

www.melodic.cloud

 Title:

Provider agnostic interface definition &
mapping cycle

Executive summary:

This deliverable presents the Executionware component of
the Melodic project. The tasks of the Executionware are: (a)
the allocation of resources from a heterogeneous multi-cloud
environment, (b) the usage of those resources to deploy and
run (data processing) tasks and (c) monitoring the runtime
context of the running tasks.

This document focuses on the provider agnostic interface
used to abstract syntactic and semantic differences in the
cloud providers’ APIs and the required mapping to translate
the agnostic interface to concrete implementations on the
providers’ side. In addition, it presents a first draft of the
resource management layer, focusing on resource
advertisement to Melodic’s Upperware. Finally, the
deliverable gives an outlook for a refined resource
management layer and the data processing layer that will
span on top of it.

Multi-cloud Execution-ware for
Large-scale Optimised Data-
Intensive Computing

H2020-ICT-2016-2017
Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:
731664

Duration:
1 December 2016 -
30 November 2019

www.melodic.cloud
Deliverable reference:
D4.1

Date:
09 April 2019

Responsible partner:
UULM

Editor(s):
Daniel Baur

Author(s):
Daniel Baur, Daniel Seybold

Approved by:
Ernst Gunnar Gran

ISBN number:
N/A

Document URL:
http://www.melodic.cloud/deli
verables/D4.1 Provider
agnostic interface definition &
mapping cycle

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2018)3067143 - 11/06/2018

www.melodic.cloud 2

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Document

Period Covered M1-16

Deliverable No. D4.1

Deliverable Title Provider agnostic interface definition & mapping cycle

Editor(s) Daniel Baur

Author(s) Daniel Baur, Daniel Seybold

Reviewer(s) Gregoris Mentzas, Marcin Prusiński

Work Package No. 4

Work Package Title Executionware

Lead Beneficiary Ulm University

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 36

www.melodic.cloud 3

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Table of Contents
1 Introduction ... 5

1.1 Scope of the document ... 5

1.2 Structure of the document .. 6

2 Related Work ... 6

2.1 IaaS Mapping ... 6

2.2 PaaS Mapping .. 8

2.3 Cross-Level Mapping .. 9

2.4 Resource Management ... 10

3 Features .. 10

3.1 Provider agnostic interface & mapping ... 11

 IaaS ... 11

 PaaS .. 15

3.2 Job Description ... 18

3.3 Resource Management ... 19

 Resource Advertisement .. 20

 Matchmaking / Scheduling ... 22

 Resource Allocation ..23

3.4 Deployment ..23

3.5 Monitoring ... 24

3.6 Adaptation ... 26

4 Architecture ... 26

5 Implementation... 28

6 Integration and Documentation .. 28

6.1 Integration ... 29

6.2 Documentation ... 30

7 Future Work ... 31

7.1 Resource Management ... 31

7.2 Deployment .. 31

7.3 Adaptation ..32

www.melodic.cloud 4

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

7.4 Data Processing Layer ..32

8 Conclusion ...32

Bibliography .. 33

List of Figures

Figure 1: Melodic Architecture [1] ... 5
Figure 2: ComputeService and DiscoveryService Interface ... 13
Figure 3: Discovery Class Model .. 15
Figure 4: PlatformService Interface and Plaform Entities ... 16
Figure 5: Job Description Framework .. 19
Figure 6: Requirement .. 22
Figure 7: Monitoring Framework .. 25
Figure 8: Monitoring Class Diagram .. 25
Figure 9: Cloudiator Architecture .. 27
Figure 10: Cloudiator Integration Tools & Workflow ... 30

List of Tables
Table 1: IaaS Compute Entities .. 13
Table 2: Supported Cloud Providers ... 14
Table 3: PaaS Entities ... 17
Table 4: Supported PaaS Providers .. 17
Table 5: OCL Requirements ... 21
Table 6: Documentation Sources ... 30

www.melodic.cloud 5

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

1 Introduction

The purpose of this deliverable is to depict the design and the implementation of Melodic’s
Executionware. As seen in the overview of Melodic’s architecture in Figure 1, the Executionware
fulfills four main tasks: (a) it provides a cloud-agnostic interface to access features of multiple
cloud providers in a harmonized way, (b) it delivers resource management capable of allocating
and managing resources from those providers, (c) it supplies a data processing layer on top of
resource management able to execute the user’s defined processing tasks and (c) it, finally,
provides monitoring services gathering runtime information of the managed resources and
deployed tasks.

Within the context of the Melodic project, the Executionware has two major points of interaction:
(a) the Adapter component of the Upperware and (b) the API offered by the cloud providers. For
the interaction with the Upperware, the Executionware provides a RESTful API giving the
Upperware access to its resource management capabilities and monitoring services. On cloud
provider side, the Executionware implements a provider agnostic interface that is then mapped
to the data format of the respective cloud provider allowing the Executionware to allocate and
manage resources across multiple providers.

Figure 1: Melodic Architecture [1]

1.1 Scope of the document

This document is intended for the general audience that is interested in how the Executionware
achieves cloud agnostic resource management across multiple cloud providers. The work of this
deliverable depends on the System Specification D2.1 [2] and the Architecture and Feature
Definitions D.2.2 [1] deliverables.

www.melodic.cloud 6

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

1.2 Structure of the document

The rest of this document is structured as follows: Section 2 discusses related work in the
domain of the Executionware. Afterwards, Section 3 derives the features needed to enable the
Executionware’s task of managing resources across multiple cloud providers. Section 4 shortly
presents the architecture of the Executionware. Next, Section 5 discusses the implementation of
the Executionware while Section 6 depicts its integration and documentation. Finally, Section 7
gives an outlook for future work before Section 8 will conclude the deliverable.

2 Related Work

Due to the continuous evolvement of Cloud computing the heterogeneity of offered Cloud service
models as well as the actual Cloud provider APIs complicate the orchestration of distributed
applications in a multi-cloud environment [3][4]. Yet, the results of the Cloud research
community address this heterogeneity and offer unifications for different Cloud service models
[5]. In the following, we revisit existing solutions and outline their adoption and required
extensions in Melodic in order to enable the orchestration of data-intensive applications in a
multi-cloud environment. First, we introduce approaches for the mapping of Infrastructure as a
Service (IaaS) and second for Platform as a Service (PaaS) Clouds. Afterwards, we depict concepts
that work across those Cloud levels. Finally, we introduce concepts for the unified management
of heterogeneous resources, such as physical machines, virtual machines or containers.

2.1 IaaS Mapping

With the adoption of Cloud computing and the growing amount of Cloud providers, the need for
a unified representation of IaaS resources is realised by the Cloud research community and
standardization bodies in order to prevent users from vendor lock-in. Further, a unified resource
mapping eases the deployment of multi-cloud application scenarios and provides even more
flexibility to the application owners in terms of application adaptations like scaling or migration.

In this respect, different standards and model specifications try to tackle the Cloud abstraction
on the level of resource definition. The Open Cloud Computing Interface (OCCI)1 targets the
definition of an API for Cloud resources with the focus on IaaS. There have been some attempts
to implement OCCI on private Clouds (e.g., OpenStack2 or rOCCI [6]), but wide adoption and
commercial usage is still missing.

1 http://occi-wg.org/
2 http://occi-wg.org/2012/07/18/occi-in-openstack/

www.melodic.cloud 7

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

The Cloud Infrastructure Management Interface (CIMI)3 provides a model for the management of
interactions between an IaaS provider and the service consumer. Attempts for CIMI to be
implemented in OpenStack and the retired Apache Deltaclouds4 have been performed but are
already inactive and therefore wide adoption is missing as well.

Yet, concepts from these approaches have been adopted by the Cloud community, resulting in a
set of abstraction layer libraries for different programming languages. These libraries provide
the mapping of the providers resource offerings to generic resource templates. In addition, they
support a subset of the providers’ storage APIs. Well adopted libraries are Apache jclouds5 for
Java, Apache Libcloud6 for Python and Fog7 for Ruby. All of these libraries provide a single
interface to users abstracting all the IaaS provider-specific characteristics. Through such an
abstraction layer, multi-cloud application deployment is enabled through facilitating the
provision and deployment of IaaS resources.

In order to enable adaptive multi-cloud deployment for data-intensive applications, the usage of
such abstraction libraries is not sufficient as the orchestration of the applications across
multiple Cloud providers [7] [8] is not in their scope. Yet, the libraries provide the tool to build
orchestration tools on top of them to enable multi-cloud orchestration.

Cloud orchestration tools typically rely on abstraction libraries but are able to manage the
deployment of the whole application as well as the complete lifecycle of the involved resources
[7]. The latter two capabilities are usually covered by a dedicated Domain specific language (DSL)
to express the required information. Besides application deployment, orchestration tools may
also exhibit application monitoring and adaptation features.

Apache Brooklyn8 is an orchestration tool for modelling, monitoring, and managing applications
through autonomic blueprints that define an application using a declarative YAML syntax,
which complies with the CAMP [9] standard and exposes many of the CAMP REST API endpoints.

Cloudify9 is an orchestration tool that builds upon a TOSCA-aligned modelling language for
describing the topology of the application which is then deployed to allocated Cloud resources.
As in TOSCA [10], Cloudify splits the blueprint in a type and a template definition. Types define
abstract reusable entities that are to be referenced by templates. The types therefore define the
structure of the template, by, e.g., defining the properties that a template can have/must provide.
The template then provides the concrete values for these types. This mechanism is used for

3 https://www.dmtf.org/standards/cmwg
4 https://deltacloud.apache.org/
5 https://jclouds.apache.org/
6 https://libcloud.apache.org/
7 http://fog.io/
8 https://brooklyn.apache.org/
9 http://cloudify.co/

www.melodic.cloud 8

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

specifying/annotating the nodes as well as the relationships between them within an
application topology.

Fully commercial tools such as Scalr10 build as well upon the aforementioned abstraction
libraries but focus only on the usage of public Cloud providers. Further, their closed core impedes
accessing and extending their core functionalities.

As existing Cloud Orchestration Tools (COTs) only target a subset of the functionalities of a
holistic COT [7] and do not focus explicitly on data-intensive applications, Melodic pursues the
established Cloudiator COT [11] [12], which provides multi- and cross-cloud support, monitoring
and runtime adaptation mechanisms and native container support. Cloudiator’s IaaS abstraction
layer builds upon the jclouds library by adding several extensions and enhancements. Further,
Cloudiator enables the multi- and cross-cloud deployment of applications by providing a
powerful interface for a unified resource mapping, which is introduced in Section 3.

2.2 PaaS Mapping

While the IaaS level focuses on the provisioning of resources to run Cloud applications, e.g.,
virtual machines, the PaaS level covers the provisioning of resources in conjunction with
application-centric run-time environments or application servers. Besides the runtime
environment for the actual application, PaaS offers additional services, such as database
management systems or load balancers, which can be added to the environments.

Yet, the APIs of existing PaaS offerings tend to be even more heterogeneous [13] than those of the
IaaS offerings, which makes the orchestration of services across multiple PaaS providers a very
challenging task11. A first approach to standardize the deployment of Cloud applications with
respect to PaaS is provided by OASIS CAMP [9]. CAMP specifies an interoperable protocol to
package and deploy applications and interfaces for self-service provisioning, monitoring, and
control. However, the CAMP standard is not yet adopted by popular PaaS providers, such as
Heroku12, OpenShift13 or CloudFoundry14.

The heterogeneity of existing PaaS providers is analyzed in [13] and a profile for common
capabilities for PaaS offerings is presented. In this scope, a model is derived, which represents
the three main aspects of PaaS offerings: infrastructure, platform and management. Moreover, a
fine-grained classification of PaaS into IaaS-centric, generic and SaaS-centric PaaS is derived,
based on the level of provided control mechanisms.

10 https://www.scalr.com/
11 https://paasfinder.org/vendors
12 https://www.heroku.com/
13 https://www.openshift.com/
14 https://www.cloudfoundry.org/

www.melodic.cloud 9

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Similar to the IaaS mapping approaches, there are approaches for PaaS that provide a uniform
PaaS API for multiple PaaS providers. The COAPS API [14] defines a unified description allowing
a PaaS provider independent representation of applications based on a model for the application
and its environment. Furthermore, the COAPS API provides a REST API for the life-cycle
management of the application (e.g., createApplication, destroyApplication, etc.) that internally
maps the calls to the APIs of the actual chosen PaaS providers.

A similar approach is followed by Nucleus [15], providing also a PaaS provider agnostic API
supporting four PaaS providers. Nucleus focuses on the separation between platform- and
application-centric API interactions and offers, compared to the COAPS API, additional
management features, such as scaling, monitoring of applications or the management of
services and deployment region.

The PaaS Unified Library (PUL) [16] adopts the concept of providing a unified PaaS API via a REST
service or as a library. PUL supports a comprehensive set of resource and application
management operations, such as deploy, undeploy, start, stop, bind service or scale application.

A first approach towards a PaaS orchestration tool is presented by PaaSHopper, a middleware
for orchestrating application across multiple PaaS providers. Similar to the previously
introduced approaches [13]–[16] PaaSHopper middleware enables the composition of multiple
application components running at different PaaS providers into one application. Yet,
PaaSHopper only focuses on the PaaS service model.

Within Melodic, Cloudiator’s revised modular architecture enables the integration of different
PaaS mapping approaches. A first implementation is building upon the PUL library, which
provides the required feature set and allows an easy integration. Further details are described in
Section 3.1.2.

2.3 Cross-Level Mapping

While the previously introduced mapping concepts of mapping only focus on a dedicated Cloud
service level, recent advances in the Cloud research also target the mapping across the IaaS and
PaaS service level. A first approach for cross-level mapping is introduced by [17], identifying the
challenges in cross-level API mapping and the orchestration of applications. Further, a
preliminary COT is presented, which exploits CloudML [18] models to unify different Cloud
service levels and enable cross-level orchestration.

Another cross-level mapping and orchestration approach is introduced in [19] which extends the
IaaS orchestration tool Apache Brooklyn15 with the capabilities to additionally orchestrate
applications over PaaS services. Applications are described in provider-agnostic TOSCA models
[10]. While [19] only focuses on the deployment aspect of cross-level orchestration, an extended

15 https://brooklyn.apache.org/

www.melodic.cloud 10

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

version of the respective tool focuses as well on the adaptation aspect of cross-level
orchestration [20]. In this context, [20] introduces an algorithm for migrating applications
between IaaS and PaaS providers. Yet, cross-level monitoring and additional level-specific
adaptation actions in different levels of abstraction are not supported. For instance, even at the
IaaS level, support for component scaling is missing. Based on the above analysis, the available
cross-level COTs only support a subset of the desired COTs features [7] for cross-level mapping
and orchestration. Hence, Cloudiator will enable the execution of complex adaptation actions for
multi- and cross-cloud scenarios.

2.4 Resource Management

Resource management has been thoroughly studied in different contexts like Cluster, Grid or
Cloud Computing. Apache Mesos [21] uses a two level scheduling approach, splitting the resource
management to a central unit and multiple frameworks. The central scheduler offers each
framework a set of resources and leaves it to the framework to select the best-fitting one. It uses
the Dominant Resource Fairness (DRF) algorithm [22] to achieve fairness in a multi-tenancy
environment, where multiple tenants compete for the resources.

Apache Aurora16 and Marathon17 build upon Mesos, providing support for long-running services
and containers.

Google Borg [23] uses a central resource manager especially designed for handling large clusters
sizes. In contrast to Mesos’ DRF algorithm, Borg uses quotas and priorities for the scheduling
decisions.

High Performance Computing (HPC) resource managers like Moab18, TORQUE19 or SLURM20 in
general use large backlogs (scheduling queues) to achieve high utilization.

In contrast to existing solutions that typically target the scheduling on a static, prior known set
of resources with objectives like fairness across multiple users and high utilization, Cloudiator
aims at scheduling on a dynamic set of resources that are acquired on demand.

3 Features

To be able to deploy distributed applications in a heterogeneous multi-cloud environment,
multiple features are required that are derived from the Melodic’s System Specification D2.1 [2]
and Initial Feature Definition D2.2 [1]. These features are presented in this section.

16 http://aurora.apache.org/
17 https://mesosphere.github.io/marathon/
18 http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-suite-enterprise-edition/
19 http://www.adaptivecomputing.com/products/open-source/torque/
20 https://www.schedmd.com/

www.melodic.cloud 11

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

First, a provider agnostic interface is required to hide the syntactic and semantic differences
between the different cloud providers. Additionally, mapping logic needs to exist, capable of
mapping the agnostic interface to the different API implementations of the providers. Cloudiator
features this layer for IaaS as well as PaaS clouds.

Second, one needs to be able to supply a provider agnostic description of the application that
needs to be deployed. This is the task of our job description framework.

Additionally, a resource management layer is required, capable to use the provider agnostic
interface and mapping layer to allocate matching resources. We rely on an offer-based approach
were a matchmaking entity, e.g., the Upperware of Melodic, can retrieve a set of node
advertisements and select the best-matching node candidate.

Having allocated the resource using the resource management layer, the Executionware’s
deployment logic is responsible for deploying the described application on the given resources.

Finally, a monitoring layer measures the current deployment context, reporting runtime
deviations to interested entities.

3.1 Provider agnostic interface & mapping

As different cloud providers and especially different cloud models still differentiate their service
based on their API, supporting multiple cloud providers requires a common mapping of the
different APIs. For this purpose, the Executionware features a provider agnostic interface
mapping. Its task is to harmonise the APIs of multiple providers to a common interface, thus
abstracting those differences from other components. This abstraction is split into two different
layers, based on the supported cloud levels: IaaS and PaaS.

 IaaS

The IaaS layer is responsible for providing a compute service abstraction for IaaS clouds. It is
split into two main services: (i) the Compute Service providing actions to manipulate compute
resources, e.g., virtual machines and (ii) the Discovery Service allowing the discovery of compute
entities required to create virtual machines. Both interfaces are depicted in Figure 2 on page 13.
The implementations of those interfaces are done in so called drivers, each providing the unique
mapping required for the API of a provider. A list of supported cloud providers can be found in
Table 2.

The compute service interface offers two main operations: (a) the createVirtualMachine()
operation used for both creating and starting virtual machines by referencing the image, the
hardware (flavor) and the location used for creating the virtual machine and (b) the
deleteVirtualMachine() operation used for deleting prior created virtual machines. As the virtual
machine needs to be accessed using a remote connection (SSH or WinRM), it is the contract of
the createVirtualMachine() to also assign a public IP Address if necessary and attach credentials

www.melodic.cloud 12

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

required for login. Additionally, the Compute Service offers a link to retrieve the corresponding
Discovery Service.

The Discovery Service interface provides methods for: i) retrieving a single entity of the
discovery model and methods for ii) retrieving all available entities of one type. The entities that
are discoverable and their relationships are shown in the discovery model depicted in Figure 3
while the single entities are explained in detail in Table 1.

The relationships between Location, Image and Hardware depict an “is-available-in”
relationship, as Locations are typically independent installations of the same cloud
management software meaning that not all images resp. hardware may be available in all
locations of a cloud provider. To ensure uniqueness of IDs in a multi-cloud environment, the
original identifier issued by the cloud provider is replaced with a globally unique but stable ID
while the original ID is retained in the providerId attribute.

To provide pricing information and increase the availability and quality of the meta-data
attached to the discovered offerings, we connect to meta-data services like CloudHarmony21
providing this information for multiple cloud providers.

21 https://cloudharmony.com/

www.melodic.cloud 13

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Figure 2: ComputeService and DiscoveryService Interface

Table 1: IaaS Compute Entities

Entity Description

Hardware
Defines the computational resources of a node by number of cores,
disk space and RAM.

Image
Represents the basic setup of a node, i.e. the operating system. The
operating system is defined by its version, its architecture (32- or 64-
bit), its family (e.g., Ubuntu) and its type (e.g., Unix).

ComputeService

+ discoveryService(out discoveryService: DiscoveryService)
+ createVirtualMachine(in template: VirtualMachineTemplate, out virtualMach...
+ deleteVirtualMachine(in id: string)

DiscoveryService

+ getHardware(out hardware: Hardware, in id: string)
+ getImage(out image: Image, in id: string)
+ getLocation(out location: Location, in id: string)
+ getVirtualMachine(out vm: VirtualMachine, in id: string)
+ listHardware(out hardware: Hardware [*])
+ listImages(out images: Image [*])
+ listLocations(out locations: Location [*])
+ listVirtualMachines(out virtualMachines: VirtualMachine [*])

VirtualMachineTemplate

+ imageId : string
+ hardwareId : string
+ locationId : string

VirtualMachine

+ id : string
+ providerId : string
+ publicIpAddresses : string [*]
+ privateIpAddresses : string [*]
+ loginCredential : LoginCredential

www.melodic.cloud 14

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Location

Represents (virtual) locations offered by a provider. They are stored in
a hierarchical relationship with the scopes host, (availability) zone
and region. It also contains geographical information like country or
latitude/longitude of the (physical) datacenter.

Price

Defines the price as a function of Location, Image and Hardware as
prices typically differ based on Location, Image (license fees) and
Hardware. We normalise the price for the duration of one hour and
USD.

VirtualMachine
The created virtual machine. Provides access information by
exposing its (public/private) IP Addresses and access credentials.

Table 2: Supported Cloud Providers

Provider URL Status

Openstack https://www.openstack.org/ Stable

Amazon Elastic Compute Cloud https://aws.amazon.com/ec2/ Stable

Google Compute Engine https://cloud.google.com/compute Beta

Microsoft Azure https://azure.microsoft.com Alpha

Profitbricks https://www.profitbricks.de Alpha

www.melodic.cloud 15

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Figure 3: Discovery Class Model

 PaaS

The PaaS layer is responsible for providing a platform service abstraction for PaaS Clouds. The
PlatformService provides the necessary operations to manage PlatformEnvironments at the
PaaS Clouds via the createPlatformEnvironment(), updatePlatformEnvironment() and

VirtualMachine

+ /price : float

Discovery

Image

+ id : string
+ providerId : string

Price

+ price : float

Hardware

+ id : string
+ providerId : string
+ gbDisk : float
+ cores : integer
+ mbRam : long

Location

+ id : string
+ providerId : string
+ scope : LocationScope
+ country : string
+ city : string
+ longitude : float
+ langitude : float

OperatingSystem

+ version : string
+ osFamily : OSFamily
+ osArchitecture : ...
+ osType : OSType

Cloud

+ cloudType : CloudType

Task

+ name : string
+ type : TaskType

+ image *1

+ cloud

1

*

+ operatingSystem

1*

+ image

*

1

+ cloud *1

+ prices+ hardware

*1

*

1
+ cloud

0..1+ parent*

1

+ hardware

*
+ location

*1

*

1

+ location

+ locations 1..

+ locations

*

1..*
1

+ nodes *

www.melodic.cloud 16

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

deletePlatformEnvironment() operations as depicted in Figure 4. The interface to interact with a
specific platform is enabled via platform drivers. A platform driver can be a platform specific
driver, such as OpenShift REST Client22 for the OpenShift platform23, or abstraction layers, such
as the PaaS Unified Library (PUL) [16]. A list of supported PaaS providers can be found in Table 4.
A PlatformEnvironment comprises all resource entities that are required to deploy an
application at a specific platform, namely the Platform, PlatformHardware, PlatformRuntime and
PlatformService. A high-level description of these entities is provided in Table 3 and the
technical component description is depicted in Figure 4.

While the PaaS landscape is even more heterogeneous than the IaaS landscape [24] [13], there is
currently no support for the automatic discovery of PlatformEnvironments in Melodic. Hence,
each PlatformEnvironment and its respective entities need to be created based on a predefined
model or configuration file. Yet, services such as PaaSfinder24 ease the collection of platform
specific details to define the PlatformEnvironments. For the long term, the usage of PaaSFinder
or similar services could be used to enable the automatic discovery of PlatformEnvironments.

Figure 4: PlatformService Interface and Plaform Entities

22 https://github.com/openshift/openshift-restclient-java
23 https://www.redhat.com/en/technologies/cloud-computing/openshift
24 https://paasfinder.org/vendors

PlatformRuntime

+ id : string
+ language : string
+ languageVersion : double
+ runtimeType : string
+ runtimeVersion : double

PlatformService

+ createPlatformEnvironment(in platformEnvironement: PlatformEnvironment)
+ updatePlatformEnvironment(in platformEnvironment: PlatformEnvironment)
+ deletePlatformEnvironment(in idPlatformEnvironment: string)

PlatformHardware

+ id : string
+ cores : integer
+ disk : integer
+ memory : integer

Platform

+ id : string
+ driver : string
+ user : string
+ secret : string
+ endpoint : string
+ platformType : string

PlatformService

+ id : string
+ serviceType : string
+ serviceName : string
+ serviceVersion : double

PlatformEnvironment

+ id : string
+ idPlatform : string
+ idPlatformHardware : string
+ idPlatformRuntime : string
+ idPlatformService : string [1..*]

www.melodic.cloud 17

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Table 3: PaaS Entities

Entity Description

Platform
Defines the basic attributes of the PaaS provider, i.e., the PaaS type,
API endpoint and version

PlatformHardware

Represent the basic resources of a PlatformEnvironment, i.e. number
of cores, disk space and memory. PlatformHardware attributes might
be omitted as not all PaaS providers support the full set of
PlatformHardware attributes

PlatformRuntime
Represents the supported runtimes of the Platform to deploy
applications. Runtimes might be plain runtime environments, such as
the JVM, or application containers, such as Tomcat or JBoss.

PlatformService
Represents additional services of the PaaS provider which can be
linked to the actual applications. Typical services are databases, load
balancers or message queues.

Table 4: Supported PaaS Providers

Provider URL Runtimes Services Status

Heroku https://www.heroku.com/
Java,
PHP

ClearDB Stable

OpenShift Online https://www.openshift.com/ Java MySQL Stable

OpenShift Origin https://www.openshift.org/ Java MySQL Beta

CloudFoundry https://www.cloudfoundry.org/
Java,
PHP

- Beta

Pivotal https://pivotal.io/
Java,
PHP

- Alpha

IBM Bluemix
https://www.ibm.com/cloud-
computing/bluemix

Java - Alpha

www.melodic.cloud 18

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

3.2 Job Description

To be able to deploy applications and data processing jobs in a multi-cloud environment, the
Executionware requires a description of the entities it should deploy. This description includes
the artifact (e.g., an executable) to be deployed, (communication) dependencies between entities
in case of a distributed application, and requirements depicting the resource demands for
selecting the resource on which the entity will be deployed.

We, therefore, use a three-layered approach for representing the user’s application: (i) Jobs which
represent a logical group of several (ii) Tasks which describe the executable artifact and its
properties. Finally, (iii) a Process depicts an instantiation of a task, representing the process
running on the resource. The entities of the job description framework are depicted in Figure 5.

A task can define multiple interfaces that depict the deployment process required for it. We
currently offer (i) a LifecycleInterface where the user describes actions to be executed during
specific steps of the Task’s lifecycle, e.g., while installing or starting it, (ii) a DockerInterface
where the user can refer to a Docker image, (iii) a SparkInterface describing a Spark data
processing job and (iv) a PlatformInterface deploying the task on a PaaS-platform.

A task also defines communication dependencies to other Tasks of the same Job, by expressing
if it either provides a port to another Task or requires a port of another Task.

We also differentiate between two TaskTypes: batch and service. While batch represents a task
that runs once and then exits, a service represents a task that is running infinitely.

www.melodic.cloud 19

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Figure 5: Job Description Framework

3.3 Resource Management

The tasks of the resource management layer of the Executionware are to (i) advertise all possible
resources it is capable to create or has already created so that a matchmaking service can select
fitting resources for the demand defined by each Task (see Section 3.2 on page 18) and (ii) allocate
the selected resource from a multi-cloud environment. The allocated resource will then be
passed to the deployment layer responsible for the Task deployment on this resource.

Job

Task

+ name : string
+ type : TaskType

Process

TaskInterface

LifecycleInterface

+ init : string
+ preInstall : string
+ install : string
+ postInstall : string
+ preStart : string
+ start : string
+ startDetection : string
+ stopDetection : string
+ postStart : string
+ preStop : string
+ stop : string
+ postStop : string
+ shutdown : string

DockerInterface

+ image : string
+ params : Param [*]

TaskType

BATCH
SERVICE

Port

+ name : string

ProvidedPort

+ port : integer

RequiredPort

+ mandatory : boolean

Communication

SparkInterface

+ application : string
+ params : Param [*]

VirtualMachine

PlatformInterface

+ repository : string
+ params : Param [*]

0..1

0..1

+ communication

+ job

+ tasks

1

*

*

1+ task
+ processes

+ interfaces
*

1..*

1

+ ports+ task

*

*

+ virtualMachine 1

+ process

0..1+ providedPort

0..1

0..1

+ requiredPort 0..1

www.melodic.cloud 20

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

 Resource Advertisement

To be able to select a matching offer, the possible solution space needs to be known. This is the
task of the resource advertisement feature of the Executionware. For this purpose, it relies on
the resource discovery mechanism of the provider agnostic interface (see Section 3.1 on page 11),
providing information about all possible offer combinations of cloud providers. This information
is then used to generate all valid combinations while considering the constraints expressed by
the relations, thus, e.g., respecting that a specific Hardware offer is only available in a single
Location.

As this solution space is, depending on the number of considered cloud providers, possibly very
large, we limit the amount of resources considered, by giving the user the possibility to express
requirement constraints targeting each Task he desires to have executed. For example, there
may be Tasks that require a specific amount of RAM as they otherwise are not able to start.

The Executionware currently offers three ways to express such requirements depicted in Figure
6: (i) using attribute requirements, (ii) using the object constraint language (OCL25) and (iii)
identifier requirements where the user can directly select the resource he desires to use.

By using attribute requirements, the user expresses requirements by directly referencing
attributes of the discovery model depicted earlier in Figure 3 on page 15. The requirements are
expressed in the form

<AttributeRequirement> ::= <Class> <Attribute> <Operator> <Value>.

An example for an attribute requirement that restricts resources to at least four cores would be
expressed by Hardware.Cores >= 4.

Identifier requirements allow the user to select the concrete offers he wants to use, by expressing
the identifiers for Hardware, Image and Location. As a result, exactly one node candidate will be
returned.

OCLRequirements use the object constraint language (OCL) for expressing requirements on the
object model depicted in Figure 3 on page 15. In contrast to the attribute requirements, this allows
specifying more complex expressions. Currently not all possible expressions in OCL are
supported. Table 5 gives an overview of supported expressions, their descriptions and an
example.

To generate the node candidates the Executionware executes two steps: (i) filtering the base
entities (Hardware, Image and Location) by applying the constraints expressed on them and (ii)
generating all eligible combinations, considering the constraints expressed by the relationships

25 http://www.omg.org/spec/OCL/

www.melodic.cloud 21

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

of the object model (see Figure 3 on page 15). The generated node candidates are returned to the
caller.

Table 5: OCL Requirements

OCL Expression Description Example Explanation

forAll()

Every node needs
to fulfill the
expressed
constraint

nodes->forAll(n | n.hardware.cores
>= 4 implies n.hardware.ram >= 4096

Every node
that has at
least 4
cores needs
to also have
at least
4096 MB of
RAM

exists()

At least one node
needs to fulfill the
expressed
constraint

nodes-
>exists(location.geoLocation.country
= 'DE')

At least one
node needs
to be
located in
Germany

select()

Selects the nodes
fulfilling the
expressed
constraint and
returns a collection

nodes->select(n | n.hardware.cores
>= 4)->size() = 2

Exactly two
nodes with
at least 4
cores are
required

size()
Returns the size of
the collection it is
applied to.

See above See above

isUnique()
Enforces that the
attribute is unique.

nodes->isUnique(n |
n.location.geoLocation.country)

Every node
needs to be
placed in a
different
country

www.melodic.cloud 22

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

sum()
Returns the sum of
the attribute across
all nodes.

nodes.hardware.cores->sum() >= 15

The sum of
all cores
across all
nodes
needs to be
at least 15.

Figure 6: Requirement

 Matchmaking / Scheduling

Matchmaking and Scheduling are tasks of Melodic’s Upperware. The Upperware will pass the
user expressed constraints to the node advertisement logic of the Executionware (see Section
3.3.1) and then receive back the possible node configurations as response. It will then select the
best suited configuration and pass it back to the Executionware which will finally start the
allocation of the resources and the deployment of the respective tasks.

For testing purposes and to allow a standalone exploitation, the Executionware features a basic
matchmaking feature. It allows the user to define an objective that will be optimized. This
objective can either be expressed by referring to the attribute that should be
minimized/maximized (similar to the attribute requirement) or by giving an OCL expression that
should be minimized/maximized (similar to the OCLRequirement). The matchmaking feature
receives the possible node configurations generated by the resource advertisement step and will
select the candidate minimizing/maximizing the given objective.

Requirement

AttributeRequirement

+ requirementClass : string
+ requirementAttribute : string
+ requirementOperator : Requireme...
+ value : Object

IdentifierRequirement

+ hardwareId : string
+ locationId : string
+ hardwareId : string

OclRequirement

+ constraint : string

RequirementOperator

EQ
LEQ
GEQ
GT
LT

NodeRequirement

AttributeObjective

+ objectiveClass : string
+ objectiveAttribute : string

OCLObjective

+ attributeExpression : string

Objective

Task

1

+ requirements

*

+ objective
1

0..1

0..1 1

+ nodeRequirement

www.melodic.cloud 23

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

A more detailed description of the requirement description and matchmaking can be found in
[25].

 Resource Allocation

The resource allocation layer receives the output of the matchmaking step which will represent
a concrete cloud offer to use. By relying on the cloud provider agnostic interface depicted in
Section 3.1 on page 11 it will allocate the resources from the provider. It will finally install a set of
agents on the acquired node, that include a monitoring agent (cf. Section 3.5 on page 24) and the
deployment agent (cf. Section 3.4 on page 23).

3.4 Deployment

The deployment feature is responsible for the deployment of the user described tasks (cf. Section
3.2 on page 18) on the resources allocated by the resource management layer (cf. Section 3.3.3 on
page 23). We represent tasks that run on a resource by the concept of processes.

We differentiate between four different deployment types represented by the different
deployment interfaces the Excecutionware supports: i) LifecycleInterface, ii) DockerInterface, iii)
SparkInterface and iv) PlatformInterface. Currently only the LifecycleInterface is implemented
and the remaining interfaces are left for future work.

The LifecycleInterface describes a task by giving executable scripts that need to be executed at
specific points of the task’s lifecycle, e.g., while installing, starting or stopping the task. In
addition, we use detection scripts for detecting if the task has already started or stopped
unexpectedly. We currently support two alternative deployment types for tasks implementing
the LifecycleInterface: Docker or Plain. Docker means that the scripts will be executed inside a
Docker container allowing isolation if multiple tasks run on the same virtual machine. Plain
means executing the scripts directly on the underlying resources, if isolation is not required or
the task does not support running inside a Docker container.

The DockerInterface will support the direct execution of Docker containers in constrast to the
Docker mode of the LifecycleInterface where the container is built on-demand from the user’s
scripts. The SparkInterface will be capable of describing Apache Spark applications while the
PlatformInterface will support PaaS-applications.

Tasks defined within the same Job may have communication dependencies expressed by using
the Communication relationship as depicted in Section 3.2 on page 18, declaratively representing
a deployment workflow where specific tasks need to be executed before other tasks as tasks
providing communication typically need to start before those consuming it. The Executionware
is capable of automatically deriving the implied workflow and ensures in-order execution of the
described tasks. Currently only basic communication dependencies can be expressed, but could
be extended if the need arises [26].

www.melodic.cloud 24

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

3.5 Monitoring

The Executionware offers a monitoring framework responsible for collecting metrics depicting
the current runtime state of all tasks and resources managed by it. For this purpose, it offers a
monitoring agent that is deployed on each resource managed by the Executionware.

The monitoring agent has four building blocks as depicted in Figure 7: (i) Sensors that collect
monitoring information from the underlying resource or the running Task (process), (ii) a telnet
interface provided to the running process allowing it to push monitoring data to the monitoring
agent, (iii) a reporting interface used to actively publish the monitoring data to, e.g., a time-series
database or a message queue and (iv) a REST interface allowing the monitoring agent to be
reconfigured during runtime.

While our monitoring agent implements a set of default sensors and reporters, it also offers
interfaces allowing the end user to implement different sensors and reporting interfaces. These
interfaces are depicted in Figure 8. Each sensor can optionally implement the init() method,
providing a possibility to configure the sensor to the context of the running machine, but also to
some user provided sensor configuration parameters. The measure() method will be called at the
interval configured by the user. The returned Measurement will be enriched with context
information and passed as metric to the reporting interface.

The reporting interface is implemented to forward the collected messages to either a (time-
series) database or to a message queue where it can be further processed or aggregated. In case
of Melodic, the measured metrics will be passed to the event processing agent based on Esper26
(cf. [1]) where it is aggregated and evaluated by the Upperware’s reasoners and scalability rule
engine. The reporting interface offers two methods for either reporting single or multiple
metrics, as some reporting interfaces can achieve significantly higher throughput if multiple
metrics are forwarded at once. The interval at which the reporting interface is called can be
configured, and metrics will be queued internally until the next call.

An up-to-date list of supported Sensors and ReportingInterfaces can be found in the
documentation of the monitoring agent on Github27.

26 http://www.espertech.com/esper/
27 https://github.com/cloudiator/visor

www.melodic.cloud 25

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Figure 7: Monitoring Framework

Figure 8: Monitoring Class Diagram

Telnet

R
EST

Monitoring Request

{
metricName: CPU,
sensor: i.c.v.s.CPUUsage

}

Sensors

R
ep

or
te

r

Monitoring
Agent

Process
(Task)

Metric

+ name : string
+ value : Object
+ timestamp : long

Tag

+ key : string
+ value : string

ReportingInterface

+ reportMultiple(in metrics: Metric [*])
+ reportSingle(in metric: Metric)

KairosDB InfluxDB Esper Chuckwa

Sensor

+ init(in monitorContext: MonitorContext, in sensorConfiguration: Sensor...
+ measure(out measurements: Measurement [*])

+ tags

1 *

www.melodic.cloud 26

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

3.6 Adaptation

The Melodic framework implements a feedback loop, where the monitoring data collected by the
Executionware is evaluated by the Upperware to check for runtime deviations. If such deviations
are detected, the Upperware will derive actions to counteract the deviations. It is the task of the
Executionware to enact such actions to the running application. These actions include
horizontal scaling (scale-in and -out), vertical scaling (scale-down and -up) but also migration of
applications to different resources.

The current implementation maps these actions to basic create or delete operations. This means
that e.g. in the case of a migration, a new instance (process) of the task is spawned on a newly
created resource and the old process and resources are deleted afterwards. It is left to the user to
hide the involved state, meaning that the application scripts need to handle the state
transparently for the Executionware, e.g. by copying the state to the newly create process.

While this approach allows to implement above actions, there may cases where better solutions
exist. Taking a private cloud as example, migrations inside the cloud could be implemented by
relying on the live migration capabilities cloud middleware solutions like Openstack are
offering. The usage of such capabilities is left for future work (cf. Section 7.3).

4 Architecture

The introduced provider agnostic interface & mapping (cf. Section 3.1), job description (cf. Section
3.2) and resource management interface (cf. Section 3.3) provide the crucial feature set to
orchestrate data-intensive applications in multi-cloud environments by the Executionware.
Further, these features are required to enable the novel Resource Management Framework and
the upcoming Data Processing Layer in conjunction with comprehensive monitoring and
adaptation features in the Executionware. A high-level overview of the Executionware
architecture is depicted in Figure 9, which was introduced in D2.2 [1]. As the Cloud orchestration
tool (COT) Cloudiator provides the base of the Executionware, the presented concepts enhance
Cloudiator in order to provide the required feature set introduced in D2.1 [2].

The entry point to Cloudiator is a REST interface by the RestServer as depicted in Figure 9. The
interaction with the REST interface is enabled programmatically via API client libraries for
multiple programming languages. Consequently, the programmatic interaction is exploited in
the Upperware, which is interacting with the REST Server via the API client library. In addition,
a Web-based UserInterface is provided, which interacts with the RestServer internally.

www.melodic.cloud 27

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Cloudiator’s internal architecture is built upon a message-driven architecture, following the
publish-subscribe paradigm. Therefore, each call against the RestServer is transformed into a
Cloudiator specific message and published to the KafkaMessageQueue. For the sake of clarity,
the KafkaMessageQueue is depicted without the dedicated interaction between all Cloudiator
components. Yet, all internal communication (behind the RestServer) of Cloudiator relies on
messages over the KafkaMessageQueue.

The message-driven architecture of Cloudiator enables the smooth integration of the building
blocks Monitoring Services, Resource Management Framework and Data Processing Layer into
the Executionware, which interact with the Cloud provider via the provider agnostic interface
mapping as depicted in Figure 9.

In the following, the technical implementation details of the presented architecture are outlined.

Figure 9: Cloudiator Architecture

RestServer

Scheduler

DiscoveryAgent

DiscoveryRegistry

VirtualMachineAgent

NodeAgent

UserInterface

Upperware

CloudProvider

Node Registry

JobRegistry

ProcessAgent

LanceAgent

KafkaMessageQueue

SparkAgent

MetaDataService

MonitoringAgent

MonitoringDatabase

PaaSAgent

HadoopAgent

RestInterface

JobInterface

DiscoveryInterface

DiscoveryStore

DiscoveryQuery

VirtualMachineInterface

NodeInterface

CloudProvider API

NodeQuery

NodeStore

JobQuery

JobStore

ProcessInterface
LanceInterface

Publish, Subscribe

SparkInterface

MetaDataInterface

MonitoringInterface

MonitoringStore

MonitoringQuery

PaaSInterface

Resource Management Framework

Data Processing Layer

Monitoring Services

www.melodic.cloud 28

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

5 Implementation

The Executionware is implemented using the Cloudiator Framework developed by Ulm
University. It is published under the Apache License 2.0. The Cloudiator Framework is mainly
developed in the Java programming language using Apache Maven28 for managing
dependencies and building. Other components can interact with Cloudiator using its RESTful
web service interface. This interface is described using the OpenAPI29 specification and the
Swagger toolset30. This allows automatic generation of clients in many programming language
and human-friendly documentation.

The Cloudiator Framework was initially developed in the PaaSage31 and CACTOS32 projects as
multi-cloud orchestration tool being capable to deploy applications across multiple clouds.
Within Melodic we extend Cloudiator to also enable the orchestration of data processing
frameworks and the support of cross-level deployment meaning the access to different cloud
infrastructure levels like IaaS and PaaS. As the initial Cloudiator was not designed for such a
task, multiple architectural changes have been done. While the business logic of the initial
Cloudiator framework resided in a single deployable component called Colosseum the Melodic
version will rely on a micro-service architecture using event-based communication over a
message queue. This allows a seaming less integration of additional logic without having to
touch existing logic, making it much easier to adopt Cloudiator’s functionalities to a new
environment.

Furthermore, the original Cloudiator version featured a very simple resource management layer
only being able to allocate virtual machines given the provider dependent ids. Additionally, it
was designed having infinitely running service-type applications. The resource management
layer developed in Melodic will feature a provider agnostic approach as described in Section 3.3.
Additionally, it is redesigned to also support batch-type applications as they are typical in a data
processing environment.

6 Integration and Documentation

A micro service architecture, as the one depicted in Section 4, increases the need for a well-
defined integration strategy, to be able to easily deploy a higher number of components.
Additionally, the high velocity of explorative projects requires the possibility to quickly roll out

28 https://maven.apache.org
29 https://www.openapis.org
30 https://swagger.io
31 https://paasage.ercim.eu/
32 http://cactos-cloud.eu/

www.melodic.cloud 29

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

new versions of the software. Therefore, the integration process of Cloudiator is completely
automated using continuous integration to build new versions of the software and
containerization for fast and easy deployment.

6.1 Integration

The general integration workflow is depicted in Figure 10. It consists of four domains: (a) the
personal development environment of every developer, (b) GitHub as code repository and
collaboration environment, (c) Travis CI33 as continuous integration facility and (d) multiple
artefact repositories where build results are stored and can be later retrieved for deployment.

The personal development environment consists of the Java Development Kit (JDK), Apache
Maven for dependency management and the build management as well as the Swagger
Framework for describing the RESTful web service interface Cloudiator offers and enabling
automatic generation of client and server code. In addition, we use git34 for software
configuration management.

To allow multiple users to seamlessly cooperate while developing the Cloudiator framework,
GitHub35 is used to host the code repositories and provide a collaborative environment allowing
issue reporting and code reviews.

The continuous integration platform Travis CI36 is used to automatically build changes that are
pushed to the code repositories and the build status is returned and displayed in Github. This
allows to detect build errors early and automatically. In addition, Travis CI builds the deployment
artefacts and publishes them at the respective repositories.

There are two main artefact repositories: Docker Hub and Maven Central. Docker Hub stores and
publishes Docker images for each component of Cloudiator. Those images are later used to easily
deploy the Cloudiator toolset. Maven Central is used for storing and publishing Java libraries, so
that they can be shared across multiple components using Apache Maven’s dependency
mechanism or be used by other projects.

Sonarcloud37 is used to derive quality metrics from the developed code. These metrics include
test coverage, code quality, technical depth but also static code analysis features trying to detect
common programming errors that can lead to bugs and vulnerabilities.

33 https://travis-ci.org/
34 https://git-scm.com/
35 https://github.com
36 https://travis-ci.org
37 https://sonarcloud.io

www.melodic.cloud 30

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

Figure 10: Cloudiator Integration Tools & Workflow

6.2 Documentation

Cloudiator has different sources of documentation, each targeting a different group of users.
Table 6 gives an overview of the different documentation sources, a description and their
intended target group.
Table 6: Documentation Sources

URL Description Target Group

cloudiator.org

Homepage of the Cloudiator project.
General overview of the project, end user
documentation including installation
instructions, examples, relevant
publications and links to other sources.

Users,
Researchers

github.com/cloudiator
Organization of Cloudiator on Github.
Groups individual repositories of
Cloudiator

Developers

github.com/cloudiator/{tool} Technical documentation of the tool Developers

github.com/cloudiator
https://travis-ci.org/cloudiator

io.github.cloudiator

https://hub.docker.com/u/cloudiator/

https://sonarcloud.io/organizations/cloudiator

Development Environment

Code Repository &
Collaboration

Continuous Integration

Artefact Repositories

Push
Code

Pull
Code

Build

Build Status

Publish
Artefacts

www.melodic.cloud 31

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

cloudiator.org/rest-swagger
Detailed documentation of the RESTful
API

Developers

7 Future Work

This section briefly discusses future features planned to be added to the Executionware.

7.1 Resource Management

While the resource management layer currently already supports advertisement and allocation
of on-demand cloud resources, it does not support using already existing resources. Additionally,
to support the upcoming data processing layer (see Section 7.4), a scheduling solution needs to
be implemented, allowing the data processing tasks to be easily scheduled and deployed on the
managed resources.

With respect to management of existing resources, we plan to implement Bring your own node
(BYON) support, allowing users to register nodes within the Executionware, e.g., by extending
the RESTful API. Those resources could then be included in the node advertisement and be used
for executing tasks. In a subsequent version, registering the nodes could be automated by relying
on agents as, e.g., done by Apache Mesos.

To allow scheduling of data processing task, the resource management layer needs to be
integrated with existing data processing frameworks like Apache Spark38 or Apache Map
Reduce39. For this task, existing scheduling solutions like Apache YARN, Apache Mesos or the
Spark Job Server40 need to be evaluated, and based on the outcome of the evaluation, be
integrated into the Executionware.

7.2 Deployment

As described in the deployment section 3.4, only tasks that describe the lifecycle interface are
currently supported for deployment. For the next release iteration, the support of Docker
containers (described by the DockerInterface) is planned. While Docker is in general already
supported by the lifecycle agent, the usage of already existing Docker images needs to be
implemented. The support of data processing tasks, like Apache Spark, will be implemented

38 https://spark.apache.org/
39 http://hadoop.apache.org/
40 https://github.com/spark-jobserver/spark-jobserver

www.melodic.cloud 32

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

closely related to the integration of the resource management layer with data processing
frameworks (see Section 7.1) and the data processing layer (see Section 7.4).

7.3 Adaptation

The introduced adaptation capabilities of the Executionware (cf. Section 3.6) currently map all
adaptation actions to basic create and delete actions. In future work, we want to exploit cloud
middleware capabilities like live migration. For this purpose, we will develop an adaptation
service implementing different strategies to scale or migrate tasks. This service will receive the
current and the intended configuration and rely on the strategy pattern to derive possible
adaptation strategies to adapt the current state to the new intended state. These strategies will
e.g. include the usage of live migration strategies offered by cloud middleware. As fallback
strategy, the current logic will remain.

7.4 Data Processing Layer

The introduced provider agnostic interface mapping of the Executionware provides the
technical base to the Upperware for enabling the management of data-intensive applications in
a multi-cloud environment. While the provider agnostic interface mapping enables the access
to the heterogeneous Cloud resources, the Resource Management Layer (c.f. Section 3.3) of the
Cloudiator will allocate these resources in an optimized way for the actual data-intensive
applications. The Data Processing Layer will enhance data-intensive application by providing
native support for the required Big Data Processing frameworks [2] in conjunction with typical
application types such as web servers, application servers or databases.

While web servers, application servers and databases are orchestrated by the LifecycleInterface
for IaaS or the PlatformInterface for PaaS resources (cf. Section 3.4), it is also necessarys to
integrate the required Big Data processing framework Apache Spark as outlined in [2] and
additional frameworks such as Apache Map Reduce if required. The integration of such Big Data
processing frameworks will be realized via the respective ProcessAgents as depicted in Figure
9. The modular and event-driven architecture of the Executionware eases the integration of
additional Big Data processing frameworks as well, if required. Hereby, the Executionware will
orchestrate the processing framework clusters and provide an interface to the Upperware to
submit the specific data-intensive processes.

8 Conclusion

In this deliverable, we have shown the initial features of the Executionware. Specifically, we have
presented (i) the provider agnostic mapping of existing Cloud provider offerings, (ii) the initial

www.melodic.cloud 33

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

draft of the resource management focusing on the node advertisement logic and (iii) the
monitoring framework.

Furthermore, we have depicted the concrete implementation of the Executionware and its
integration procedure and referenced available documentation required for using the
Executionware.

Additionally, we have depicted Future Work that is required to provide functionality needed for
the final release. We plan to develop a data processing layer capable of handling user defined
data processing tasks, requiring an integration of the resource management layer with data
processing frameworks.

Bibliography

[1] Yiannis Verginadis et al., ‘D2.2 Architecture and Initial Feature Definitions’, Melodic
Project Deliverable, Feb. 2018.

[2] Yiannis Verginadis et al., ‘D2.1 System Specification’, Melodic Project Deliverable, Jun.
2017.

[3] Y. Elkhatib, ‘Mapping Cross-Cloud Systems: Challenges and Opportunities’, in 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver, CO, 2016.

[4] J. Opara-Martins, R. Sahandi, and F. Tian, ‘Critical analysis of vendor lock-in and its
impact on cloud computing migration: a business perspective’, J. Cloud Comput., vol. 5, p. 4, Apr.
2016.

[5] S. Kachele, C. Spann, F. J. Hauck, and J. Domaschka, ‘Beyond IaaS and PaaS: An Extended
Cloud Taxonomy for Computation, Storage and Networking’, in Utility and Cloud Computing
(UCC), 2013 IEEE/ACM 6th International Conference on, 2013, pp. 75–82.

[6] B. Parák and Z. Sustr, ‘Challenges in Achieving IaaS Cloud Interoperability across Multiple
Cloud Management Frameworks’, in 2014 IEEE/ACM 7th International Conference on Utility and
Cloud Computing, 2014, pp. 404–411.

[7] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B. Hauser, and others, ‘Cloud
Orchestration Features: Are Tools Fit for Purpose?’, in 2015 IEEE/ACM 8th International
Conference on Utility and Cloud Computing (UCC), 2015, pp. 95–101.

[8] D. Baur and J. Domaschka, ‘Experiences from Building a Cross-cloud Orchestration Tool’,
in Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Platforms, New York, NY,
USA, 2016, pp. 4:1–4:6.

[9] A. Karmarkar, ‘CAMP: a standard for managing applications on a PaaS cloud’, in
Proceedings of the 2014 Workshop on Eclipse Technology eXchange, 2014, pp. 1–2.

www.melodic.cloud 34

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

[10] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, ‘TOSCA: Portable Automated
Deployment and Management of Cloud Applications’, in Advanced Web Services, A. Bouguettaya,
Q. Z. Sheng, and F. Daniel, Eds. New York, NY: Springer New York, 2014, pp. 527–549.

[11] J. Domaschka, D. Baur, D. Seybold, and F. Griesinger, ‘Cloudiator: a cross-cloud, multi-
tenant deployment and runtime engine’, in 9th Symposium and Summer School on Service-
Oriented Computing, 2015.

[12] D. Baur and J. Domaschka, ‘Experiences from building a cross-cloud orchestration tool’,
2016, pp. 1–6.

[13] S. Kolb and G. Wirtz, ‘Towards Application Portability in Platform as a Service’, in Service
Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on, 2014, pp. 218–
229.

[14] M. Sellami, S. Yangui, M. Mohamed, and S. Tata, ‘PaaS-Independent Provisioning and
Management of Applications in the Cloud’, presented at the Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on, 2013, pp. 693–700.

[15] S. Kolb and C. Rock, ‘Unified Cloud Application Management’, in Services (SERVICES), 2016
IEEE World Congress on, 2016, pp. 1–8.

[16] A. J. Ferrer, D. G. Pérez, and R. S. González, ‘Multi-cloud Platform-as-a-service Model,
Functionalities and Approaches’, Procedia Comput. Sci., vol. 97, pp. 63–72, 2016.

[17] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, ‘Towards Model-Driven
Provisioning, Deployment, Monitoring, and Adaptation of Multi-cloud Systems’, in Cloud
Computing (CLOUD), 2013 IEEE Sixth International Conference on, 2013, pp. 887–894.

[18] G. Goncalves et al., ‘CloudML: An Integrated Language for Resource, Service and Request
Description for D-Clouds’, in Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, 2011, pp. 399–406.

[19] J. Carrasco, J. Cubo, F. Duran, and E. Pimentel, ‘Bidimensional Cross-Cloud Management
with TOSCA and Brooklyn’, in Cloud Computing (CLOUD), 2016 IEEE 9th International Conference
on, 2016, pp. 951–955.

[20] J. Carrasco, F. Durán, and E. Pimentel, ‘Component-wise Application Migration in
Bidimensional Cross-cloud Environments’:, in Proceedings of the 7th International Conference
on Cloud Computing and Services Science - Volume 1: CLOSER, 2017, pp. 287–297.

[21] B. Hindman et al., ‘Mesos: A Platform for Fine-grained Resource Sharing in the Data
Center’, in Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, Berkeley, CA, USA, 2011, pp. 295–308.

[22] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, ‘Dominant
Resource Fairness: Fair Allocation of Multiple Resource Types’, in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, Berkeley, CA, USA, 2011, pp. 323–

www.melodic.cloud 35

Editor(s):
Daniel Baur

Deliverable reference:
4.1

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731664

336.

[23] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, ‘Large-scale
Cluster Management at Google with Borg’, in Proceedings of the Tenth European Conference on
Computer Systems, New York, NY, USA, 2015, pp. 18:1–18:17.

[24] S. Kolb and G. Wirtz, ‘Data Governance and Semantic Recommendation Algorithms for
Cloud Platform Selection’, in Cloud Computing (CLOUD), 2017 IEEE 10th International Conference
on, 2017, pp. 664–671.

[25] D. Baur, D. Seybold, F. Griesinger, Masata, Hynek, and J. Domaschka, ‘A Provider-agnostic
Approach to Multi-cloud Orchestration using a Constraint Language’, presented at the 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2018).

[26] J. Domaschka, F. Griesinger, D. Baur, and A. Rossini, ‘Beyond Mere Application Structure
Thoughts on the Future of Cloud Orchestration Tools’, Procedia Comput. Sci., vol. 68, pp. 151–162,
2015.

