processing)

Functional Metric
management

Passed

MT-90 T2.5[F] Composite metric
detection (2nd Level Event
Processing)

Functional Metric
management

Passed

MT-91 T2.6[T] Custom raw metrics
collection – FCR model

Functional Metric
management

Passed

MT-93 T4.3[T] Global reconfiguration
rules testing – FCR

Functional Global
reconfiguration

Passed

MT-73 T5.6[T] Utility function – FCR Functional Reasoning related Passed

MT-32 T6.2[T] Temporary unavailability
of BPM - verifying proper system
behaviour after BPM recovery

Non-
functional

Fault handling Passed

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 22

MT-43 T6.2[F] Temporary unavailability
of BPM

Non-
functional

Fault handling Passed

MT-48 T6.8[T] Counting Resource
Overhead of Melodic instance
introduced over its host

Non-
functional

Performance Failed

MT-76 T9.1[T] [Model Editor] Login Functional User Interface Passed

MT-77 T9.2[T] [Model Editor] Logout Functional User Interface Passed

MT-78 T9.3[T] [Model Editor] Schema
Management – Create Concept

Functional User Interface Passed

MT-79 T9.4[T] [Model Editor] Schema
Management – Create Property

Functional User Interface Passed

MT-80 T9.5[T] [Model Editor] Schema
Management – Delete Property

Functional User Interface Passed

MT-81 T9.6[T] [Model Editor] Schema
Management – Delete Concept

Functional User Interface Passed

MT-82 T9.7[T] [Model Editor] Schema
Management – Update Model
Repository

Functional User Interface Passed

MT-83 T9.8[T] [Model Editor] Schema
Management – Update Local
Repository

Functional User Interface Passed

MT-84 T9.9[T] [Model Editor] Schema
Management – Clear Local
Repository

Functional User Interface Passed

MT-85 T9.10[T] [Model Editor] Schema
Management – Import from XMI

Functional User Interface Passed

MT-86 T9.11[T] [Model Editor] Schema
Management – Export to XMI

Functional User Interface Passed

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 23

6.2 All Test Cases created during Release 1.0 and 1.5

In total, during release 1.0, 60 Test Cases were created, and during release 1.5 the number was 22.
Every Test Case was categorised into a particular group, as shown in Table 9. The groups are
further described below the table.

Table 9: Categories of test cases in first release and release 1.5

Functional Test Cases groups Test Cases created during

release 1.0 (summary)

Test Cases created during

release 1.5 (summary)

 Initial Deployment 17

 Global/Local Reconfiguration 6 1

 Metric Management 6 6

 Reasoning Related 5 4

 User Interface 11

Total 34 22

Non-functional Test Cases

groups

 Fault Handling 8

 Performance 3

 Security 4

 Other (logging, user

 management, unified

 administration procedures)

11

Total 26

● Initial Deployment – This group contains all scenarios related to the initial deployment of
an application in the Melodic platform.

● Local Reconfiguration – Local reconfiguration means that the reconfiguration of the
application or its parts occurs in a certain cloud, and is based on the scalability rules
defined in SRL in the CAMEL model of the application. For this type of test cases, the
selected modules of Upperware and Executionware are tested (the SRL adapter and
Cloudiator).

● Metric Management – Metric management means the collection, processing
(aggregation), storage and delivery of raw and composite metrics, as well as CAMEL
events based on these metrics. For this test cases group, the Executionware modules are
the mostly tested elements (e.g., the Metric Collector), but due to the installation of an

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 24

application – which has also a definition of corresponding metrics and events – the key
modules of the Upperware and Executionware are tested too.

● Reasoning Related – Reasoning maps to the capability to find an optimal deployment
solution for the application at hand based on the requirements that have been posed for it
in the application’s CAMEL model (requirement sub-model). The Test Cases are focused on
isolated tests over each particular solver. Mostly, the Upperware modules are tested here
(i.e., the CP Generator, the Meta Solver, the CP Solver, the MILP Solver, and the LA Solver).

● Fault Handling – This section presents scenarios related to the Fault Handling Test Case
group. Fault handling maps to the reliability of the system and the ability to properly
handle technical failures, crashes and external system inaccessibility. The group's test
scenarios present the most common situations and focus on the verification of the
(application) deployment process, the global and local reconfiguration, as well as the
deployment reasoning, thus involving and focusing on all components of the Melodic
system.

● Security Related – This section presents Test Cases related to testing the security in the
Melodic system and in its communication with external systems. Security, for the purpose
of these tests, means authentication as well as authorization of methods invocation
between components, especially methods exposed on ESB, and the usage of secure,
cryptographically protected communications protocols. The security scope, the security
mechanism requirements and design, as well as the security testing cases related to
advanced security scenarios, will be covered in more detail in the “D5.03 Security
requirements and design" deliverable [2].

● Performance – In general, performance testing of Cloud-applications is done similarly to
web applications. In performance testing of a web application, it is up to the tester to
decide the performance related parameters (mainly latency and throughput), based on
specific user provided requirements. However, it must be kept in mind that application
performance is dependent on the user’s perception (e.g., for a latency sensitive web-
application, a lower response time is desirable). As the types of such web applications are
different, the user requirements could also be differentiated.

● Global Reconfiguration – Global reconfiguration is the reconfiguration of the application
at a global scope, where a new solution is applied globally for the whole application and
not only on its specific parts (in contrast to local reconfiguration). Such a reconfiguration
is applied mainly by the Upperware module and especially the solvers in the presence of
one or more contextual changes (for example, new metric measurements, provider
offering modifications, etc.).

● Other non-functional testing related Test Cases – This group covers Test Cases related to
backup and recovery along with platform user addition/removal, monitoring, logging,
administration and maintenance tasks – aspects which are relevant to guarantee the
reliability and recoverability of the system as well as the overall administration. For the

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 25

releases 1.0 and 1.5, only the Cloudiator UI is available, so the testing of user management
in these releases are limited to the Cloudiator UI.

The whole content of the executed Test Cases during release 1.0 and 1.5 can be found Appendix A,
‘Test Cases Release 1.0 and Release 1.5’.

7 Bugs

During the development and testing of a system, bugs can be found. A bug is a defect in a
component or system that can cause that component or system not to perform its required
function. It constitutes a deviation of the component or system from its expected delivery,
service or result. Bugs are reported to support their correction, which can then enable the system
to subsequently work as planned and expected. Bugs are corrected by developers and checked by
testers.

7.1 Reported bugs

During release 1.0, 23 bugs were detected and reported, whereof most of them where immediately
corrected; No blocking issues (issues with the “highest” priority, which can block progress of
testing) were detected during the tests, while six important bugs with priority "high" have been
fixed and closed. Four unresolved errors with priority "high" were not immediately fixed due to
issues related to the CP generator and CDO configuration. These were all resolved for release 1.5.
During release 1.5, 28 bugs were reported, where of the most important bugs, with priority “high”
or “highest”, have been fixed. There are still four unresolved bugs from this release with “low” and
"medium" priority. All together, the quality of the Melodic platform implementation for release 1.0
and release 1.5 was evaluated positively. Table 10 and Table 11 list the reported bugs for release 1.0
and release 1.5, respectively.

Table 10: Reported bugs during release 1.0

Key Priority Summary Status

MEL-331 Medium Provided ports are not opened on cloud
provider's machines

Closed

MEL-328 Medium TwoComponentApp doesn't deploy using QA1
environment

Closed

MEL-323 Medium Problem with reconfiguration graph Closed

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 26

MEL-315 Medium No allowed boot sources for UULM Openstack Closed

MEL-294 Medium Log4j2 could not find a logging
implementation - Colosseum logs

Closed

MEL-293 Medium TwoComponentApp: creating 3 instances
instead of 2 (deploying process)

Closed

MEL-285 High Problem during creating application on AWS Closed

MEL-284 Medium Application Component Instance
ApacheAppInstance_1_0 does not seem to be
working

Closed

MEL-267 High CPSolver - OneComponentApp - Problem is
infeasible

Closed

MEL-252 Medium Issue with connecting provider requirement
with particular requirement set

Closed

MEL-248 Medium Generated CP model not visible in log files Closed

MEL-247 Medium Process blocks in random places Closed

MEL-246 Low Incorrectly displayed time in the CP
generator log

Closed

MEL-245 Low Incorrectly displayed time in the Mule log Closed

MEL-230 High Missing version in pom.xml for
io.github.cloudiator:common

Closed

MEL- 82 High Failed Meta-solver tests Closed

MEL-297 High UULM openstack instances running very
slow

Closed

MEL-295 Medium org.eclipse.emf.cdo.util.CommitException:
Rollback in HibernateStore:
org.hibernate.PropertyValueException

Closed

MEL-330 High CDO client error - "Not active:
PackageRegistry"

Closed. Fixed in release 1.5

MEL-329 High Improper working CDO Closed. Fixed in release 1.5

MEL-327 Low New User cannot be added to the Cloudiator
UI

To Do

MEL-249 Medium Not active BranchManager during generating
CpModel

Closed. Fixed in release 1.5

MEL-251 Medium NullPointer during generating log Closed. Fixed in release 1.5

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 27

Table 11: Reported bugs during release 1.5

Key Priority Summary Status

MEL-429 Low Problem with filtering nodeCandidates by
location name

To do

MEL-438 Medium Different type in swagger and in response from
findNodeCandidates

To do

MEL-437 Medium Deploying new machine with
'TwoComponentApp' or 'FCR' results in 'Error
during generating CpModel'

Closed

MEL-436 Medium Unable to create a VM with specified number of
disk storage

To do

MEL-404 Low CDO server oxygen build failes To do

MEL-407 High Adapter error during deploying CAMEL .xmi with
changed DB requirements

Closed

MEL-411 Medium The application doesn't run properly (Web page
doesn't display)

Closed

MEL-408 High Cloudiator doesn't delete VM template Closed

MEL-420 High Mule doesn't work Closed

MEL-403 High CP Generator: HttpServerErrorException: 500
Response code 400 mapped as failure

Closed

MEL-409 Low The application doesn't run properly (after
reconfiguration)

Closed

MEL-415 Medium CP Generator - Error during generating CP Model
for CAMEL Model without metric (e.g.
TwoComponentApp)

Closed

MEL-412 Highest Error saving CP solution Closed

MEL-345 Highest Problem with Colosseum-client Closed

MEL-414 Medium FCR CAMEL- Process restarts at the end of
deploying

Closed

MEL-416 Medium Problem with reconfiguration Closed

MEL-428 Medium Location eu-west-1c in cloud does not exist in
Colosseum

Closed

MEL-405 High Adapter is not up and running (Q1 Machine)
[Protocol version 19 does not match expected
version 34]

Closed

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 28

MEL-406 Medium Problems with QA1 machine Closed

MEL-434 Medium VMS server could not retrieve VM info from
Cloudiator

Closed

MEL-431 Medium Metric messages lost in translation Closed

MEL-432 Medium Metrics are not collected via Esper 1st level Closed

MEL-433 Medium Visor process terminates Closed

MEL-413 High Different type of machine than the chosen one Closed

MEL-402 Medium Application doesn't see function:
melosic.setSession

Closed

MEL-435 Medium Problem with storing data to cache under key Closed

MEL-439 Medium cpSolver is missing 'utilityGenerator.properties'
file

Closed

MEL-430 Medium Unable to fully deploy app on t2.micro machine
types

In progress

8 Summary

This deliverable presents the Melodic 1.0 and 1.5 integration releases and the corresponding test
environments. The following information has been described in the document:

1. An introduction to the integration relates
2. A high-level overview of the Melodic architecture
3. The testing environments for Melodic release 1.0 and 1.5
4. A Melodic platform installation guide
5. Testing guides on how to execute Test Cases with attached CAMEL Models and CP Models
6. Test Cases executed for Melodic release 1.0 and 1.5
7. An overview of bugs found during development and testing of Melodic release 1.0 and 1.5

Release 1.5 is an additional intermediate release aimed at reducing the span between the initial
integration release of Melodic (release 1.0) and the Melodic platform prototype (release 2.0) by
verifying the functionality of the system and the its components responsible for the correct
operation of the application and its functionality.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 29

9 References

[1] F. Zahid et al., "D2.2 Architecture and initial feature definitions", The Melodic H2020 Project
Deliverable D2.2, 2018.

[2] P. Skrzypek et al., "D5.03 Security requirements & design", The Melodic H2020 Project
Deliverable D5.03, 2018.

[3] M. Jakubczyk at al., "D5.10 Quality Assurance Guide", The Melodic H2020 Project Deliverable
 D5.10, 2017

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 30

Appendix A - Test Cases Release 1.0 and Release 1.5

A.1 Release 1.0

T1.1[T] Installation and deployment of a simple application on one Cloud Provider.

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. At least one cloud provider integrated with the MELODIC platform; the user credentials for this provider

should have also been supplied (included in CAMEL model- cloud credentials).
3. Meta solver configured to use CP Solver for that case.
4. Cloudiator properly connected to the given Cloud Provider.
5. Complete CAMEL model of simple application (which includes the definition of the application

components and their installation/maintenance scripts). Simple application – one component

application, installed as a unix process (no container), in one virtual machine (please, refer to the

attached .xmi file).
6. CAMEL model of given Cloud Provider prepared and registered in the MELODIC platform with at least

one virtual machine offer provided.
7. There should be a proper configuration of the virtual machine both in CAMEL Provider model and on the

Cloud Provider side. The configurations should be aligned.

Steps To Complete:

1. Login to the machine with installed MELODIC by using following steps:
 Use command: ssh melodic@<VM IP>

2. Download and run:
cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar

from:

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

3. Upload models:
 cpGenerator-functionTypes.xmi,
 cpGenerator-locations.xmi,
 cpGenerator-providerTypes.xmi,
 cpGenerator-operatingSystems.xmi

Into:

"/home/user/models" directory

4. Upload Provider AmazonEC2.xmi into "/home/models/upperware-models/fms" directory
5. Upload CAMEL model OneComponentApp.xmi into "/home/models" directory
6. Using SoapUI tool execute following steps:

 Create new REST project with URL:
http://<VM IP>:8088/api/frontend/deploymentProcess

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 31

 Using POST method start process
7. Start deploying of application

For each step, the status of the executed action should be positive.

Expected Results:

1. Virtual machine on the selected Cloud Provider should be created.
2. The sole component of the simple application should be installed on that machine.
3. Correctly installed and working Apache server.
4. The application should be run properly (Apache web page is properly displayed).

T1.1[F] Installation and deployment of a simple application on one Cloud Provider

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. At least one cloud provider integrated with the MELODIC platform; the user credentials for this provider

should have also been supplied (included in CAMEL model- cloud credentials).
3. Meta solver configured to use CP Solver for that case.
4. Cloudiator properly connected to the given Cloud Provider.
5. Complete CAMEL model of simple application (which includes the definition of the application

components and their installation/maintenance scripts). Simple application – one component

application, installed as a "False" test cases "False" test cases should include improperly created CAMEL

model (it means CAMEL model .xmi with errors). Please, refer to the attached .xmi file.
6. CAMEL model of given Cloud Provider prepared and registered in the MELODIC platform with at least

one virtual machine offer provided. There should be a proper configuration of the virtual machine both

in CAMEL Provider model and on the Cloud Provider side. The configurations should be aligned.
Steps to Complete:

1. Login to the machine with installed MELODIC by using following steps:
● Use command: ssh melodic@<VM IP>
● Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from:

 https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/
● Upload CAMEL model OneComponentFalseApp.xmi into "/home/models" directory

For upload CAMEL model step, the status of the executed action should be negative (uploading model

OneComponentFalse.xmi should not be stored into CDO).

Expected results:

1. Virtual machine on the selected Cloud Provider should not be created.
2. The sole component of the simple application should not be installed on that machine.
3. Apache server does not install and working correctly.
4. The application should not be run properly (Apache web page is not displayed).

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 32

T1.2[T] Installation and deployment of a two-component application on one Cloud Provider

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. At least one cloud provider integrated with the MELODIC platform; the user credentials for this provider

should have also been supplied (included in CAMEL model- cloud credentials).
3. Meta solver configured to use CP Solver for that case.
4. Cloudiator properly connected to the given Cloud Provider.
5. Complete CAMEL model of the two-component application (which includes the definition of these two

components and their installation/maintenance scripts). One component can map to the main business

logic of the application and the other to the underlying database used. An application is Wordpress

which also includes an underlying MySQL database (please, refer to the attached .xmi file).
6. CAMEL model of given Cloud Provider prepared with at least one virtual machine offer provided. There

should be a proper configuration of the virtual machine both in CAMEL Provider model (see step 2) and

on the Cloud Provider side. The configurations should be aligned.

Steps to Complete:

1. Login to the machine with installed MELODIC by using following steps:
a. Use command: ssh melodic@<VM IP>

2. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from:
 https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

3. Upload models: cpGenerator-functionTypes.xmi, cpGenerator-locations.xmi, cpGenerator-
providerTypes.xmi, cpGenerator-operatingSystems.xmi into "/home/user/models" directory

4. Upload Provider model AmazonEC2.xmi into "/home/models/upperware-models/fms" directory
5. Upload CAMEL model TwoComponentApp.xmi into "/home/models" directory
6. Using SoapUI tool execute following steps:

a. Create new REST project with URL:
http://<VM IP>:8088/api/frontend/deploymentProcess

b. Using POST method start process (body attached in attachments)
7. Start deploying of application:

a. Open page: http://"public ID of created Virtual Machine":9999/demo/all
For each step, the status of the executed action should be positive.

Expected results:

1. Two virtual machine instances (of the same VM flavour/offering) should be created using the selected

Cloud Provider.
2. The application should be installed on those VM instances (one business logic component instance

should be installed on the first VM instance and the database component instance should be installed on

the second VM instance).

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 33

3. The application should run properly which actually involves that proper communication between

application components has been established (The Wordpress page from database should be displayed

correctly).

T1.2[F] Installation and deployment of a two-component application on one Cloud Provider

Input Conditions:

1. Installed and configured MELODIC platform
2. At least one cloud provider integrated with the MELODIC platform; the user credentials for this provider

should have also been supplied (included in CAMEL model- cloud credentials).
3. Meta solver configured to use CP Solver for that case.
4. Cloudiator properly connected to the given Cloud Provider.
5. Complete CAMEL model of the two-component application (which includes the definition of these two

components and their installation/maintenance scripts). One component can map to the main business

logic of the application and the other to the underlying database used. An application is Wordpress

which also includes an underlying MySQL database. "False" test cases should include improperly created

CAMEL model (it means CAMEL model .xmi with errors). Please, refer to the attached .xmi file.
6. CAMEL model of given Cloud Provider prepared with at least one virtual machine offer provided. There

should be a proper configuration of the virtual machine both in CAMEL Provider model (see step 2) and

on the Cloud Provider side. The configurations should be aligned.

Steps to Complete:

1. Login to the machine with installed MELODIC by using following steps:
a. Use command: ssh melodic@<VM IP>

2. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from:
 https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

3. Upload CAMEL model TwoComponentFalseApp.xmi into "/home/models" directory
4. For upload CAMEL model step, the status of the executed action should be negative (uploading model

TwoComponentFalse.xmi should not be stored into CDO).

Expected results:

1. Two virtual machine instances (of the same VM flavour/offering) should not be created using the

selected Cloud Provider.
2. The application should not be installed on those VM instances (one business logic component instance

should not be installed on the first VM instance and the database component instance should not be

installed on the second VM instance).
3. The application should not run properly (The Wordpress page from database should not be displayed).

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 34

T1.3[T] Installation and deployment of a two-component application on two different Cloud Providers

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. At least two cloud providers integrated with MELODIC platform, where the user has provided his/her

own credentials for both of them (included in CAMEL model- cloud credentials).
3. Meta solver configured to use CP Solver for that case.
4. Cloudiator properly connected to given Cloud Providers.
5. Complete CAMEL model of the two-component application (which includes the definition of these two

components and their installation/maintenance scripts). One component can map to the main business

logic of the application and the other to the underlying database used. An application is Wordpress

which also includes an underlying MySQL database (please, refer to the attached .xmi file).
6. CAMEL model of each Cloud Provider prepared with at least one virtual machine offer provided per each

provider.
7. There should be a proper configuration of the virtual machine both in CAMEL Providers model and on

the Cloud Providers sides.
8. There should be a requirement in the application CAMEL model to use different Cloud Providers (this

could be done in different ways; for example, by placing a location requirement that is then referenced

in the virtual machine requirement set.

Steps to Reproduce:

1. Login to the machine with installed MELODIC by using following steps:
a. Use command: ssh melodic@<VM IP>
b. Use command: . .profile

2. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from:
 https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

3. Upload models: cpGenerator-functionTypes.xmi, cpGenerator-locations.xmi, cpGenerator-
providerTypes.xmi, cpGenerator-operatingSystems.xmi into "/home/user/models" directory

4. Upload Providers AmazonEC2.xmi and OpenStackUlm.xmi into "/home/models/upperware-models/fms"

directory
5. Upload CAMEL model TwoComponentApp.xmi into "/home/models" directory
6. Using SoapUI tool execute following steps:

a. Create new REST project with URL: http://<VM IP>/api/frontend/deploymentProcess
b. Using POST method start process (body attached in attachments)

7. Start deploying of application:
a. Open page: http://"public ID of created Virtual Machine":9999/demo/all

8. gs-mysql-data-0.1.0-non-executable.jar can be download from:
 https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

For each step, the status of the executed action should be positive.

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 35

Expected results:

1. Two VM instances should be created, one instance per each Cloud Provider.
2. The application should be installed on those 2 VM instances (one business logic component instance

should be installed on the first VM instance and the database component instance should be installed

on the second VM instance).
3. The application should be run properly (The Wordpress web page from database should be displayed

correctly).

T5.1[T] Linear constraints and optimization solving – CP Solver

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. Provide the CP model of given optimization problem – as described in the table with reference data

(please see attachments). Model should be uploaded to CDO.

Steps to Complete:

1. To run the test directly on CP Solver following steps need to be performed:
2. Prepare XMI file with CP model (please, refer to the attachments)
3. Put the above XMI to machine's file system where CP Generator resides (for example /tmp)
4. Execute CP Generator solving procedure by sending POST message to CP Generator to

 constraintProblemSolutionFromFile URI.

Sample body

{"applicationId": "Dam",

fileModelsPath": "/tmp/cpGenerator_cpm_cp.xmi",

"watermark": {

 "user": "ebankowska",

 "system": "test",

 "date": "2017-09-28T16:41:41+0000",

 "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002671"

 }

}

Expected results:

1. Optimal solution is found.
2. CP model is updated in CDO.
3. In CP Solver log, the main constraint problem and its optimal solution found should be logged.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 36

T5.4[T] Non-linear constraints and optimization solving – CP Solver

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. Provide CP model of given non-linear optimization problem – as described in the table with reference

data (please see attachments).

Steps to Complete:

1. To run the test directly on CP Solver following steps need to be performed:
2. Prepare XMI file with CP model (please, refer to the attachments)
3. Put the above XMI to machine's file system where CP Generator resides (for example /tmp)
4. Execute CP Generator solving procedure by sending POST message to CP Generator to

 constraintProblemSolutionFromFile URI.

Sample body

{ "applicationId": "Dam",

fileModelsPath": "/tmp/cpGenerator_cpm_cp.xmi",

"watermark": {

"user": "ebankowska",

 "system": "test",

 "date": "2017-09-28T16:41:41+0000",

 "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002671"

 }

}

Expected results:

1. Optimal solution is found
2. CP model is updated in CDO.
3. In CP Solver log, the main constraint problem and its optimal solution found should be logged.

T6.1[T] Temporary unavailability of particular components

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. At least one cloud provider has been integrated with MELODIC platform, and user has supplied

respective credentials for this provider.
3. Meta solver configured to use CP Solver for that case.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 37

4. Cloudiator properly connected to given Cloud Provider.
5. Complete CAMEL model of a simple application (which includes the definition of one component and

its installation/maintenance scripts). The simple, one-component application is installed as a unix

process (no container) in one VM. An application is the Apache Webserver installed using a standard

installation command (please, refer to the attached .xmi).
6. CAMEL model of given Cloud Provider prepared with at least one virtual machine offer included.
7. There should be a proper configuration of the virtual machine both in CAMEL Provider model (see step

2) and on the Cloud Provider side. The configurations should be aligned.

Steps to Complete:

1. Login to the machine with installed MELODIC by using following steps:
a. Use command: ssh melodic@<IP VM>

2. Upload models into "models" directory
3. Upload Cloud Provider into "models/upperware-models/fms" directory
4. Upload CAMEL model OneComponentApp.xmi into "models" directory
5. On MELODIC platform:

a. Using command dps check CONTAINER ID for 1 generator
b. Using command sudo docker stop CONTAINER ID1 to stop first generator

6. After stopping first or second generator as soon as possible start process by using SoapUI (Process must

be deployed before generator is up and running)
7. Use cd /logs and display generator.log

For each step, the status of the executed action should be positive.

Expected Results:

The results are listed more or less in order of occurrence with the exception that the action to restart a

component takes place in between a pair of stated actions and requires the re-execution of the first step in the

action pair:

1. Proper error message with information about stopped component inaccessibility should be logged.
2. VM (instance) on the selected Cloud Provider should be created.
3. The simple application should be installed on that VM (instance).
4. The application should be run properly (the web server's web page should be displayed properly).

T6.4[T] High Availability Component configuration

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
2. HA configuration of components; each of the following components should be installed with two

instances, with HA configuration on ESB:
a. CP Generator
b. Meta solver

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 38

c. CP Solver
d. Solver to deployment
e. Adapter/Plan Generator

3. At least one cloud provider integrated with the MELODIC platform; the user credentials for this provider

should have also been supplied (included in CAMEL model- cloud credentials).
4. Meta solver has been configured to use the CP solver for that case.
5. Cloudiator properly connected to given Cloud Provider
6. Complete CAMEL model of a simple application (which includes the definition of one component and

its installation/maintenance scripts). Simple, one component application installed as a unix process (no

container) in one virtual machine. An application is an Apache Webserver installed using a standard

installation command (please, refer to the attached .xmi).
7. CAMEL model of given Cloud Provider prepared with at least one virtual machine offering included.
8. There should be a proper configuration of the virtual machine both in CAMEL Provider model and on the

Cloud Provider side.

Steps To Complete:

1. Login to the machine with installed MELODIC by using following steps:
a. Use command: ssh melodic@<IP VM>

2. Upload models into "models" directory
3. Upload Cloud Provider into "models/upperware-models/fms" directory
4. Upload CAMEL model OneComponentApp.xmi into "models" directory
5. On MELODIC platform:

a. Edit melodic.yml and change generator replicas to 2
b. Use command ddeploy
c. Using command dps check CONTAINER ID for 2 generators
d. Using command sudo docker stop CONTAINER ID1 to stop first generator
e. Using command sudo docker stop CONTAINER ID2 to stop second generator

6. After stopping first or second generator as soon as possible start process by using SoapUI (Process must

be deployed before generator is up and running)
7. Use cd /logs and display generator.log
8. Check logs for two generator.1. and generator.2.

For each step, the status of the executed action should be positive.

Expected results:

1. Proper error message with information about fall-back due to component inaccessibility should be

logged.
2. A VM (instance) on the selected Cloud Provider should be created.
3. The simple application should be installed on that VM (instance).
4. The application should be run properly (web server's web page should be displayed properly).

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 39

T6.5[T] Response time while solving allocation problems

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefact.
2. Each of the below components should be installed with single instances: CP Generator, CDO Server,

Meta solver, CP Solver, Solver to deployment and Adapter.
3. At least one Cloud provider integrated with the MELODIC platform; the user credentials for this provider

should have also been supplied (included in CAMEL model-Cloud credentials).
4. Meta solver configured to use CP solver for that case.
5. Cloudiator properly connected to a given Cloud Provider.

Complete CAMEL model of a simple application (which includes the definition of the application components

and their installation/maintenance scripts). A simple application is a one component application, installed as a

Unix process (no container), in one virtual machine.

CAMEL model of given Cloud provider prepared with the number of VM offerings included. CAMEL model of

given Cloud Provider prepared and registered in the MELODIC platform with at least one virtual machine offer

provided. There should be a proper configuration of the virtual machine both in CAMEL Provider model and on

the Cloud Provider side. The configurations should be aligned.

Steps To Complete:

1. Login to the machine with installed MELODIC by using following steps:
a. Use command: ssh melodic@<IP VM>
b. Download and run cdo-uploader-1.0.0-SNAPSHOT-jar-with-dependencies.jar from:

 https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data
c. Upload models: cpGenerator-functionTypes.xmi, cpGenerator-locations.xmi

 cpGeneratorproviderTypes.xmi, cpGenerator-operatingSystems.xmi into "/home/user/models"

directory
2. Upload Provider AmazonEC2.xmi into "/home/models/upperware-models/fms" directory
3. Upload CAMEL model OneComponentApp.xmi into "/home/models" directory
4. Using SoapUI tool execute following steps:

a. Create new REST project with URL:
 http://5.249.145.169:8088/api/frontend/deploymentProcess

b. Using POST method start process
c. Start deploying of application
d. Check solver logs

For each step, the status of the executed action should be positive.

Expected Results:

1. Virtual machine on the selected Cloud Provider should be created.
2. The sole component of the simple application should be installed on that machine. Correctly installed

and working application.
3. The application should be run properly.

http://www.melodic.cloud/
https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data
http://5.249.145.169:8088/api/frontend/deploymentProcess

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 40

4. Error messages due to component inaccessibility or any other issues should be logged.
5. Execution time of each Upperware components must be logged.
6. Response time of each Upperware components must be logged.

T7.10[T] Logging within MELODIC platform

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.

Steps To Complete:

1. Login to MELODIC/Cloudiator VM with root credentials.
2. Execute the attached script './test_logging.sh'

Expected results:

1. Output of test script equals the following screenshot

T7.2[T] Removing user

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.

Steps To Complete:

1. Log into the frontend User section of executionware_ui of Cloudiator with existing administrator

credentials (i.e., http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser
2. Press 'delete' button located in the user's row.

Expected results:

1. User profile should not be listed anymore on:
a. http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser

2. Login with user is not possible any longer.

T7.3[T] Updating user password

Input Conditions:

1. Running MELODIC/Cloudiator installation

http://www.melodic.cloud/
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 41

Steps to Complete:

1. Login to Cloudiator VM as root.
2. Download 'password-generator-1.0-SNAPSHOT-jar-with-dependencies.jar' i.e.,

wget http://../password-generator-1.0-SNAPSHOT-jar-with-dependencies.jar
3. Execute command 'java -jar password-generator-1.0-SNAPSHOT-jar-with-dependencies.jar'
4. Note generated password, salt and hashed password
5. Execute 'mysql -uroot -p'$password' -e "UPDATE colosseum.FrontendUser SETpassword = '$password',

salt = '$salt' WHERE firstName = '$name' and lastName = '$lastName';"' i.e., for default user John Doe ->

execute 'mysql -uroot -p'$password' -e "UPDATE colosseum.FrontendUser SET password = '$password',

salt = '$salt' WHERE firstName = 'John' and lastName = 'Doe';"'
6. Adjust Tenant_FrontendUser if necessary, INSERT INTO Tenant_FrontendUser

 (tenants_id,frontendUsers_id) VALUES (1, 2).

Expected results:

1. Login with changed credentials is possible:
a. i.e., with user 'John Doe' to:

http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui

T7.4[T] Updating user profile

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.

Steps to Complete:

1. Log into the frontend User section of executionware_ui of Cloudiator with existing administrator

credentials (i.e., http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser)
2. Press 'edit' button located in the user's row
3. Adapt the user information accordingly

a. firstName
b. lastName
c. mail

4. Submit the completed form using the 'Submit' button

Expected results:

1. User profile information on
 http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser matched previous

changes

http://www.melodic.cloud/
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 42

T7.6[T] Unified starting, stopping and restarting of MELODIC platform

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.

Steps to Complete:

1. Login to MELODIC/Cloudiator VM with root credentials
2. Start the Cloudiatorwith the following commands:

a. rm /opt/cloudiator/colosseum-0.2.0-SNAPSHOT/RUNNING_PID
b. sudo sh /opt/cloudiator/start_colosseum.sh&

3. Stop the Cloudiator with the following commands run 'sudo pkill -f 'java.*colosseum''
4. Restart the Cloudiator

rm /opt/cloudiator/colosseum-0.2.0-SNAPSHOT/RUNNING_PID

sudo sh /opt/cloudiator/start_colosseum.sh&

Expected results:

1. If overall status is STARTED: MELODIC/Cloudiator can be used as usual
2. If overall status is STOPPED: MELODIC/Cloudiator

T7.5[T] User authentication

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.
Steps to Complete:

1. Log into the frontend User section of executionware_ui of Cloudiator with existing administrator

credentials (i.e., http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser)
2. Create a new user
3. Browse to http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/tenant)

a. Press 'add' button
b. Define a tenant name
c. Add the previously added user as a tenant member

4. Submit the completed form using the 'Submit' button

Expected results:

1. Newly created user is now able to login with the tenant of the administrator that created this user.

T7.8[T] Executing backup

Input Conditions:

1. Installed and configured MELODIC platform, without any application related artefacts.

http://www.melodic.cloud/
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/frontendUser
http://cloudiator.melodic.dcsresearch.cas.de/executionware_ui/#/tenant

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 43

Steps to Complete:

1. Login to Cloudiator VM as root
2. Execute command 'cd /opt&& tar -zcvf ~/cloudiator-backup.tar.gz cloudiator'
3. Download backup file 'cloudiator-backup.tar.gz'
4. Execute command 'sudo mysqldump -uroot -pmelodic colosseum > ~/cloudiator-backup.sql'
5. Download backup file 'cloudiator-backup.sql'
6. Execute command 'cd ~&& zcvf tar -/var/lib/docker/volumes/melodicStack_Conf/_data'
7. Download backup file 'melodic-backup.tar.gz'

Expected results:

1. Backup files 'cloudiator-backup.tar.gz', 'cloudiator-backup.sql' and 'melodic-backup.tar.gz' can be used

to restore the Cloudiator installation on a newly installed Cloudiator.

A.2 Release 1.5

T2.3[T] Composite metric detection (1st Level Event Processing)

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider is integrated with Melodic platform for which the user has supplied the

respective credentials (included in Camel model- cloud credentials).

3. Cloudiator is properly connected to given Cloud Provider.

4. (optional) CAMEL model of FCR application with definition of custom metrics (please, refer to the

attached .xmi).

5. At least jdk 1.7 should be installed on the VM.

Steps To Complete:

1. Login to the machine with installed Melodic

2. On the VM execute the deploy of FCR application

3. Send test raw events though REST using e.g. postman to the IP: VM_IP:8083:

(send at least 2 events in 1 minute) under the event topic ResponseTime with the following payload:

 {" metricValue": 90,

 "vmName": "FCR.VM1",

 "cloudName": "Openstack1",

 "componentName" : " FCR",

 "level": 0,

 "timestamp": 1224235434

 }

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 44

Expected results:

1. After 1 minute, go to the logs folder of mule-standalone-3.9.0, execute cat person.log and check for one

complex event produced by the first level Esper (the certain test rule produces the average response

time every 1 minute). This complex event will have:

a. as a value the average of all the values of raw events intercepted during this time window (note:

this will be a sliding window),

b. the level set to 1 and

c. the timestamp updated

T2.3[F] Composite metric detection (1st Level Event Processing)

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider is integrated with Melodic platform for which the user has supplied the

respective credentials (included in Camel model- cloud credentials).

3. Cloudiator is properly connected to given Cloud Provider.

4. (optional) CAMEL model simple of application (which includes the definition of one component and its

installation/maintenance scripts). The simple, one-component application is installed as a unix process

(no container) in one VM. An application is the Apache Webserver installed using a standard installation

command) with definition of raw system/built-in metrics (please, refer to the attached .xmi).

5. At least jdk 1.7 should be installed on the VM.

Steps To Complete:

1. Login to the machine with the deployed component

2. On the VM execute the deploy1_app.sh that configures, installs and starts Mule and Esper. This

deployment script will set up a mechanism that is able to intercept raw events (manually sent through

REST) and calculate the average value (e.g. average response time) every one minute based on the

incoming raw events).

3. Don't send any test raw events for one minute

Expected results:

1. After 1 minute, go to logs folder of mule-standalone-3.9.0, execute cat person.log. No raw or complex

events should be available.

T2.5[T] Composite metric detection (2nd Level Event Processing)

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider is integrated with the Melodic platform for which the user has supplied the

respective credentials (included in Camel model- cloud credentials).

3. Cloudiator is properly connected to given Cloud Provider.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 45

4. (optional) CAMEL model of simple application (which includes the definition of one component and its

installation/maintenance scripts). The simple, one-component application is installed as a unix process

(no container) in two VMs (i.e. two component instances). An application is the Apache Webserver

installed using a standard installation command) with definition of raw system/built-in metrics (please,

refer to the attached .xmi).

5. At least jdk 1.7 should be installed on each of the two VMs.

Steps To Complete:

1. Login to the two machines with the deployed component instances

2. On the first VM execute the deploy2_app.sh that configures, installs and starts an AMQ Broker that will

receive not only local events, but also events coming from other VMs in the same cloud and an Esper

instance able to detect first & second level complex event patters (i.e. average response time detected

from all VMs on a certain cloud (i.e. the two VMs in this testing scenario)).

3. On the second VM perform the following:

a. update the IP mentioned in the deploy1_app.sh using the IP used for the first VM (i.e. se the

proper IP in this command: sudo ./mule -M-Dhost.broker="tcp:// VM1_IP:61616")

b. execute the deploy1_app.sh that configures, installs and starts Mule and first level Esper and

connects to the first VM.

4. Check that the 2nd VM is properly connected to the second level broker

a. Login to the first VM and execute netstat -an|grep 61616

5. Send test raw events though REST using postman to the first VM using the following IP: VM1_IP:8083 in

postman. Send (at least 2 events in 1 minute) under the event topic ResponseTime with the following

payload:

{" metricValue_": 90,_

 "vmName": "OneComponentApp.VM1",

 "cloudName": "Openstack1",

 "componentName" : " OneComponent",

 "level": 0,

 "timestamp": 1224235434

 }

6. Send test raw events though REST using postman to the 2nd VM using the following IP: VM2_IP:8083 in

postman. Send (at least 2 events in 1 minute) under the event topic ResponseTime with the following

payload:

{" metricValue_": 80,_

 "vmName": "OneComponentApp.VM2",

 "cloudName": "Openstack1",

 "componentName" : " OneComponent",

 "level": 0,

 "timestamp": 1224235434

 }

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 46

Expected results:

1. In step 4, during the checking of the established connectivity with the 2nd level AMQ message broker

you should get in the registered clients the IP of the second VM

2. After steps 5,6 and once 1 minute has passed, go to the logs folder of mule-standalone-3.9.0 (Execute

cat person.log) of the 1st VM (where the 2nd level broker is hosted) and check for one complex event

produced by the 2nd level Esper (the certain test rule produces the average response time every 1

minute from all VMs on a certain cloud (the two VMs in our testing scenario). This complex event should

have:

a. Level value equals to 2

b. vmName value equals to OneComponentApp.VM1, OneComponentApp.VM2

c. as a value the average of all the values of raw events intercepted during this time window (note:

this will be a sliding window),

d. the timestamp updated

T2.5[F] Composite metric detection (2nd Level Event Processing)

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider is integrated with the Melodic platform for which the user has supplied the

respective credentials (included in Camel model- cloud credentials).

3. Cloudiator is properly connected to given Cloud Provider.

4. (optional) CAMEL model of simple application (which includes the definition of one component and its

installation/maintenance scripts). The simple, one-component application is installed as a unix process

(no container) in two VMs (i.e. two component instances). An application is the Apache Webserver

installed using a standard installation command) with definition of raw system/built-in metrics (please,

refer to the attached .xmi).

5. At least jdk 1.7 should be installed on each of the two VMs.

Steps To Complete:

1. Login to the two machines with the deployed component instances

2. On the first VM execute the deploy2_app.sh that configures, installs and starts an AMQ Broker that will

receive not only local events, but also events coming from other VMs in the same cloud and an Esper

instance able to detect first & second level complex event patters (i.e. average response time detected

from all VMs on a certain cloud (i.e. the two VMs in this testing scenario)).

3. On the second VM perform the following:

a. update the IP mentioned in the deploy1_app.sh using the IP used for the first VM (i.e. se the

proper IP in this command: sudo ./mule -M-Dhost.broker="tcp:// VM1_IP:61616")

b. execute the deploy1_app.sh that configures, installs and starts Mule and first level Esper and

connects to the first VM.

4. Check that the 2nd VM is properly connected to the second level broker

a. Login to the first VM and execute netstat -an|grep 61616

5. Don’t send any test raw events for one minute

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 47

Expected results:

1. In step 4, during the checking of the established connectivity with the 2nd level AMQ message broker

you should get in the registered clients the IP of the second VM

2. After steps 5 and once 1 minute has passed, go to the logs folder of mule-standalone-3.9.0 (Execute cat

person.log) of the 1st VM (where the 2nd level broker is hosted). No event should be registered in the

logs.

T2.6[T] Custom raw metrics collection - FCR model

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider is integrated with Melodic platform for which the user has supplied the

respective credentials (included in Camel model- cloud credentials).

3. Cloudiator is properly connected to given Cloud Providers.

4. CAMEL model of FCR application with definition of the custom raw metrics.

Model .xmi can be downloaded from:

 https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR

Steps To Complete:

1. Login to the machine with installed Melodic by using following steps:

Use command: ssh melodic@<VM IP>

2. Upload Camel model FCR.xmi into "models" directory

3. Using SoapUI tool execute following steps:

a. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess

b. Using POST method start process

4. Start deploying of application

For each step, the status of the executed action should be positive.

Expected results:

1. Values of the given type raw metric(s) should be stored in TS database(s) on those VMs/nodes on which

the respective component of the application to be measured resides.

2. These measurements/values are possibly stored in the CDO and some subscribers (Meta Solver) might

be informed about them.

T4.3[T] Global reconfiguration rules testing – FCR

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider integrated with Melodic platform for which the respective user credentials

have been supplied.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 48

3. Cloudiator properly connected to given Cloud Providers.

4. There exists at least one cloud provider with at least two offering satisfying the requirements posed by

the user.

5. CAMEL model of each Cloud Provider prepared and uploaded to the platform with at least two virtual

machine offers provided with different cost parameter.

6. Complete CAMEL model of a FCR application. The CAMEL model should include definition of events and

metrics needed to execute the particular test case.

Model .xmi can be downloaded from:

 https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/FCR

Steps To Complete:

1. Login to the machine with installed Melodic by using following steps:

Use command: ssh melodic@<VM IP>

2. Upload Camel model FCR.xmi into "models" directory

3. Using SoapUI tool execute following steps:

a. Create new REST project with URL: http://<VM IP>:8088/api/frontend/deploymentProcess

b. Using POST method start process

4. Deploy application

5. Check FCR application IP (ip-app)

6. Launch Active MQ: http://ip-app:8161

http://ip-app:8161/ -> topics -> notice Response Time

(response time - measured values by Visor sending to the 1st level Esper)

7. Launch Active MQ http://<virtual_machine_IP>:8161

login -> topics -> notice Average Response Time and AverageResponseTimeHigh1m

(values sending from 1 level Esper to 2nd level Esper)

8. To activate metrics - disable java security for ip_app:8087

9. Run: http://ip-app:8087/SiC/index.jsp

10. Observe sending metrics for both sides of ActiveMQ - first for application, next between Esper levels.

There should also appears metric: AverageResponseTimeHigh1m then open metasolver log and check if

reconfigurations has been initiated.

For each step, the status of the executed action should be positive.

Expected results:

1. Application should be reconfigured according to defined SLOs.

2. Application should work properly; this means that its web page should be properly displayed

(continuing the previous example with an Apache web server).

T5.6[T] Utility function – FCR

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. Provide CP model of given utility function for FCR.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 49

Steps To Complete:

1. Login to the machine with installed MELODIC

2. Deploy FCR.xmi

3. After deploying FCR.xmi, proceed to the /logs/cp_model_upperware-models/ and check full name of

generated CP model .xmi (for example: FCR1519638005224.xmi). The name of the full CP model will be

displayed in generator.log. For example:

INFO 1 — [SimpleAsyncTaskExecutor-1] e.p.u.p.g.o.GenerationOrchestrator : ** CP Model Id:

upperware-models/FCR1519638005224

4. Restart MELODIC platform by using drestart command

5. Deploy FCR<number>.xmi by

Using tools: SoapUI or Postman execute following steps:

Create REST project with: URL: <VM's IP>:8093/constraintProblemSolutionFromFile

 Sample body:

 {"applicationId": "FCR",

"fileModelsPath": "/logs/cp_model_upperware-models/FCR<number>.xmi",

"nodeCandidatesFilePath": "/logs/node_candidates_upperware-models/FCR<number>",

"useExternalOptimizer": "true",

"watermark": {

"user": "test",

"system": "UI",

"date": "2017-11-23T16:41:41+0000",

"uuid": "fb6280ec-1ab8-11e7-93ae-92361f002671"

 }

}

6. Proceed to the: melodic@<VM's IP>/logs and display cp solver log

Expected results:

1. Optimal solution is found:

cardinality = 1 (the cheapest offer)

2. CP model is updated in CDO.

3. In Utility Generator log, the constraint problem and its derived solution are logged.

T6.2[T] Temporary unavailability of BPM - verifying proper system behaviour after BPM recovery

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider has been integrated with Melodic platform, while the user has supplied

his/her credentials for this provider.

3. Meta solver configured to use CP solver for that case.

4. Cloudiator properly connected to given Cloud Provider.

5. BPM component is stopped.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 50

6. Complete CAMEL model of a simple application (which includes the definition of one component and its

installation/maintenance scripts). The simple, one-component application is installed as a unix process

(no container) in one VM. An application is the Apache Webserver installed using a standard installation

command. CAMEL model of OneComponentApp can be found in:

https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/OneComponentApp

Steps To Complete:

1. Login to the machine with installed Melodic by using following steps:

Use command: ssh melodic@<VM IP>

2. Upload Camel model OneComponentApp.xmi into "models" directory

3. Using SoapUI tool execute following steps:

a. Create new REST project with URL: http://<VM's IP>/api/frontend/deploymentProcess

b. Using POST method start process

4. After deploying of application:

a. Use command dps to display all IDs of components

b. Use command sudo docker stop CONTAINER ID1 to stop BPM

5. Display BPM log

For each step, the status of the executed action should be positive.

Expected results:

1. Proper error message with information about jBPM inaccessibility should be logged.

2. A VM (instance) on the selected Cloud Provider should be created.

3. The simple application should be installed on that VM (instance).

4. The application should be run properly (the web server's website is displayed properly).

T6.2[F] Temporary unavailability of jBPM

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider has been integrated with Melodic platform, while the user has supplied

his/her credentials for this provider.

3. Meta solver configured to use CP solver for that case.

4. Cloudiator properly connected to given Cloud Provider.

5. jBPM component is stopped.

6. Complete CAMEL model of a simple application (which includes the definition of one component and its

installation/maintenance scripts). The simple, one-component application is installed as a unix process

(no container) in one VM. An application is the Apache Webserver installed using a standard installation

command.

"False" test cases should include improperly created CAMEL model (it means a CAMEL model .xmi with

errors). Please, refer to the attached .xmi file.

7. CAMEL model of given Cloud Provider prepared with at least one virtual machine offer included.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 51

8. There should be a proper configuration of the virtual machine both in CAMEL Provider model (see step

2) and on the Cloud Provider side. The configurations should be aligned.

Steps To Complete:

1. Login to the machine with installed Melodic by using following steps:

Use command: ssh melodic@<VM IP>

2. Upload models into "models" directory

3. Upload Cloud Provider into "models/upperware-models/fms" directory

4. Upload Camel model JBPMFalseApp.xmi into "models" directory

For upload Camel model step, the status of the executed action should be negative (uploading model

JBPMFalse.xmi should not be stored into CDO).

Expected results:

1. Improper error message with information about jBPM inaccessibility should be logged.

2. A VM (instance) on the selected Cloud Provider should not be created.

3. The simple application should not be installed on that VM (instance).

4. The application should not run properly (the web server's website is not displayed properly).

T6.8[T] Counting Resource Overhead of Melodic instance introduced over its host

Input Conditions:

1. Installed and configured Melodic platform, without any application related artefacts.

2. At least one cloud provider integrated with the Melodic platform; the user credentials for this provider

should have also been supplied (included in Camel model- cloud credentials).

3. Meta solver configured to use CP solver for that case.

4. Cloudiator properly connected to the given Cloud Provider.

5. Complete CAMEL model of simple application (which includes the definition of the application

components and their installation/maintenance scripts). Simple application – one component

application, installed as a unix process (no container), in one virtual machine.

CAMEL model of OneComponentApp can be found in:

https://bitbucket.7bulls.eu/projects/TST/repos/melodic/browse/TestCases/OneComponentApp

6. CAMEL model of given Cloud Provider prepared and registered in the Melodic platform with at least one

virtual machine offer provided.

7. There should be a proper configuration of the virtual machine both in CAMEL Provider model and on the

Cloud Provider side. The configurations should be aligned.

Steps To Complete:

1. Login to the Melodic machine: ssh melodic@<VM's IP>

2. Deploy first OneComponentApp VM on AWS by using Melodic platform:

a. Download and run cdo-uploader-1.0.1-SNAPSHOT-jar-with-dependencies.jar from:

https://s3.console.aws.amazon.com/s3/buckets/melodic.testing.data/

b. Upload Camel model OneComponentApp.xmi into "/home/models" directory.

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 52

c. Using SoapUI tool execute following steps:

i. Create new REST project with URL:

http://<VM's IP>:8088/api/frontend/deploymentProcess

http://5.249.145.169:8088/api/frontend/deploymentProcess

ii. Using POST method start process

d. Start deploying of application.

e. Connect to the Melodic VM and use these commands to display information (Two files:

basicResources.txt and htop.html will be created.):

i. wget https://s3-eu-west-1.amazonaws.com/melodic.testing.data/checkResources.sh

ii. chmod +x checkResources.sh

iii. ./checkResources.sh

3. Next, start a new Virtual Machine manually to install the application under test (without using the

Melodic platform):

a. On AWS tap Melodic VM then select: Actions/Launch More Like This

b. Connect to the second VM (without Melodic) and use commands:

i. to download: sudo apt-get update

ii. to configure: sudo apt-get --assume-yes install apache2

iii. To start: sudo service apache2 start

c. Connect to the Manual VM and also start:

i. wget https://s3-eu-west-1.amazonaws.com/melodic.testing.data/checkResources.sh

ii. chmod +x checkResources.sh

iii. ./checkResources.sh

4. We compare overhead (resource consumptions) for both cases.

For each step, the status of the executed action should be positive.

Expected results:

1. Virtual machine on the selected Cloud Provider should be created.

2. The sole component of the simple application should be installed on that machine.

3. Correctly installed and working Apache server.

4. The application should be run properly (Apache web page is properly displayed).

5. The log file must include the CPU usage, Memory page swap/RAM usage, process usage and

network/disk I/O for comparison.

6. Error messages due to component inaccessibility or any other issues should be logged.

7. For further comparison, the same application must be executed (with success) in an independent VM,

and it must also produce another usage/trace report for comparison with Melodic environment.

T9.1[T] [Model Editor] Login

Input Conditions:

1. Metadata Schema Editor (also referred to as 'MUSE') up and running and login page loaded

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 53

Steps To Complete:

1. Fill in user name

2. Fill in user password

3. Hit 'Login' button

Expected results:

1. Welcome page is shown

T9.2[T] [Model Editor] Logout

Input Conditions:

1. User is logged in into editor

Steps To Complete:

1. user opens 'hamburger' menu

2. user hits 'Logout' button

Expected results:

1. user is logged out and gets redirected to login page

T9.3[T] [Model Editor] Schema Management - Create Concept

Input Conditions:

1. user is on page 'Melodic Metadata Schema Management'

Steps To Complete:

1. user focuses root element of model tree (left side)

2. user initiates creation of Concept

3. user defines unique (non-existing) name, e.g., 'test'

4. user hits "Save Changes"

Expected results:

1. newly created concept 'test' is available in the model tree

T9.4[T] [Model Editor] Schema Management - Create Property

Input Conditions:

1. user is on page 'Melodic Metadata Schema Management'

Steps To Complete:

1. user focuses root element of model tree (left side)

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 54

2. user initiates creation of Property

3. user defines unique (non-existing) name, e.g., 'testProperty'

4. user hits "Save Changes"

Expected results:

1. newly created Property 'testProperty' is available in the model tree

T9.5[T] [Model Editor] Schema Management - Delete Property

Input Conditions:

1. user is on page 'Melodic Metadata Schema Management'

Steps To Complete:

1. user selects Property to be deleted, e.g., 'testProperty'

2. user hits 'Delete' button

Expected results:

1. Property is not present anymore in the model tree

T9.6[T] [Model Editor] Schema Management - Delete Concept

Input Conditions:

1. user is on page 'Melodic Metadata Schema Management'

Steps To Complete:

1. user selects Concept to be deleted, e.g., 'test'

2. user hits 'Delete' button

Expected results:

1. Concept is not present anymore in the model tree

T9.7[T] [Model Editor] Schema Management - Update Model Repository

Input Conditions:

1. user created a random property with unique name

2. user is on welcome page of MUSE

Steps To Complete:

1. user hits button ''Local repos. -> Model repos.'

2. user hits "Model repos. -> Local repos.' button

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 55

Expected results:

1. random property is present (in model tree; still present and was not deleted)

T9.8[T] [Model Editor] Schema Management - Update Local Repository

Input Conditions:

1. user is logged in

2. meanwhile, a new CDO entry (e.g., property with unique name 'testProperty') is added

Steps To Complete:

1. user refreshes model tree

Expected results:

1. user finds newly added property 'testProperty'

T9.9[T] [Model Editor] Schema Management - Clear Local Repository

Input Conditions:

1. user is logged in

2. local model is present (e.g., model was loaded) with at least one entry

Steps To Complete:

1. user hits "Clear Local repos.' button

Expected results:

1. Metadata Schema Management indicates empty local model repository

T9.10[T] [Model Editor] Schema Management - Import from XMI

Input Conditions:

1. user is logged in

2. local repository is empty (nothing loaded)

Steps To Complete:

1. user hits 'Import from XMI' button

2. user double clicks on XMI area and uploads file (e.g., 'metadata-schema-0.0.2.xmi') when prompted to

do so

3. user hits button 'Model repos. -> Local repos.'

Expected results:

1. local repository (e.g., model tree) indicates that items are present

http://www.melodic.cloud/

Editor(s):
Edyta Bańkowska

Deliverable reference:
D5.07

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 56

T9.11[T] [Model Editor] Schema Management - Export to XMI

Input Conditions:

1. user is logged in

2. local repository is not empty

Steps To Complete:

1. user hits button 'Export Metadata in XMI'

Expected results:

1. download of file starts

http://www.melodic.cloud/

