
www.melodic.cloud

 Title:

Integration and adaptation strategy

Abstract

One main factor for the successful design and implementation of
Melodic is to provide a proper integration and adaptation strategy
that integrates the platforms on which Melodic is built, such as
Cloudiator and PaaSage. This includes not only the integration of
components within the above frameworks, but also the
development of new components and mechanisms in Melodic to
handle Big Data management and security aspects. The
integration plan may lead to the adaptation of components
involved in an integration, which calls for a proper adaptation
strategy. In terms of the integration architecture, we consider two
layers of integration: a control plane and a monitoring plane. The
former is for the integration of actions in a control flow and the
latter is for gathering, processing, propagating, and storing
monitoring events. From the viewpoint of integration models, we
investigate four popular integration strategies, including point-to-
point integration, queue-based middleware integration,
Enterprise Application Integration (EAI) or Enterprise Service Bus
(ESB) based integration, and EAI/ESB integration with Business
Process Management (BPM) orchestration. To evaluate these
integration strategies, a methodology is proposed for choosing the
integration and adaptation strategy. The main steps of the
methodology include identifying the integration requirements,
evaluating integration methods, estimating the effort needed to
implement a given integration strategy, ranking the methods,
recommending a method, and finally determining the adaptation
strategy based on the chosen integration method. The
methodology has resulted in using ESB/BPM for integration at the
control layer, and Active Message Queue (ActiveMQ) at the
monitoring layer using the ActiveMQ infrastructure which is built
into the selected MuleESB.

Multi-cloud Execution-ware

for Large-scale Optimized

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016
30 November 2019

www.melodic.cloud

Deliverable reference:

5.01

Date:

31 May 2018

Responsible partner:

7bulls

Editor(s):

Paweł Skrzypek

Author(s)

Jörg Domaschka, Sebastian
Schork, Marcin Prusiński,
Paweł Skrzypek, Yiannis
Verginadis, Geir Horn

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/
deliverables/D5.01 Integration
and adaptation strategy.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2018)3519252 - 03/07/2018

http://www.melodic.cloud/
http://www.melodic.cloud/
http://www.melodic.cloud/deliverables/D5.01%20Integration%20and%20adaptation%20strategy.pdf
http://www.melodic.cloud/deliverables/D5.01%20Integration%20and%20adaptation%20strategy.pdf
http://www.melodic.cloud/deliverables/D5.01%20Integration%20and%20adaptation%20strategy.pdf

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 2

Document

Period Covered M2-12

Deliverable No. D5.01

Deliverable Title Integration and adaptation strategy

Editor(s) Paweł Skrzypek

Author(s) Jörg Domaschka, Sébastien Kicin, Marcin Pruisiński,
Paweł Skrzypek, Yiannis Verginadis, Geir Horn

Reviewer(s) Yiannis Verginadis, Kyriakos Kritikos, Thomas Dreibholz

Work Package No. 5

Work Package Title Integration and security

Lead Beneficiary 7bulls

Distribution PU

Version Final

Draft/Final Final

Total No. of Pages 45

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 3

Table of Contents
1 Introduction .. 5

1.1 Structure of document .. 6

1.2 Glossary... 7

2 Integration in PaaSage and Cloudiator ... 9

2.1 Description of integration in PaaSage .. 9

2.2 Monitoring components in PaaSage ... 10

2.3 List of issues and risks, with suggested mitigation actions ... 12

3 Methodology of choosing integration and component adaptation strategy 14

4 Methodology Application .. 17

4.1 Requirements Collection ... 17

4.2 Integration Method Research and Review .. 20

4.2.1 Point-to-point integration .. 21

4.2.2 Queue-based middleware integration ... 24

4.2.3 EAI/ESB based integration .. 27

4.2.4 EAI/ESB integration with BPM orchestration ... 29

4.2.5 Overall Evaluation Results.. 32

4.2.6 Method Score Calculation ... 33

4.3 Integration Strategy selection verification ... 35

4.3.1 Expert Recommendation .. 35

4.3.2 Final selection of the integration strategy ... 36

4.4 Melodic platform adaptation strategy .. 36

4.5 ESB, BPM and Monitoring implementation.. 36

4.5.1 ESB implementation ... 37

4.5.2 BPM implementation .. 37

4.5.3 Monitoring component implementation .. 38

5 Integration and adaptation method for Melodic ... 42

5.1 Discussion on the selected integration method for Melodic... 42

6 Summary .. 43

7 References .. 45

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 4

Index of Figures
Figure 1: Current connections between the PaaSage components - demonstration diagram.
Dashed lines show storing and retrieving models, solid lines show communication between
components. ... 9

Figure 2: Diagram of methodology for choosing integration and adaptation strategy for the
Melodic project ... 17

Figure 3: Point-to-point architecture .. 22

Figure 4: Queue based middleware architecture ... 25

Figure 5: ESB based integration architecture .. 27

Figure 6: ESB based integration with BPM orchestration .. 30

Index of Tables
Table 1: Specific terms used in the deliverable ... 7

Table 2: List of integration issues in the PaaSage and Cactos projects ... 13

Table 3: The relation of integration requirements to the two planes .. 20

Table 4: Fulfilment of integration requirements by the Point-to-point integration method 22

Table 5: Fulfilment of integration requirements by the Queue based integration method 25

Table 6: Fulfilment of integration requirements by the ESB based integration method 28

Table 7: Fulfilment of integration requirements by the ESB based with BPM orchestration
integration method .. 30

Table 8: Summary of requirement fulfilment for all integration methods considered 32

Table 9: Summary of the integration method evaluation .. 33

Table 10: Calculation of the overall scores per plane .. 34

Table 11: Choosing ESB implementation ... 37

Table 12: Choosing BPM implementation ... 38

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 5

1 Introduction

The right choice of integration strategy is crucial for the successful implementation of the given
project, as there are plenty of integration methods available, each of them with certain advantages
and disadvantages. The proper methodology of choosing the best integration method for the given
requirements of a system is a quite complex task. As stated in [1], a properly chosen integration
strategy could provide significant benefits for the usability of the released Melodic1 platform, in
terms of stability, reliability, performance as well as reduced cost of development and
maintenance.

The purpose of this deliverable is to evaluate different strategies for integration and adaptation
(change components of underpinning frameworks to fit to Melodic platform) and to select the best
possible according to the objectives of the project. The selected strategy will also be analysed in
order to highlight its main benefits and advantages.

As one of the main directions of work in the Melodic project is focused around the integration of
the underlying PaaSage2 and Cloudiator3 frameworks, the proper integration and adaptation
strategy is crucial for the success of the project. Also, the context-aware access control mechanism
developed in the PaaSword4 project was planned to be integrated with Melodic but owing to
licensing issues this was not possible. Nevertheless, a context-aware authorisation engine will be
developed and integrated with the Melodic platform. More details about Melodic's way to mitigate
the decisions of the PaaSword project are provided in D2.1 "System specification" deliverable,
Subsection 6.3.

PaaSage is an open source integrated platform to support both the design and deployment of Cloud
applications. Together with an accompanying methodology, PaaSage supports model-based
configuration, optimization and deployment of these applications. PaaSage allows for deploying
existing and new applications independently of the existing underlying Cloud infrastructures.

The Cloudiator framework has been developed in the PaaSage project and extended in the Cactos
project. It is a cloud service orchestration framework that goes beyond the boundaries of a single
cloud provider.

For the purpose of this document, the strategy is defined as a high level, general plan, which is
used as a guidance for the implementation of a certain detailed method. To this end, the integration
strategy defines a high-level plan for integrating components of underlying projects along with a
number of new components to be developed by the Melodic consortium. The integration method,
for the purpose of this document, is the detailed plan of integration, with a set of tools and
procedures. The adaptation strategy is closely interrelated to the integration strategy and defines

1 http://melodic.cloud/
2 http://www.paasage.eu
3 http://www.cactosfp7.eu/
4 https://www.paasword.eu/

http://www.melodic.cloud/
http://melodic.cloud/
http://www.paasage.eu/
http://www.cactosfp7.eu/
https://www.paasword.eu/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 6

a high-level plan for changing components of underlying projects in order to be usable in the
Melodic platform. In this deliverable, the general adaptation strategy is presented, while details of
the adaptation of integrated components in the form of the list of changes to the underlying
frameworks are described in the D5.02 "Updates to OSS frameworks" deliverable.

1.1 Structure of document

The rest of this deliverable is divided into four logical parts. In the first part of the document, the
current integration methods, as adopted in PaaSage and Cactos, are analysed along with their pros
and cons. The second part of the document is dedicated to analysing the methodology for the
selection of the right integration and adaptation strategies for Melodic. The third part of the
document explains how the aforementioned methodology has been applied, and what are its
application results. It also explains the rationale for selecting the respective integration and
adaptation strategies for Melodic. Finally, the last document part elaborates more on Melodic's
selected integration and framework component adaptation strategies.

The detailed structure of the document is as follows:

• Introduction (Section 1) – this section describes the main objectives and structure of this
document.

• Integration in PaaSage and Cloudiator (Section 2) – the section contains a description of
current integration methods used within the PaaSage and Cactos projects along with the
list of the most important issues related to the current integration approach that was
followed.

• Methodology of choosing integration and component adaptation strategy (Section 3) –
description of the devised methodology for deciding on the integration and adaptation
strategies for Melodic.

• Methodology Application (Section 4) – detailed application of the methodology with the
supply of respective results as well as the final selection of the integration and adaptation
strategies for Melodic.

• Integration and adaptation method for Melodic (Sections 5) – description of integration and
adaptation strategies for the Melodic project, selected based on the methodology
application results, for both the Control and the Monitor Planes, as presented in deliverables
D2.1 "System specification" and D2.2 "Architecture and Initial Feature Definition".

• Summary (Section 6) – conclusions and next related steps.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 7

1.2 Glossary

Table 1: Specific terms used in the deliverable

Term used in deliverable Explanation of the term

Active – passive mode Mode of the High Availability (HA)/multi-instance configuration
where one component's instance is active and handles requests.
A second instance is up and will start handling request in case of
failure of the first instance

Active – active mode Mode of the HA/multi-instance configuration where all
component's instances are up and running and handling
requests

Business Process
Management (BPM)

Standard way of describing and executing processes on the
workflow/process engines

Strategy General approach to accomplish a given task, with guidelines
and overall description

Method Detailed approach or solution to achieve a goal

Integration strategy Set of guidelines, assumptions and general directives related to
the integration of components within a given IT system

Adaptation strategy Set of guidelines, assumptions and general directives related to
adaptation of the technology and the components in a given IT
system. For the purpose of the deliverable as adaptation we
understand alignment (change) of the components from
underpinning components to the Melodic plaform.

Integration Ability to communicate, invoke method/interfaces by different
components

Adaptation Adjustment and changes of a given component or technology
needed to fit it to a particular IT systems

Application Programming
Interface (API)

The definition of the interfaces of a system or application made
available to be invoked by external parties.

Enterprise Service Bus
(ESB)

A method for integration of IT systems or components

Enterprise Application
Integration (EAI)

All tasks, activities, methods and tools used for integrating
applications within enterprise.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 8

Term used in deliverable Explanation of the term

High Availability (HA) High level of availability of an IT system or application. Usually
means that the system is installed in more than one instance.

Hyper Text Transfer
Protocol (HTTP)

Protocol used as the communication backbone of Web Internet
services to exchange data between the server and the browser.
Also used as a transport protocol for modern integration methods
like the Simple Object Access Protocol (SOAP) or
Representational State Transfer (REST).

Microservices An approach to develop a single application as a suite of small
services, each running in its own process and communicating
with dedicate API mechanisms, often an HTTP resource API.
These services are built around business capabilities and are
independently deployable by a fully automated deployment
machinery5

Control Plane Integration layer responsible for handling action and data flow in
the system

Monitoring Plane Integration layer responsible for handling all monitoring related
events and operations

Simple Object Access
Protocol (SOAP)

A method for the integration of IT systems

Representational State
Transfer (REST)

A method for the integration of IT systems

Queue-based
communication

Communication between IT systems based on a queue of
messages, usually asynchronous

Synchronous
communication method

Direct method of communication between IT systems, where the
invoker is blocked until it receives a corresponding response

Asynchronous
communication method

Indirect (usually through queue message broker) method of
communication between IT systems, where the invoker is not
blocked until it receives the respective response

5 https://martinfowler.com/articles/microservices.html

http://www.melodic.cloud/
https://martinfowler.com/articles/microservices.html

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 9

2 Integration in PaaSage and Cloudiator

In this section, the current (as–is) state of the integration layer in the PaaSage and Cactos projects
is provided. In particular, we describe the Control as well as the Monitoring Plane in these projects.
For the Cactos project, only the Cloudiator part is mentioned, as this is the sole part of the project
related to Melodic.

2.1 Description of integration in PaaSage

The current communication between PaaSage components is organized in a point-to-point
manner with the use of ZeroMQ6 as a messaging mechanism. The main advantage of this solution
is the low-latency of transporting the messages between components, as ZeroMQ introduces very
little processing overhead. The diagram below shows the current connections between the
PaaSage components:

Figure 1: Current connections between the PaaSage components - demonstration diagram. Dashed lines show storing
and retrieving models, solid lines show communication between components.

6 http://zeromq.org/

http://www.melodic.cloud/
http://zeromq.org/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 10

It is important to distinguish the two data flows present in the above demonstration diagram as
they are differentiated in many ways:

• One related to the control messages (Control Flow)

• Another related to the metrics and monitoring (Monitoring flow)

The definition of these flows are provided in the Glossary.

Currently in PaaSage, both flows are implemented using ZeroMQ, with the model repository as a
way of storing and sharing data. Integration with Cloudiator is implemented via REST API
invocation.

2.2 Monitoring components in PaaSage

Monitoring and collection of metric values are fundamentally the first steps in building an Event
Management System (EMS). The next step is how events are handled. In PaaSage, the monitoring
and metrics collection is handled by central component called Metric Collector and distributed
components of Cloudiator, deployed on each virtual machine. The Metric Collector in PaaSage
receives all measurements from all deployed VMs and centrally computes composite metric
values resulting from the updated measurements. The updated set of metric values represents the
application’s current execution context, and this is then used by the solvers, by the adapter, and by
the components dedicated to evaluating and executing platform local scalability rules. Combined,
the monitoring and the platform local scalability rule processing may be considered the first steps
of an EMS.

As metric collection and monitoring are key features needed for continuous reconfiguration of the
deployed application, the PaaSage mechanism has been carefully analysed and evaluated. The
metric collection and monitoring components in PaaSage were built from scratch for PaaSage.
This approach has the following shortcomings, which have been identified based on preliminary
exploitation of PaaSage, our own experience, and new discoveries related to Event Management
Systems:

• The main issue is that the PaaSage monitoring infrastructure is just a starting point for a
proprietary EMS and for a professionally built and stable platform, as aimed for in Melodic,
one would need to expand this EMS to ensure maintainability and scalability. The question
is then whether it would be more efficient and more economical to use an available and
proven solutions for the metrics collection and the platform local rule processing. There are
many proven, open source solutions for event rule-based processing (e.g. Esper7 and
Drools8) and according to the open source philosophy it would be better to build on other

7http://www.espertech.com/esper/
8https://www.drools.org/

http://www.melodic.cloud/
http://www.espertech.com/esper/
https://www.drools.org/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 11

open source projects than re-inventing the wheel. The available solutions already have
established developer communities, and Melodic can use and contribute to a mature, stable,
and feature rich solution instead of building one from scratch. Furthermore, such mature
solutions are continuously developed, and their capabilities are increasing, which would
require more effort on behalf of Melodic in case of a custom solution.

• The metric collection component in PaaSage is fixed to only two-layer architecture: VM
level and PaaSage platform level. The Metric Collector component supports only a REST API
in PaaSage. It is not possible to create many layers with different aggregation and filtering
rules on each layer. This is a very important limitation in scalability of the solution,
especially for very large applications. Consider, for example, an application defined metric
“average response time to the user” for a data intensive application deployed in three Cloud
providers with three regions used for each provider and 500 VMs in each region; and the
metric values are averages over the response times recorded in time windows of 10 seconds.
In the PaaSage two-layer architecture there will be 4500 REST requests from 9 locations to
the Metric Collector component every 10 seconds. In case of multi-layer aggregation, each
of the 500 VMs will report their average metric values to an EMS at the region level. Between
the region level and the Cloud provider level there will be only three values collected per
each 10 seconds’ epoch, and between the Cloud provider and the Melodic platform level
there will be only three metric values per epoch to collectively summarise the execution
context of the whole deployment. There might of course be other metric types that cannot
be aggregated hierarchically and must be communicated directly to the Melodic platform,
but in this case an EMS is not worse than the current PaaSage implementation.
Furthermore, an EMS allows events to be created from monitored metric values at low level.
For example, if the above mentioned VMs are collecting the number of users connected to
each VM as an application specific metric, there could be an overload event generated by
the EMS in the VM if the number of users exceeds a given threshold. Then only this overload
flag is the metric that must be transmitted out of the VM, whereas in PaaSage all the
individual user counts must be transmitted individually to the Metric Collector before some
external rule processor could conclude that one of the machines were overloaded.

• Event rules are not really supported in PaaSage. However, PaaSage has a Scalability Rule
Language (SRL) processed by a dedicated component called SRL Adapter aimed at
processing the metric values from the Metric Collector and making a Cloud provider local
decision about a provider local scaling. The SRL rules are defined in CAMEL and the SRL
Adapter extracts them from the CAMEL deployment model. However, the PaaSage SRL does
not support the full expressivity for detecting complex events as the one offered by already
established open-source tools since the PaaSage SRL is limited to a fixed set of processing,
aggregating, and filtering rules. Extending the SRL to become a flexible event processing
language requires changes to CAMEL as well as the parsers and rule processors as part of
the SRL Adapter. This seems like an unnecessary effort when every standard EMS supports

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 12

an event processing language. Some of these languages can be directly characterised as
event-condition-action (ECA) based languages, like the one that Drools CEP engine uses, but
most can be characterized as SQL-like event processing languages able to support simple,
or more complex, event algebra operators over time or event windows. Irrespective of how
the language is formulated, event processing rules can easily be embedded into CAMEL as
plain text strings that are forwarded to the EMS language parser, which must then only be
extended to connect the event and condition parts of the rules to the involved metric values.
Since the EMS also collects the metric values it will be relatively easy to ensure the correct
internal mapping.

Changing the metric management from a two-level collection to a multi-level EMS implies
changes to the ways metric values are exchanged among the components. Using REST to push the
value events from the VMs to the Metric Collector was possible in PaaSage as the unique receiver
end-point was known to new VMs. The synchronous operation of the REST protocol was
acceptable since the connection closed once the metric value was received and stored by the
Metric Collector as all derived composite metric values where computed by the Metric Collector
and their updated values stored asynchronously in its time series database.

In a multi-level EMS it is not known a priori which components will need an updated metric value
or a computed derived event. For instance, continuing the above example, the EMS component in
a Cloud provider region could be the end-point for some of the metric values computed by the VM
local EMS, whereas other metric values should be transferred directly to the EMS component in
the Melodic platform. Only the EMS component using a metric value should receive it, and the EMS
component should not need to really care about where the metric value is generated. This implies
that the metric values should be distributed via a publish-subscribe mechanism.

The above considerations imply that the monitoring system is a major decision for the successful
integration of the Melodic platform. Fundamentally, two choices existed:

1. Improve the home-grown monitoring system of PaaSage
2. Replace the monitoring system and the scalability rules of PaaSage with a standard EMS

Considering the general requirements on the Melodic platform and its long-term sustainability,
the second option was adopted. This led to the requirement to properly select and implement a
hierarchical EMS system for Melodic, and this is further discussed in Section 4.5.14.5.3.

2.3 List of issues and risks, with suggested mitigation actions

The ZeroMQ is a broker less queue-based middleware solution, which is very efficient in terms of
performance, but with lack of support for transactions and monitoring.

We have identified a number of issues related to the used integration methods in the PaaSage and
Cactos frameworks that we present in Table 2. The issues have been discovered through own

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 13

experience and general knowledge, as well as the testing process of PaaSage, while some of them
have been described in PaaSage deliverables.

The table contains the following columns:

• Issue name – the unique name of the issue

• Issue description – brief description of the issue

• Mitigation actions – list of possible mitigation actions.

Table 2: List of integration issues in the PaaSage and Cactos projects

Issue name Issue description Mitigation actions

Point-to-point
communication

Due to many components in the
system, point-to-point
communication increases the
complexity of the whole solution.

Replace ZeroMQ due to lack of
support for creating advanced queue
and topic configuration with a
different integration solution or use
topics configuration to mimic more
advanced types of communication.
The second solution alternative
could be only used as a workaround
and is not recommended for more
complex systems.

Asynchronous
communication in some
parts of the system

Use of asynchronous communication
for all kinds of integration, even for
those that require a synchronous one
based on the respective (integration)
requirements, increases possibility of
faults and lowers the reliability of the
solution.

Replace ZeroMQ as it does not
support synchronous
communication or implement a
custom solution on top of ZeroMQ to
mimic the synchronous
communication using an
asynchronous queue-based system.

No data transformation
and canonical model9

Each component needs to interpret
the data model in a specific way; this
is error-proof and increases
complexity.

Replace ZeroMQ as it does not
support data transformation out of
the box. It would be very difficult to
implement and maintain the data
transformation and canonical model
handling on top of ZeroMQ.

Not possible to scale the
integration layers or

Enterprise grade systems require the
ability to scale and follow a HA
configuration.

Replace ZeroMQ as it does not
support HA configuration, or allow
only for vertical scaling. Due to the
design of ZeroMQ, it is not possible

9 https://www.techopedia.com/definition/30598/canonical-data-model-cdm

http://www.melodic.cloud/
https://www.techopedia.com/definition/30598/canonical-data-model-cdm

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 14

Issue name Issue description Mitigation actions

install them in HA
configuration10

to scale horizontally. Also, HA
configuration could be only
deployed in active-passive mode.

There is no easy method
to monitor the Control
flow

Monitoring and troubleshooting is
difficult.

Replace ZeroMQ due to lack of
monitoring capabilities with another
messaging system, or find a tool
which allows for ZeroMQ-based
monitoring

Messages can be lost as
the ZeroMQ
communication is
unreliable

The reliability of the system is low. Replace ZeroMQ due to lack of
reliable transfer with another
integration solution, due to lack of
possibility to achieve reliability and
support for transactions over
ZeroMQ.

No retry-mechanism can
be introduced within the
components in case of
connection problems

There is no support for retrying
operations in case of error.

Replace ZeroMQ with another
integration solution or implement a
custom retry-mechanism

Most of the presented issues are related to the lack of capabilities and features in ZeroMQ.
Therefore, an evaluation of other integration methods to find the best integration strategy for
Melodic is needed.

3 Methodology of choosing integration and component

adaptation strategy

This section contains the description of the methodology for choosing the integration and
adaptation strategy for Melodic. The result of applying the described methodology is presented in
Section 4.

For the selection of the most appropriate integration and adaptation strategy for the Melodic
project, the following methodology has been used. This methodology has been devised according
to our experience and the actual objectives that must be fulfilled:

1. The first step of the methodology is to identify the objectives and general requirements for
the integration and adaptation strategy of the project, as well as the purpose of the

10 http://searchdatacenter.techtarget.com/definition/high-availability

http://www.melodic.cloud/
http://searchdatacenter.techtarget.com/definition/high-availability

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 15

integration and alignment of the components. The requirements are identified separately
for the Control Plane as well as the Monitoring Plane.

2. The second step is to research, review and evaluate typical integration methods used to
integrate IT systems. There are plenty of such methods but – based on professional
experience and knowledge – the most typical and suitable methods were chosen. This step
is broken down into the following sub-steps:

a. A research over state-of-the-art integration methods is conducted. A small set of the
most suitable integration methods is then selected from the state-of-the-art.

b. Each of the integration methods considered is compared against the fulfilment of
the integration requirements for the Melodic project identified in the first step of the
methodology. For each requirement per each method of integration the level of
fulfilment is assigned. The estimated effort needed to implement a given integration
strategy in Melodic project is also provided as a value in the range 1 ... 5, as explained
in section 4. Lower values mean higher effort, so the scale is reversed. The reversed
scale is used for easier comparison in the next point. The effort is related to the
current architecture of the project; thus, the effort for the implementation of the
already used integration method is minimal (adjustments only).

c. After completing the previous step, a certain score is assigned to each method of
integration. The score is computed by a weighted sum approach: in the first level, we
compute the overall method score from the weighted sum of the scores calculated
for each plane; in the second level, we apply a weighted sum of the partial scores of
requirement fulfilment and the level of effort in order to compute the method score
per each plane; in the third level, we calculate the requirement fulfilment partial
score through dividing the sum of the points of the actual fulfilment of the method
across all requirements, with the sum of the maximum points that a method can
take over all requirements. The partial score of the level of effort is computed by
dividing the actual evaluation value of the method divided by the maximum possible
one (i.e., 5). For the evaluation of each integration requirement, we map the level of
fulfilment of the requirement into the range 0 ... 5. In particular, fulfilled requirement
maps to 5 points, a partially fulfilled one to 3 points and a non-fulfilled requirement
to 0 points. The score for Control Plane has weight 0.6 and the score for the Monitor
Plane has weight 0.4. The Control Plane is considered more important for the
working of the whole platform.

The calculation of the overall score for the methods is performed as follow:

▪ Partial_score_level_effort = actual effort needed for method implementation
divided by the maximum possible one (number 5).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 16

▪ Partial_score_control_plane_req = sum of fully fulfilled requirements for the
Control Plane times 5 plus sum of partially fulfilled requirements for the
Control Plane times 3.

▪ Partial_score_monitor_plane_req = sum of fulfilled requirements for the
Monitor Plane times 5 plus sum of partially fulfilled requirements for the
Monitor Plane times 3.

▪ Overall score for the method = [(Partial_score_control_plane_req/65 * 0,75) +
 (Partial_score_level_effort * 0,25)] * 0,6 +
 [(Partial_score_monitor_plane_req/15 * 0,75) +
 (Partial_score_level_effort * 0,25)] * 0,4

Please note that in order to apply the weighted sum approach, the respective partial
scores have been mapped to the same set of reals ([0.0, 1.0]), thus performing a certain
form of normalisation.

d. The methods of integration are ranked from the highest to the lowest overall score.
3. In this step, the selection of the best integration strategy for the Melodic project is

performed. This step maps to the execution of the following two sub-steps:
a. Verify selected integration method by two certified architects based on their

experience and professional knowledge, to confirm the results of the quantitative
assessment.

b. In case of a blocking issue, the method with the second highest score is selected to
be verified by experts and, thus, point 3.a. is repeated.

4. Based on the selected integration methods, the integration strategy for Melodic is
determined.

5. Based on the chosen integration strategy, the adaptation strategy will be determined, as
elaborated later in this deliverable.

6. The final step is the selection of the right and most suitable tools to implement the selected
integration method in the Melodic project.

The above steps are summarised in Figure 2.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 17

Figure 2: Diagram of methodology for choosing integration and adaptation strategy for the Melodic project

4 Methodology Application

In the following sections, we elaborate on how the methodology analysed in the previous section
is applied in case of the Melodic project. The analysis is performed according to the structure of
the methodology in a step-wise manner. Each step is analysed in its own section.

4.1 Requirements Collection

The main direction of work for the Melodic project is the integration and adaptation of the
underlying frameworks PaaSage and Cloudiator, as well as the introduction of the support for Big
Data management (data awareness and locality). For this reason, the integration and adaptation
strategy for Melodic should be carefully evaluated and precisely designed.

The fundamental objective of integration in Melodic is to achieve seamless cooperation of the
components, independent from their underlying frameworks. Such an approach is very important
for this project due to the use of different integration methods in the key underlying frameworks:

• The PaaSage project has been built using over 20 components; 11 of these components will
be re-used and will be integrated. These components are integrated using ZeroMQ
(asynchronous).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 18

• The Cloudiator11, part of the Cactos project, has also a certain component structure, but the
features are exposed by one, unified API. The components of Cloudiator are integrated by a
REST API (synchronous).

In the above projects, there are at least four different methods of integration used:

• Asynchronous, queue-based communication (e.g., the Metasolver uses ZeroMQ12 to
communicate with the solvers)

• Synchronous, via a database model repository (e.g., CP Generator exchanges the CP model
with solvers)

• Synchronous, via a REST API13 (e.g., in case of the Adapter's integration with Cloudiator)
• Asynchronous, file-based (e.g., in case of the generation of input files for the LA Solver)

Furthermore, there are two separate layers of integration, each with its own purpose and
requirements for integration:

• Control Plane – integration layer for controlling the flow of the process/actions in the
system

• Monitoring Plane – integration layer for gathering, processing and storing all the
monitoring events and respective measurements.

This variety of used integration methods, planes and components – along with efforts to achieve
the most efficient and seamless integration of all components – has resulted in the creation of a
unified method of integration.

The high-level integration and adaptation requirements for each plane are listed below. A more
detailed description of these requirements is provided in the D5.04 "Integration and testing
requirements" deliverable. These requirements are listed and characterised by an ID which
indicates, through its suffix, the actual plane on which the requirement is dedicated (CP – Control
Plane, MP - Monitor Plane, CMP - both planes).

The integration and adaptation requirements for the Control Plane are the following:

• Req1CP – Reliability: to achieve a reliable flow of the invoked operations, with full control
over an operation’s execution and returned results.

• Req2CMP – Performance: for the Control Plane, performance is not a critical issue, but the
integration layer should achieve a sufficient level of performance.

• Req3CP – Scalability: ability to scale the integration layer both horizontally and vertically.
• Req4CP – High availability: support for highly available, multi-node configuration, at least

in active-passive mode – active configuration will be an additional benefit.

11 https://www.uni-ulm.de/en/in/omi/research/results/cloudiator/
12 http://zguide.zeromq.org/page:all
13 http://searchcloudstorage.techtarget.com/definition/RESTful-API

http://www.melodic.cloud/
https://www.uni-ulm.de/en/in/omi/research/results/cloudiator/
http://zguide.zeromq.org/page:all
http://searchcloudstorage.techtarget.com/definition/RESTful-API

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 19

• Req5CP – Flexible orchestration: the ability to easily set up and reconfigure the
orchestration of method invocations of underlying components. It should be possible to
configure such orchestration without the need to code and recompile the whole platform.

• Req6CP – Support for synchronous and asynchronous communication: the selected
integration solution should support both synchronous and asynchronous communication
methods with an easy way to switch from one to the other.

• Req7CP – Security: support for both authentication and authorisation, as well as definition
of the access rights to invoke a given operation.

• Req8CP – Monitoring: the ability to monitor all operations invoked on the integration layer,
with a configurable level of detail.

• Req9CP – Logging: configurable and easy usage of a single logging mechanism for all the
invoked operations.

• Req10CP – Support for different integration protocols: the chosen solution should have
support for the most commonly used integration protocols; at least SOAP, REST and the
Java Message Service (JMS)14.

• Req11CP – Data model transformation: ability to perform complex data model
transformations.

• Req12CP – Exception handling and support for retrying: unified exception handling and
retrying of operations.

• Req14CMP – Easy to use: the integration method should be relatively simple as it needs to
be executed by every single Melodic application.

The integration and adaptation requirements for the Monitoring Plane are the following:

• Req2CMP – Performance: due to the high volume of messages being exchanged, achieving
high performance is a crucial requirement.

• Req13MP – Low resource usage: The Monitoring Plane is used by all installed applications
to properly deliver metric values, so low usage of resources is very important.

• Req14CMP – Easy to use: the integration method should be relatively simple as it needs to
be executed by every single Melodic application.

A more detailed list and description of the above requirements, with explanations about the
purpose of each requirement for the Melodic platform, is provided in D5.04 the "Integration and
testing requirements" deliverable. In Table 3, we provide a summary of the requirements collected
along with their mapping to the respective planes of the Melodic platform.

14 https://www.techopedia.com/definition/4298/java-message-service-jms

http://www.melodic.cloud/
https://www.techopedia.com/definition/4298/java-message-service-jms

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 20

Table 3: The relation of integration requirements to the two planes

Req. Id Requirement Which plane is affected by requirement
(Control Flow, Monitoring, All)

Req1CP Reliability Control Flow

Req2CMP Performance All

Req3CP Scalability Control Flow

Req4CP High availability Control Flow

Req5CP Flexible orchestration Control Flow

Req6CP Support for synchronous and
asynchronous communication

Control Flow; for the Monitoring Plane
only asynchronous communication

Req7CP Security Control Flow

Req8CP Monitoring Control Flow

Req9CP Logging Control Flow

Req10CP Support for different integration
protocols

Control Flow

Req11CP Data model transformation Control Flow

Req12CP Exception handling and support for
retrying

Control Flow

Req13MP Low resource usage Monitoring

Req14CMP Easy to use All

4.2 Integration Method Research and Review

In this section, we analyse the application of the 2nd methodology step concerning the integration
method research, review and evaluation. Our focus is on explaining why certain integration
methods have been picked up from the state-of-the-art, what they stand for and what are their
main pros and cons, and finally how well they fulfil the integration requirements collected based
on the previous methodology step.

There are many definitions of the integration of IT systems [2] [3] [4]. For the purpose of this
document, the following definition of integration [2] will be used: the interoperability between
separate IT systems or components. The purpose of the integration is to allow the interoperability
between components and systems according to the defined requirements. In the following
subsections, the most typical types of integration are described, along with a summary of their
strengths and weaknesses.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 21

For each type of integration method, the given method is compared to the requirements for
integration. A given requirement is first evaluated so as to determine its fulfilment. The possible
levels of requirement fulfilment by a particular method are discussed below:

• Fulfilled – a given requirement is completely fulfilled by the particular method, without a
necessity to implement custom code or to use any workaround. This maps to a quantitative
score of 5 for the respective method based on this requirement.

• Partially fulfilled – a given requirement is partially fulfilled by the particular method; there
could be a need to either implement custom code, to use a workaround or to handle the
requirement at the local level and, thus, not at the integration level. The custom code or
workaround does not need significant effort to be implemented, but it increases the
complexity of the solution and it might have some negative impact on performance - but
not a severe one. This maps to a quantitative score of 3 for the respective method based on
this requirement.

• Not fulfilled – a given requirement is not fulfilled by the particular method. Thus, there is
no possibility to use custom code or any workaround. The implementation of custom code
or workaround may require significant effort and increases complexity of the whole
solution to an unacceptable level. It can also severely impact performance in a quite
negative way. This maps to a quantitative score of 0 for the respective method based on this
requirement.

In addition, for each integration method, the overall estimation of the complexity of
implementation in the Melodic project has been presented. In order to quantitatively compare the
integration methods reviewed, we use an indication of the implementation effort required using
range values from 1 to 5 (1 for the highest effort and 5 for the lowest effort).

In the following subsections (4.2.1 to 4.2.4) we evaluate, by also providing respective justifications,
the level of fulfilment of integration requirements, and the level of complexity and effort, for each
integration method. In the end, an overview table is presented which summarises the evaluation
results across all methods and requirements.

4.2.1 Point-to-point integration

Point-to-point integration is a direct connection between two systems, without any layer in
between. The systems usually are connected in a synchronous manner and there is no common
data model transformation layer. The point-to-point integration is the most expensive integration
method [2] for medium and large number of components and systems that need to be integrated.
For a very small number of components and systems it could be acceptable, but for a medium or
large number of components and systems, the number of connections between systems increases
dramatically. A more detailed analysis of point-to-point communication is provided in [2].

In Figure 3 we present a typical point-to-point integration of IT systems.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 22

Figure 3: Point-to-point architecture

In Table 4, the evaluation of the point-to-point integration method is presented.

Table 4: Fulfilment of integration requirements by the Point-to-point integration method

Req. Id Requirement Fulfilment by
given
integration
method

Comments

Req1 Reliability Not fulfilled Reliability of all the integrated systems depends on the
minimum (individual) reliability across all the systems, e.g.,
a weak point of one system impacts equally other
integrated systems.

Req2 Performance Partially
fulfilled

Performance depends on the performance of each system
and it cannot be increased by scalability of the integration
layer. However, as the solution is simple enough, it is not
penalised with respect to its performance; that's the reason
for partial fulfilment. So, it is only limited by the
performance of the respective sub-systems involved.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 23

Req. Id Requirement Fulfilment by
given
integration
method

Comments

Req3 Scalability Not fulfilled Due to point-to-point communication, there is no
possibility to scale the whole solution. Introduction of
scalability needs custom implementation, which is very
difficult to maintain, requires significant effort and is thus
not recommended.

Req4 High availability Not fulfilled Due to point-to-point communication, there is no
possibility to create a complete HA solution; the process
needs custom implementation and configuration, but such
a solution is very difficult to maintain and extend. It also
requires significant effort to be introduced.

Req5 Flexible
orchestration

Not fulfilled It is not possible to use external orchestration in this case,
due to the lack of any external integration/orchestration
layer.

Req6 Support for both
synchronous
and
asynchronous
communication

Not fulfilled There is no built-in support for both types of
communication; the support needs to be custom
implemented, which is very difficult to maintain and
extend.

Req7 Security Not fulfilled Implemented at each interaction point between systems,
there is no centralised security control and maintenance;
security has to be implemented at each system level, not
the integration layer level.

Req8 Monitoring Partially
fulfilled

Monitoring is established at each of the integrated
system's level. There is no centralized solution, which
means that again a great effort will be required to
implement it.

Req9 Logging Partially
fulfilled

Logging is supported at each of the integrated system's
level. There is no centralised solution, which means that
again a great effort will be required to implement it.

Req10 Support for
different
integration
protocols

Not fulfilled Each of the integration protocols needs to be realised at
each integration level of the overall system.

Req11 Data model
transformation

Not fulfilled There is no common (domain-specific) data model and
ability to transform data models in a unified manner.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 24

Req. Id Requirement Fulfilment by
given
integration
method

Comments

Req12 Exception
handling and
support for
retrying

Partially
fulfilled

Handled at the level of each integrated system.

Req13 Low resource
usage

Fulfilled Resource usage is low due to the lack of a separate
integration layer in this case.

Req14 Easy to use Fulfilled No additional work is needed for integration except from
invoking methods of the other system. In case of many
systems, the complexity of the solution(s) is very difficult
to maintain.

The estimated effort level needed to implement this method for the Melodic project is 3. The
estimated effort level is based on the complexity of the integration method as well as the scope of
changes needed for introducing the method for the PaaSage and Cactos projects based on related
expertise.

4.2.2 Queue-based middleware integration

Message-oriented middleware uses messages transported in a queue as means of communication.
The message queuing model allows messages to be stored in a queue where they may be picked
up by an application at any time. Thanks to that, the communication is reliable, but the only
supported method of communication is asynchronous communication. A more detailed analysis
of the queue-based middleware, also known as message-oriented middleware, is provided in [4].

In Figure 4 we present a typical queue-based integration of IT systems.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 25

Figure 4: Queue based middleware architecture

Currently, in the PaaSage framework, ZeroMQ is used as an integration method. As we need to
guarantee a lower effort in the transitioning to the new integration realisation in Melodic, ZeroMQ
is considered only for the evaluation, although it is not a typical implementation of the Queue-
based middleware.

In Table 5 the evaluation of the ZeroMQ integration method is presented.

Table 5: Fulfilment of integration requirements by the Queue based integration method

Req.
Id

Requirement Fulfilment by
given integration
method

Comments

Req1 Reliability Partially fulfilled ZeroMQ, due to its design, is not fully reliable.

Req2 Performance Fulfilled Performance is high due to asynchronous
communication and efficient method of communication.

Req3 Scalability Partially fulfilled ZeroMQ - due to its design without a message broker - is
more difficult to scale.

Req4 High
availability

Partially Fulfilled ZeroMQ - due to its design without a message broker -
makes it hard to create a HA configuration.

Req5 Flexible
orchestration

Not fulfilled It is not possible to use external orchestration in this case
due to asynchronous communication.

Req6 Support for
both

Not fulfilled This method of integration, by design, supports only
asynchronous communication. There is no built-in

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 26

Req.
Id

Requirement Fulfilment by
given integration
method

Comments

synchronous
and
asynchronous
communication

support for synchronous communication; the support
needs to be custom implemented, which is very difficult
to maintain and extend.

Req7 Security Fulfilled Implemented at the integration level.

Req8 Monitoring Partially fulfilled Monitoring needs some custom implementation in the
case of ZeroMQ

Req9 Logging Partially fulfilled Logging needs some custom implementation in the case
of ZeroMQ

Req10 Support for
different
integration
protocols

Not fulfilled Supports by design only asynchronous integration
protocols. The requirement is not fulfilled, because the
whole area of synchronous methods of communications
and protocols is not covered.

Req11 Data model
transformation

Not fulfilled ZeroMQ does not support this at all. It is very difficult to
implement full canonical model transformation with only
a queue-based solution, as it usually requires additional
layers/solutions.

Req12 Exception
handling and
support for
retrying

Partially fulfilled Supported for asynchronous communication.

Req13 Low resource
usage

Fulfilled ZeroMQ has very low resource requirements.

Req14 Easy to use Fulfilled There are common patterns on how to use this type of
integration. Installation and maintenance is also quite
easy to set up and administer.

The estimated effort needed to implement this method for the Melodic project is 4, as it is already
implemented for PaaSage. This effort does not cover the implementation of the additional fixes
and custom improvements to ZeroMQ; it assumes using features available in ZeroMQ as a standard
feature.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 27

4.2.3 EAI/ESB based integration

The Enterprise Service Bus15 architecture uses a central messaging backbone (bus) for message
propagation. Systems publish messages to this bus using adapters. These messages flow to any
subscribing application that uses the same message bus. These subscribing applications should
have adapters in order to receive messages from the bus, and transform them into a format
required by them [5]. A more detailed elaboration and research related to the integration approach
using EAI/ESB could be found in16 [6]. A typical ESB solution implements support for both
synchronous and asynchronous communication. Asynchronous communication is usually
implemented using a queue-based middleware (for example, MuleESB default broker uses
ActiveMQ for asynchronous communication).

In Figure 5 we present a typical EAI/ESB integration of an IT system.

Figure 5: ESB based integration architecture

In Table 6 the evaluation of the ESB integration method is presented.

15 http://searchdatacenter.techtarget.com/definition/high-availability
16 https://www.techopedia.com/definition/1506/enterprise-application-integration-eai

http://www.melodic.cloud/
http://searchdatacenter.techtarget.com/definition/high-availability
https://www.techopedia.com/definition/1506/enterprise-application-integration-eai

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 28

Table 6: Fulfilment of integration requirements by the ESB based integration method

Req.
Id

Requirement Fulfilment by
given integration
method

Comments

Req1 Reliability Fulfilled This type of integration is designed to be highly reliable
due to the ability to set up a multiple node installation.

Req2 Performance Fulfilled Performance depends on the complexity of integration
logic, but this requirement is fulfilled, since there is a
possibility to build scalable solution.

Req3 Scalability Fulfilled Most of the ESB implementations have the ability to scale
both horizontally and vertically.

Req4 High
availability

Fulfilled Most of the ESB implementations have the ability to be
set up in HA configuration, where there is support for both
active-passive and active-active modes.

Req5 Flexible
orchestration

Not fulfilled It is not possible to use flexible orchestration with ESB
only. It requires external tools; this is described as a
separate integration method (ESB with BPM
orchestration, see next section).

Req6 Support for
both
synchronous
and
asynchronous
communication

Fulfilled Most of the ESB implementations have support for both
methods of communication.

Req7 Security Fulfilled Most of the ESB implementations have support for
centralized security management.

Req8 Monitoring Fulfilled Most of the ESB implementations have support for
centralized monitoring.

Req9 Logging Fulfilled Most of the ESB implementations have support for
centralized logging.

Req10 Support for
different
integration
protocols

Fulfilled Support for different integration protocols is a
fundamental assumption for each ESB solution.

Req11 Data model
transformation

Partially fulfilled Supported with some limitations [4].

Req12 Exception
handling and

Partially fulfilled Most of the ESB implementations have support for
exception handling and retrying. Nevertheless, it is not

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 29

Req.
Id

Requirement Fulfilment by
given integration
method

Comments

support for
retrying

possible to handle exceptions and retrying at the business
logic level.

Req13 Low resource
usage

Partially fulfilled The resource usage depends on the complexity of the
integration logic, but it is usually higher than simpler
solutions.

Req14 Easy to use Partially fulfilled The integration of a new system/component with ESB is
very easy. The configuration and administration of an
ESB requires more effort, but usually is supported by
dedicated tools built in the platform.

The estimated effort needed to implement this method for the Melodic project is 2. It is caused by
the need to deploy the whole ESB as well as change the integration technologies/protocols
currently used.

4.2.4 EAI/ESB integration with BPM orchestration

EAI/ESB integration with Business Process Management17 (BPM) orchestration is the most flexible
integration method currently used for systems integration, based on the features being provided.
This type of integration is similar to EAI/ESB integration. The only difference is that business
processes (BPs) are used for orchestrating method invocation, instead of coding this orchestration
in each particular component. Based on this fact, it is much more flexible to change the flow of the
process, and it is possible to use the same service exposed by a given component in various
processes and features of the system. A more detailed elaboration and research for using BPM to
orchestrate service invocation is provided in [1].

A typical EAI/ESB integration with BPM orchestration is presented in Figure 6.

17 http://searchcio.techtarget.com/definition/business-process-management

http://www.melodic.cloud/
http://searchcio.techtarget.com/definition/business-process-management

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 30

Figure 6: ESB based integration with BPM orchestration

In Table 7 the evaluation of the ESB with BPM integration method is presented.

Table 7: Fulfilment of integration requirements by the ESB based with BPM orchestration integration method

Req. Id Requirement Fulfilment by given
integration method

Comments

Req1 Reliability Fulfilled This type of integration is designed to be highly
reliable.

Req2 Performance Fulfilled Performance depends on the complexity of the
integration logic, but based on the ability to build a
scalable solution, the performance requirement is
fulfilled.

Req3 Scalability Fulfilled Most of the ESB implementations have the ability to
scale both horizontally and vertically.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 31

Req. Id Requirement Fulfilment by given
integration method

Comments

Req4 High availability Fulfilled Most of the ESB implementations have the ability to
be set up in HA configuration, where both active-
passive and active-active modes are supported.

Req5 Flexible
orchestration

Fulfilled For this type of integration method, flexibility of
orchestration is achieved by introducing BPM flows
for orchestration.

Req6 Support for both
synchronous and
asynchronous
communication

Fulfilled Most of the ESB implementations have support for
both methods of communication.

Req7 Security Fulfilled Most of the ESB implementations have support for
centralized security management.

Req8 Monitoring Fulfilled Most of the ESB implementations have support for
centralized monitoring.

Req9 Logging Fulfilled Most of the ESB implementations have support for
centralized logging.

Req10 Support for
different
integration
protocols

Fulfilled Support for different integration protocols is a
fundamental assumption for each ESB solution.

Req11 Data model
transformation

Fulfilled Fully supported ability to configure mapping
between data models (domain and canonical) at the
ESB level.

Req12 Exception
handling and
support for
retrying

Fulfilled Most of the ESB implementations have support for
exception handling and retrying. It is also possible to
handle exceptions and retrying at the business logic
level.

Req13 Low resource
usage

Partially fulfilled The resource usage depends on the complexity of the
integration logic and usually is higher than for
simpler solutions.

Req14 Easy to use Partially fulfilled The integration of new systems/components with
ESB is very easy. The configuration and
administration of ESB requires more effort but is
usually supported by dedicated tools built in the
platform.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 32

The estimated effort needed to implement this method for the Melodic project is 1. It is caused by
introducing an additional layer, changes in the components logic, the additional integration effort
as well as the preparation of the BPs.

4.2.5 Overall Evaluation Results

Table 8 summarises the evaluation results for the integration methods examined across all
integration requirements.

Table 8: Summary of requirement fulfilment for all integration methods considered

Req. Id Requirement/Integration method Point-to-
point

Queue
based

ESB ESB with
BPM

Req1 Reliability Not fulfilled Partially
fulfilled

Fulfilled Fulfilled

Req2 Performance Partially
fulfilled

Fulfilled Fulfilled Fulfilled

Req3 Scalability Not fulfilled Partially
fulfilled

Fulfilled Fulfilled

Req4 High availability Not fulfilled Partially
fulfilled

Fulfilled Fulfilled

Req5 Flexible orchestration Not fulfilled Not fulfilled Not fulfilled Fulfilled

Req6 Support for both synchronous and
asynchronous communication

Not fulfilled Not fulfilled Fulfilled Fulfilled

Req7 Security Not fulfilled Fulfilled Fulfilled Fulfilled

Req8 Monitoring Partially
fulfilled

Partially
fulfilled

Fulfilled Fulfilled

Req9 Logging Partially
fulfilled

Partially
fulfilled

Fulfilled Fulfilled

Req10 Support for different integration
protocols

Not fulfilled Not fulfilled Fulfilled Fulfilled

Req11 Data model transformation Not fulfilled Not fulfilled Partially
fulfilled

Fulfilled

Req12 Exception handling and support for
retrying

Partially
fulfilled

Partially
fulfilled

Partially
fulfilled

Fulfilled

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 33

Req. Id Requirement/Integration method Point-to-
point

Queue
based

ESB ESB with
BPM

Req13 Low resource usage Fulfilled Fulfilled Partially
fulfilled

Partially
fulfilled

Req14 Easy to use Fulfilled Fulfilled Partially
fulfilled

Partially
fulfilled

4.2.6 Method Score Calculation

This is the second sub-step of the integration method research, review, and evaluation step, where
the calculation of the overall score of each integration method per plane is provided. Before
supplying an explanation about how the scores were calculated, we provide a summary in Table 9
which shows the mapping of the fulfilment level of each requirement per each method to the 0 ...
5 range. In addition, an overall number of points per plane is calculated in the very last rows of the
table (along with an indication about what should have been the ideal number of points per plane
in parenthesis).

Table 9: Summary of the integration method evaluation

Req.
Id

Requirement name\
Integration method

Point-to-point Queue based ESB ESB with BPM

Req1 Reliability 0 3 5 5

Req2 Performance 3 5 5 5

Req3 Scalability 0 3 5 5

Req4 High availability 0 3 5 5

Req5 Flexible orchestration 0 0 0 5

Req6 Support for both synchronous
and asynchronous
communication

0 0 5 5

Req7 Security 0 5 5 5

Req8 Monitoring 3 3 5 5

Req9 Logging 3 3 5 5

Req10 Support for different
integration protocols

0 0 5 5

Req11 Data model transformation 0 0 3 5

Req12 Exception handling and
support for retrying

3 3 3 5

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 34

Req.
Id

Requirement name\
Integration method

Point-to-point Queue based ESB ESB with BPM

Req13 Low resource usage 5 5 3 3

Req14 Easy to use 5 5 3 3

 Estimated effort 3 (/5) 4 (/5) 2 (/5) 1 (/5)

 SUM OF POINTS for Control
and Data Flow

17 (/65) 33 (/65) 54 (/65) 63 (/65)

 SUM OF POINTS for
Monitoring Plane

13 (/15) 15 (/15) 13 (/15) 13 (/15)

In Table 10 we present the calculation of the overall scores per plane (covering the 2nd level). We
assume that the level of fulfilment has a greater relative importance than the level of effort. This
maps to assigning a weight of 0.75 to the level of fulfilment and 0.25 to the level of effort. In this
respect, the overall score per plane and integration method is calculated according to the following
formula: scoreij=0.75*reqij+0.25*effortij,, where scoreij denotes the score of method i over plane j,
while reqij and effortij denote the respective partial scores for the level of requirement fulfilment
and effort, respectively, for the current method and plane pair. The respective results are imprinted
in the table. Finally, the Overall Score for each method is calculated, based on the scores for the
Control Flow Plane and the Monitoring Plane, with weights 0.6 and 0.4, respectively. A slightly
higher weight is assigned to the Control Flow Plane, due to the more importance of that plane for
the whole solution.

Table 10: Calculation of the overall scores per plane

Integration
Method

Partial
score for
required
effort.

Partial score
for the
requirement
fulfilment
level for the
Control Plane

Overall
Score for
the
Control
Plane

Partial score for
the requirement
fulfilment level
for Monitoring
Plane

Overall
Score for
the
Monitoring
Plane

Overall Score for
all the planes (0.6
weight for the
Control Plane and
0.4 for the
Monitoring Plane

Point-to-
Point

3/5=0.6 17/65 = 0.26 0.34 13/15=0.86 0.8 0.52

Queue-
based

4/5=0.8 33/65=0.50 0.58 15/15=1.0 0.95 0.73

ESB 2/5=0.4 54/65=0.86 0.72 13/15=0.86 0.75 0.73

ESB+BPM 1/5=0.2 63/65=0.96 0.78 13/15=0.86 0.7 0.75

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 35

Based on the results in the above table, we nominate ESB+BPM as the best integration method for
the combined Control Flow Plane and Monitoring Plane, as well as individually for the first plane.
The Queue-based method is ranked as the best for the Monitoring Plane individually.

Using one integration method is the most preferred approach, due to less effort for implementation
and maintainability of the system in the future. Also, it is a less complex and error prone approach.
To achieve uniformity of integration method for each plane the ESB+BPM is then selected as an
integration method for Melodic. To confirm this selection, two experts have been asked for
verification of the choice made, as further detailed in the next section.

4.3 Integration Strategy selection verification

Based on the results of the previous methodology step, the selected integration solution is to be
verified by experts. Thus, the goal of this methodology step is to confirm the chosen option. To this
end, the professional opinion from two certified software architects, one being a Certified TOGAF
Architect with specialization in enterprise grade solutions and the second being a AWS Certified
Solution Architect with specialization in cloud solutions, was initially requested and then
considered in order to reach the final verdict, i.e., to make the final choice over the ranked list of
integration methods. In this respect, this section is separated into two subsections: the first
indicates the opinion received from the two expects, while the second analyses the final decision
taken.

4.3.1 Expert Recommendation

1. TOGAF Architect recommendation

Based on the requirements of the Melodic system, especially the focus on providing a highly
customized solution which could be exploited by use case applications, the first expert
recommends the usage of ESB as an integration method. Such a choice will make possible the
creation of a highly scalable and reliable solution, which could be extended in the future, according
to new user requirements and business needs. Using BPM for service orchestration allows to create
a very flexible solution, which will minimize the cost of future changes and the integration effort
for incorporating new components and systems as well as the overall total cost of ownership. The
ESB/BPM combination is currently widely used for newly designed systems in the financial,
insurance, telecom and other industries, as the most innovative and flexible way of system
integration.

2. AWS Architect recommendation

The Melodic system, as a multi-cloud platform, should be aligned with the architecture of typical
cloud computing applications, by relying on an as flexible as possible solution that can be easily
adapted for the cloud. Point-to-point integration is the oldest method of integration, completely

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 36

not applicable to Cloud Computing due to its lack of flexibility. The chosen integration method
should natively support the REST API over the HTTP protocol, as the mostly used solution for Cloud
Computing applications. So, only ESB and ESB with BPM are the applicable methods of integration
for that kind of solution. As such, the ESB with BPM is recommended as the most flexible method
from the two.

4.3.2 Final selection of the integration strategy

Based on the results of the evaluation of each integration method against the integration
requirements of the Melodic project, along with the professional recommendation of two certified
architects, the ESB with BPM orchestration method of integration was selected as the integration
strategy. This method achieved the highest ranking for fulfilment of requirements and enjoyed
two positive professional recommendations.

4.4 Melodic platform adaptation strategy

The adaptation strategy is derived and closely linked with the integration strategy. Based on the
selected integration strategy, the adaptation strategy for Melodic will be the following:

• All the components will be integrated based on the decided integration strategy and
method.

• The prioritized list of changes that will be applied to the components of the underlying
projects are described in deliverable D5.02 "Updates to OSS frameworks".

• The structure of the repositories will be aligned as described in the Confluence of the
Melodic project18 and will be reported in D5.03 "Security requirements & design" deliverable.

• The unit and integration tests for each of the components should be prepared as described
in the D5.6 "Test Strategy" deliverable.

• The initial and final architecture of Melodic as described in D2.1 "System specification" and
D2.2 "Architecture and initial feature definition" deliverables, respectively, will be respected
by both the integration and adaptation strategies, and will be used as a baseline for any
adaptation and modification performed.

4.5 ESB, BPM and Monitoring implementation

Based on the chosen integration strategy for Melodic, ESB integration with BPM, the following
subsections focus on evaluating possible ESB and BPM implementations, which could be used in
the Melodic project. Also, the new Monitoring implementation is initially covered.

18 https://confluence.7bulls.eu/display/MEL/Melodic

http://www.melodic.cloud/
https://confluence.7bulls.eu/display/MEL/Melodic

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 37

Due to the licensing model of the Melodic project, open-source licensing, only open-source
solutions have been evaluated as possible implementations for both ESB and BPM.

4.5.1 ESB implementation

For the ESB implementation, three possible solutions have been evaluated:

• ServiceMix19 – a high performance and available integration solution, being the most
mature and stable one.

• MuleESB20 – the most innovative solution, especially in the cloud computing area, with an
easy to use GUI and possible, additionally paid, support from MuleSoft.

• WSO221 ESB – an open-source, dynamically developed integration solution, supported by
the WSO2 technology provider.

The second and third solutions have also enterprise versions, which are not open-source. After
carefully evaluating each option, summarised in Table 11, MuleESB has been chosen as the most
suitable ESB implementation for the Melodic project for the following reasons:

• It is a stable and reliable solution, supported by MuleSoft, with plenty of documentation and
online courses

• Supports the cloud computing model
• Rich and easy to use UI for configuration and management
• Implementation of many integration patterns

Table 11: Choosing ESB implementation

Criterium ServiceMix MuleESB WSO2 ESB

Stable and reliable solution Yes Yes Yes

Cloud computing support No Yes Yes

Easy UI No Yes No

Support of different integration patterns No Yes Yes

4.5.2 BPM implementation

For the BPM implementation, there are four possible solutions that have been evaluated:

19 http://servicemix.apache.org/docs/5.x/user/what-is-smx4.html
20 https://www.mulesoft.com/resources/esb/what-mule-esb
21 http://wso2.com/

http://www.melodic.cloud/
http://servicemix.apache.org/docs/5.x/user/what-is-smx4.html
https://www.mulesoft.com/resources/esb/what-mule-esb
http://wso2.com/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 38

• Activiti22 – one of the oldest and most mature open-source BPM implementations
• jBPM23 – also a mature and stable BPM implementation, developed by Jboss24, with

integration support for the business rule server Drools25
• Camunda – a mature and more robust implementation of BPM, which does not require the

whole Jboss stack to work.
• Flowable26 – the newest solution, developed by a team of former Activiti developers.

On a first look, Activiti looked like the most promising solution. However, after evaluation and
verification of the development roadmap and taking into account the fact that the Activity
development team has split (the core of the development team migrated to the Flowable project),
Camunda has been chosen as the BPM implementation for the Melodic project. The Flowable
project is not fully mature for now, so it cannot accomplish the requirements of the Melodic Project.
The jBPM from Jboss requires the whole stack of the Jboss technology, which complicates the
implementation of the project. Key advantages of choosing Camunda are as follows:

• Lightweight implementation which is easy to deploy and maintain.
• Full support for the REST communication protocol.
• Easily available docker images, which allow for fast deployment.
• Low level of dependencies to other projects, which allows for easier upgrades and

maintainability in the future.

Table 12 highlights the superiority of Camunda based on the 4 aforementioned criteria.

Table 12: Choosing BPM implementation

Criterium Activity jBPM Camunda Flowable

Easy maintenance and deployment Yes No Yes Yes

REST support Yes Yes Yes Yes

Docker images availability No Yes Yes No

Easy upgrade and maintainability No No Yes No

4.5.3 Monitoring component implementation

The monitoring capabilities for the modern, cross and multi cloud systems are considered critical
elements to successfully deploy, reconfigure, and maintain them. As presented with examples in
[7] the number of monitoring events and the ability to process them efficiently is a critical issue

22 https://www.activiti.org/about
23 https://bpm.com/what-is-bpm
24 https://www.techopedia.com/definition/3525/jboss-application-server-jboss-as
25 https://www.drools.org/
26 http://www.flowable.org/

http://www.melodic.cloud/
https://www.activiti.org/about
https://bpm.com/what-is-bpm
https://www.techopedia.com/definition/3525/jboss-application-server-jboss-as
https://www.drools.org/
http://www.flowable.org/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 39

for such systems. As estimated in the same work, the number of generated events that should be
intercepted and processed for maintaining the appropriate service levels, could be bigger than
10.000 events per second for large scale, big data, distributed systems.

Consequently, the monitoring mechanism of the Melodic platform becomes crucial for the overall
solution. It enables the continuous monitoring and metrics gathering generated by all the deployed
application components. Continuous monitoring and optimization are the unique features of
Melodic, comparing for example to other TOSCA-based solutions. The reason for this is that these
Melodic features are based on the Models@run.time [8] approach. This approach dictates the initial
creation and constant update of models that drive, in their turn, the continuous optimization of the
application, using both current and historical monitoring data. Monitoring of cross and multi-cloud
systems, allows for flexible and adaptive behaviour which is a necessity for large organizations
which seek enterprise system grade quality when trying to exploit the clouds. As argued in [9], the
use of a flexible monitoring mechanism is the most appropriate choice for driving the deployment
and reconfiguration of the modern, distributed IT systems.

As shown by the discussion of the PaaSage approach in Section 2.2, the centralised Metric Collector
component poses limitations with respect to scalability and performance for monitoring Big Data-
intensive application components. The use of a central metric collection point may result in a high
network bandwidth used just for monitoring purposes. In addition, message flooding scenarios
cannot be avoided, exactly because of this centralised approach. With respect to internal
implementation details of the PaaSage Metric Collector, we have identified several shortcomings
leading to the design and implementation of a more flexible event processing solution (see the full
discussion on the issues presented in Section 2.2).

On the other hand, the design and implementation of a Distributed Complex Event Processing
(DCEP) approach presents concrete benefits against a centralized one. A centralized CEP must
process a potentially huge number of events and thus may become a bottleneck [10]. Coping with
an overwhelming amount of data can lead to message flooding and information overloading that
can lead to queuing effects and into the delay of monitoring data processing [11]. The integration
of the monitoring streams and the complex event processing jobs result in the ability to keep and
process low-level high-frequency monitoring data (e.g. CPU/RAM usage) inside the VM that
produces it while relaying processed data to higher levels only when needed; e.g. average CPU
usage from all the VMs on a certain Cloud, or maximum number of users connected to a VM. This
leads to the faster detection of application execution context situations that may necessitate
reconfiguration, and at the same time reduce network bandwidth for monitoring data and the
minimisation of message flooding occurrences. Last, but not least, the existence of only one event
processing engine represents a single point of failure [12]. With the DCEP the impact of failures is
reduced since the computational load is distributed among various CEP engines in an efficient
way. Even though the top level CEP engine remains crucial for for the understanding of the global
execution context, its failure will not bring down the monitoring system, and thus the DCEP is

http://www.melodic.cloud/
mailto:Models@run.time

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 40

recillient and offers graceful degradation in the presence of faults, even if it is the top level CEP
that fails.

In terms of Melodic, we decided to address the limitations of the PaaSage monitoring system by
introducing a standard and flexible DCEP, tailored to the needs of the multi-Clouds domain. The
following criteria has been identified as important for the selection of the new Melodic monitoring
system:

1. Ability to scale in order to cope with a potentially huge number of events generated by
hundreds of sources;

2. Ability to apply complex formulas for the aggregation the metrics;
3. Ability to detect and publish complex events based on event algebra operators over the

current global or local application execution context identified by the all or subsets of the
metric values;

4. Design a monitoring system flexible enough to be able to efficiently handle metrics from a
single component to huge deployments with hundreds of virtual machines.

Based on these criteria and the requirements for the Monitoring Plane, a monitoring mechanism
was designed and implemented based on the Esper complex event processing engine. We have
selected Esper27 because of the following advantages:

• Esper offers a High Availability option in comparison to other CEP products and its basic
version can even cope with 500.000 event/s [13];

• It is based on the Event Processing Language28 for defining highly expressive complex
event patterns that allow to perform nested queries over a monitor data stream. This
expressivity is an important advantage of Esper against even more performance-oriented
engines like Siddhi [13];

• It supports a rich set of configurable data windows while other engines provide a basic set
of very simple rolling, sliding, or hopping windows. Esper data windows can be placed into
intersection or union set-logic relationships [13];

• Esper supports all aspects of object-oriented design as well as dynamic typing, thus can
handle schema evolution for adapting event processing rules29.

• Esper is widely accepted in the event processing community and well-known for its
commercial use30 (e.g. Paypal, Accenture, Huawei, Oracle etc.).

The metric values and event messages must be transmitted among the dynamic number of Esper
CEP engine component instances, which necessitates a flexible publish-subscribe message
distribution mechanism as outlined in Section 2.2. The ZeroMQ used in PaaSage would qualify as

27 www.espertech.com/esper/
28 https://ieeexplore.ieee.org/document/1419978/
29 http://www.espertech.com/esper/esper-faq/#comparison
30 https://www.slideshare.net/ChandraDivi1/rule-engine-evaluation-for-complex-event-processing?from_action=save

http://www.melodic.cloud/
http://www.espertech.com/esper/
https://ieeexplore.ieee.org/document/1419978/
http://www.espertech.com/esper/esper-faq/#comparison
https://www.slideshare.net/ChandraDivi1/rule-engine-evaluation-for-complex-event-processing?from_action=save

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 41

an efficient peer-to-peer distribution mechanism. However, as outlined in Section 4.2.1,
configuring a peer-to-peer protocol for large and dynamic systems is a complex task owing to the
fact that both end-points need to be configured when a new data provider joins the system.
Typically, if a new VM is started, it will provide some metric values, and all other CEP engines
processing metrics of the type provided by the new machine would need to subscribe to these
metrics. A message broker simplifies this configuration. Given that the ActiveMQ31 is installed for
the control flow in each VM, it could ideally be reused for the metrics monitoring and the event
messages.

However, this requires that the message broker is capable to cope with hundreds to thousands of
events per second, while reducing the chances of message flooding in any complex big data
application multi-cloud topology. For our solution, we have used multiple instances (one per VM)
of the ActiveMQ server (‘the broker’). It is well known as a lightweight, Java Messaging System
(JMS)32-compliant solution that offers high availability, high performance, and fault tolerance33.
Specifically, each Active MQ broker can efficiently cope with up to 22.000 messages/sec per topic34.
Furthermore, Active MQ offers additional features like traceability of the messages, metrics
volume statistics and so on. The federated ActiveMQ brokers will therefore be the starting point
for the monitoring and event system in Melodic, and the performance and scalability of the
implemented mechanism will be investigated, and results reported in Deliverable D3.4.

As a default approach, this mechanism will be deployed in a three-layer architecture:

• VM Level – gathers, filters and aggregates messages at the Virtual Machine level
• Cloud Provider Level – gathers, filters and aggregates messages at the Cloud Provider level
• Melodic Platform Level – gathers, filters and aggregates messages at the platform level

Each level will filter and aggregate messages, if possible, thus effectively limiting the number of
the messages passed to higher layers. The number of layers could be configured according to the
requirements of the particular system at hand, e.g. additional layers could be added per availability
zone or region. Further details on this monitoring mechanism will be provided as part of the
Deliverable D3.4.

31 http://activemq.apache.org
32 https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
33 https://www.slideshare.net/ceposta/activemq-performance-tuning
34 http://activemq.apache.org/performance.html

http://www.melodic.cloud/
http://activemq.apache.org/
https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
https://www.slideshare.net/ceposta/activemq-performance-tuning
http://activemq.apache.org/performance.html

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 42

5 Integration and adaptation method for Melodic
This section contains detailed information about the Control Flow, including the suggested
construction of the processes and flows, rules for services invocation and ESB exposition and data
model handling and transformation.

5.1 Discussion on the selected integration method for Melodic

Due to the architecture and the characteristics of the Melodic project, especially the two different
types of flows and planes, and after the carefully evaluation presented in Section 4, an integration
solution based on ESB/BPM has been chosen. The chosen implementation of the ESB/BPM,
MuleESB, includes ActiveMQ, a queue-based integration solution which will be re-used for the
Monitoring Plane.

The orchestration of the data and the action flows within the system will be modelled as processes
in an appropriate BPM language, i.e. the one supported by the BPM solution selected as described
in Section 4. The Integration layer based on ESB/BPM will allow reliable and monitorable method
invocation. It will also support reusability of the methods exposed by underlying components and
avoid any point-to-point communication.

The advantage of using Enterprise Service Bus with MuleESB, which is an enterprise grade
solution, is the ability to achieve a high level of scalability and availability. The MuleESB could be
installed in a multi-node configuration, supporting the active-active mode.

For example, a typical pattern and best practice is to use a control process which will handle the
events that must trigger any action or sub-process on the system. Then, based on the event type
and current state of the system, one or more dedicated processes will be executed. Examples of
dedicated processes include:

• Deployment process – a process responsible for orchestrating the deployment of a new
application, from uploading the user's CAMEL model until the final application deployment
in the cloud.

• Un-deployment process – a process responsible for un-deploying the user application from
the cloud.

• Reconfiguration of the application based on a new solution generated by the solvers – this
process will handle all events generated by the system's components to address properly
the application reconfiguration.

The above list is not exhaustive, and new processes could be implemented according to the user
requirements and preferences. The services provided by underlying components will be exposed
on the ESB and could be used (and re-used) from any process. Based on this, most of the changes
in scope could be handled simply by reconfiguring the process flow (or implementing a new flow)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 43

instead of performing changes in the system code. This integration-oriented architecture part
introduces an abstraction layer between business flow and domain systems.

6 Summary

This deliverable addresses the core issue of integration and adaptation of the underlying PaaSage
and Cactos frameworks to set up the Melodic platform. An appropriate integration and adaptation
strategy is crucial for the success of the project, allowing end-to-end Cloud service automation. To
this aim, the Melodic project has to achieve the seamless cooperation of the various needed
components from the two adopted frameworks: one component from the Cactos framework (so-
called “Cloudiator”) and 11 components from the PaaSage framework.

Architecting such integrated solutions is a complex task. There are many conflicting drivers and
many possible "right" solutions and “cookbooks” for such framework integration. Therefore, the
goal of the task of framework integration was to make the best decisions on crucial points (like
type of communication for a given plane), according to a carefully collected set of requirements,
paving the way for a long-term flexible, supportable, maintainable, and cost-effective Melodic
platform architecture.

From the very beginning, different integration methods were already available from existing
frameworks: ZeroMQ as a messaging mechanism for asynchronous communication between
PaaSage components, and REST API invocations for integration with Cloudiator. The relevance of
these integration methods for the Melodic project and the need for additional integration methods
were discussed according to the two Melodic planes (Control Plane as well as Monitoring Plane)
and to the Melodic specific integration requirements (including reliability, performance, and
scalability). Four integration methods were reviewed (Point-to-point, Queue-based, ESB and ESB
with BPM) according to each specific plane (Control or Monitoring Plane) and the specific
prioritized requirements that have been posed. An overall comparison of the integration methods
was achieved according to the degree of fulfilment of the requirements for integration and
implementation effort in the Melodic project.

Based on the results of the evaluation of each integration method and professional
recommendations of certified architects, the ESB with BPM orchestration method of integration
has been chosen as the integration strategy for the Control and Data Plane and the Monitoring
Plane.

Out of existing open source ESB and BPM solutions, MuleESB has been chosen for the ESB
implementation, while the Camunda execution engine was chosen for the BPM part. In this way, a
Melodic workflow will be efficient and adaptable to new requirements as they come, as such
processes like deployment, un-deployment and reconfiguration processes, or even others, can be
flexibly modelled. As a Distributed Complex Event Processing solution, the ESPER module has

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 44

been chosen. For the Monitor Plane, the ActiveMQ, as a part of MuleESB, will be used, which
efficiently fulfils the requirements of this plane. By means of this combined solution, we can build
a uniform and robust integration layer for Melodic project, which most efficiently handles the
carefully identified requirements.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
5.01

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 45

7 References

[1] J. Sutherland and W.-J. van den Heuvel, "Enterprise Application Integration and Complex
Adaptive Systems," Communications of the ACM, vol. 45, 2002.

[2] T. Gulledge, “What is integration?,” Industrial Management & Data Systems, vol. 106, 2006.

[3] M. M. Lynne, "Paradigm Shifts - E-Business and Business/Systems Integration,"
Communications of the Association for Information Systems, vol. 4, 2000.

[4] F. Losavio, D. Ortega and M. Perez, "Modeling EAI [Enterprise Application Integration]," in
12th International Conference of the Chilean Computer Science Society, Atacama, 2002.

[5] O. Dahl, "Enterprise Application Integration - Applying Patterns to the Process of Message
Transformation," Reports from MSI, Växjö University, no. 02142, 2002.

[6] M. Themistocleous and Z. Irani, "Benchmarking the benefits and barriers of application
integration," Benchmarking: An International Journal, vol. 8, 2001.

[7] T. Reidemeister, "Fault Diagnosis in Enterprise Software Systems Using Discrete Monitoring
Data," Electrical and Computer Engineering, 2012.

[8] G. Blair, N. Bencomo and R. B. France, "Models@ run.time," Computer, vol. 42, 2009.

[9] M. A. Munawar and P. A. Ward, "Adaptive Monitoring In Enterprise Software Systems,"
Department of Electrical and Computer Engineering University of Waterloo, Ontario, 2006.

[10] N. P. Schultz-Møller, M. Migliavacca and P. Pietzuch, "Distributed complex event processing
with query rewriting," in Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems - DEBS '09, Nashville, 2009.

[11] F. Paraiso, G. Hermosillo , R. Rouvoy and L. Seinturier, "A Middleware Platform to Federate
Complex Event," in IEEE 16th International Enterprise Distributed Object Computing
Conference, Beijing, 2012.

[12] A. Mdhaffar , R. B. Halima , M. Jmaiel and B. Freisleben, "A Dynamic Complex Event
Processing Architecture for Cloud Monitoring and Analysis," in IEEE 5th International
Conference on Cloud Computing Technology and Science, Bristol, 2013.

[13] M. Dayarathna and S. Perera, "Recent Advancements in Event Processing," ACM Computing
Surveys (CSUR), vol. 51, 2018.

http://www.melodic.cloud/

	1 Introduction
	1.1 Structure of document
	1.2 Glossary

	2 Integration in PaaSage and Cloudiator
	2.1 Description of integration in PaaSage
	2.2 Monitoring components in PaaSage
	2.3 List of issues and risks, with suggested mitigation actions

	3 Methodology of choosing integration and component adaptation strategy
	4 Methodology Application
	4.1 Requirements Collection
	4.2 Integration Method Research and Review
	4.2.1 Point-to-point integration
	4.2.2 Queue-based middleware integration
	4.2.3 EAI/ESB based integration
	4.2.4 EAI/ESB integration with BPM orchestration
	4.2.5 Overall Evaluation Results
	4.2.6 Method Score Calculation

	4.3 Integration Strategy selection verification
	4.3.1 Expert Recommendation
	1. TOGAF Architect recommendation
	2. AWS Architect recommendation

	4.3.2 Final selection of the integration strategy

	4.4 Melodic platform adaptation strategy
	4.5 ESB, BPM and Monitoring implementation
	4.5.1 ESB implementation
	4.5.2 BPM implementation
	4.5.3 Monitoring component implementation

	5 Integration and adaptation method for Melodic
	5.1 Discussion on the selected integration method for Melodic

	6 Summary
	7 References

