

www.melodic.cloud

 Title:

IDE-plugin for data-aware design and
development of multi-cloud data-
intensive applications

Executive summary:

This deliverable presents and analyses a web-based CAMEL
editor which enables the modelling of Cross-Cloud data
intensive applications. Our analysis focuses first on providing
the main requirements that drove the design of this editor as
well as its respective use cases. Then it proceeds with the
presentation of the editor architecture and relevant
implementation details. Next, the main features of the editor
are supplied. Finally, a detailed walkthrough of the editor is
provided according to a reduced form of a specific use case
from the Melodic project. The deliverable concludes with the
main directions for future work on the editor which will be
followed during the Melodic project lifetime.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D3.3

Date:

31 May 2018

Responsible partner:

7bulls

Editor(s):

Paweł Skrzypek

Author(s):

Kyriakos Kritikos

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/deliverables/D3.3 IDE-plugin
for data-aware design and development of multi-cloud
data-intensive applications.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2018)3343564 - 25/06/2018

http://www.melodic.cloud/
http://www.melodic.cloud/
http://www.melodic.cloud/deliverables/D3.3%20IDE-plugin%20for%20data-aware%20design%20and%20development%20of%20multi-cloud%20data-intensive%20applications.pdf
http://www.melodic.cloud/deliverables/D3.3%20IDE-plugin%20for%20data-aware%20design%20and%20development%20of%20multi-cloud%20data-intensive%20applications.pdf
http://www.melodic.cloud/deliverables/D3.3%20IDE-plugin%20for%20data-aware%20design%20and%20development%20of%20multi-cloud%20data-intensive%20applications.pdf

www.melodic.cloud 2

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Document
Period Covered M12-16

Deliverable No. D3.3

Deliverable Title IDE-plugin for data-aware design and development of multi-
cloud data-intensive applications

Editor(s) Paweł Skrzypek

Author(s) Kyriakos Kritikos

Reviewer(s) Feroz Zahid, Vasilis Stefanidis

Work Package No. 3

Work Package Title Upper ware

Lead Beneficiary 7bulls

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 53

http://www.melodic.cloud/

www.melodic.cloud 3

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table of Contents

1 Introduction .. 6

2 CAMEL Editor ... 7

2.1 Introduction .. 7

2.2 Use Case Analysis and Requirements ... 8

 Requirements .. 8

 Use Case Analysis ... 10

2.3 Architecture ... 14

2.4 Implementation Details & Usage Instructions ... 15

2.5 Features and Requirement Satisfaction ... 17

2.6 Editor Walkthrough ... 18

 Admin Login .. 22

 Organisation Model Editing... 23

 Devops Login ... 27

 CAMEL Model Editing via Devops ... 27

3 Future Work ... 44

3.1 CAMEL Meta-Model Extensions / Modifications .. 45

3.2 Coverage of Unsatisfied Requirements ... 45

 Requirement R5 Coverage ..46

 Requirement R9 Coverage ..46

 Requirement R10 Coverage ..47

3.3 New Features ...48

 Advanced Model Specification Guidance ..48

 Textual CAMEL Model Editing .. 49

4 Conclusions .. 51

5 References ... 53

http://www.melodic.cloud/

www.melodic.cloud 4

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Index of Figures

Figure 1: The overall editor exploitation use case ... 11

Figure 2: The actual CAMEL model editing use case .. 13

Figure 3: The CAMEL organisation model editing use case ... 14

Figure 4: The architecture of the web-based CAMEL editor .. 15

Figure 5: Initially launched form of the CAMEL editor .. 19

Figure 6: Login popup window shown to admin ... 23

Figure 7: Organisation menu enabled content ..24

Figure 8: New organisation model popup window ..24

Figure 9: Organisation perspective launched, populated with the new organisation model
information .. 25

Figure 10: New user creation ... 26

Figure 11: The new role assignment created .. 27

Figure 12: New application with unfilled information .. 28

Figure 13: New application with completed information .. 28

Figure 14: The new deployment model pop up window .. 29

Figure 15: Addition of SimulationManager component ... 30

Figure 16: The addition of the communication node .. 31

Figure 17: The creation of the SimulationManagerVM virtual machine ... 32

Figure 18: The creation of the SimulationManager Hosting .. 32

Figure 19: The enabled content of the Requirement menu .. 33

Figure 20: The creation of the ubuntu OS requirement.. 33

Figure 21: The quantitative hardware requirements specified for the VM of the SimulationManager
 .. 34

Figure 22: Filled in information before the SLO is added .. 35

Figure 23: Visualisation of the added SLO ... 35

Figure 24: The metric schedule added .. 36

Figure 25: The measurement window added ... 37

Figure 26: Update of the composite metric context .. 38

Figure 27: The requirement set associated to the VM of the SimulationManager 39

Figure 28: The specification of the name for the new scalability model ... 40

Figure 29: The SLO violation non-functional event created .. 41

Figure 30: The horizontal scaling action created for the SimulationWorker component42

Figure 31: The scalability rule created for the SimulationWorker component 43

http://www.melodic.cloud/

www.melodic.cloud 5

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Index of Tables

Table 1: The aspects covered by the editor according to which CAMEL release and the respective
role responsible for manipulating them .. 8

Table 2: The current satisfaction level of the editor design requirements .. 18

Table 3: Timeline for the delivery of forthcoming updates and new features of the web-based
CAMEL editor ... 44

http://www.melodic.cloud/

www.melodic.cloud 6

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1 Introduction

Any kind of software tool that offers a certain functionality needs to become usable through the
offering of a nice, ergonomic and easy-to-use user interface (UI) which can enable the user to
better exploit this tool in the most suitable and user-intuitive way. Many tools have not had the
appropriate recognition due to the wrong or improper design and functioning of their UI.

In this respect, the UI of the Melodic platform should enable users to better exploit its underlying
functionality in order to optimally cover their needs. Such needs come with automatic and
optimal big data application deployment and reconfiguration across different clouds. To cover
these needs at the UI level, the Melodic platform offers different UI components: (a) the Metadata
Schema Editor; (b) the Weights Calculator; and (c) the CAMEL Editor. The first two editors have
been the subject of analysis for the deliverable “D3.1 Metadata schema management” [1].

It should be highlighted here that the CAMEL web-based editor reflects the current release of
CAMEL, R1.5, which is in accordance to the 1.5 Release of the Melodic platform. In this respect, it
does not cover the (big) data aspect as well as other extensions or modifications to CAMEL that
are planned to be performed for the next release of Melodic. Such extensions and modifications
will be reflected in the forthcoming releases of the CAMEL editor in the context of the Melodic
project. The way these updates as well as other related work directions will be conducted along
with their respective planning will be analysed in Chapter 3 of this deliverable.

This deliverable aims at being a companion to the Melodic platform users, i.e., application owning
organisations, by introducing to them the web-based CAMEL editor of the Melodic platform, as
well as explicating how it can be exploited. It is written in such a manner that it can be
comprehended by any kind of reader, provided that he/she has some small background on model-
driven engineering and cloud computing.

The rest of this document is structured as follows. The next chapter analyses the web-based
CAMEL editor. Chapter 3 explicates how this editor will evolve in the context of the Melodic
project. Finally, the last chapter summarises this deliverable.

http://www.melodic.cloud/

www.melodic.cloud 7

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2 CAMEL Editor

The goal of this chapter is to analyse the web-based CAMEL editor. To this end, this chapter is
structured according to the following sections, each having a different analysis sub-goal to satisfy:

 Introduction: this section supplies a short overview of the editor
 Use Case Analysis and Requirements: this section focuses on explaining what were the

requirements that drove the editor design. It also analyses the main use cases pertaining
to the actual usage/exploitation of this UI component by the different kinds of users of the
Melodic platform

 Architecture: this section analyses the main editor parts and supplies some
implementation details related to them.

 Features and Requirement Satisfaction: this section highlights the main features of the
CAMEL editor and explicates which from its original (design) requirements are fully or
partially satisfied.

 Editor Walkthrough: this section provides a walkthrough over the usage of the editor based
on the modelling of a cloud-based application that pertains to a specific use case of the
Melodic project.

2.1 Introduction

The CAMEL web-based editor is a UI component which enables users to edit CAMEL models of big
data cloud applications over the web. It was originally developed in the context of the PaaSage1
project to cover the editing of CAMEL models for two kinds of users: (a) (platform) admins; (b)
devops users. This editor does exploit Eclipse technologies and has been also developed as an
Eclipse plug-in, but, in contrast to the other editors of CAMEL (see “D2.1 System specification
document” [2] for an analysis of them), it does not necessarily rely on any Eclipse environment in
order to be actually launched. This is due to the fact that it can be compiled into a standard WAR
file which can be launched by any kind of servlet container like Tomcat2. Furthermore, it is an on-
line editor which means that the CAMEL models edited are immediately stored in the underlying
Model Repository. This web-based editor originally covered only particular aspects of CAMEL,
namely the requirements and organisation ones. However, as it was decided (3rd Melodic Plenary
Meeting (PM) in Oslo) to use this editor as the main facility via which CAMEL models can be
managed in the Melodic platform, it has been extended with the capability to cover all aspects
that are relevant in terms of user input. Further, this editor will follow soon the extensions

1 www.paasage.eu
2 http://tomcat.apache.org/

http://www.melodic.cloud/
http://www.paasage.eu/
http://tomcat.apache.org/

www.melodic.cloud 8

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

performed in CAMEL to cover the big data aspect, mapping to the new CAMEL release (R2.0),
according to its implementation plan supplied in Chapter 3. These extensions have been already
analysed in “D2.2 Architecture and initial feature definitions” [3]. In the following table, we
highlight the respective aspects of CAMEL that are currently, or will be soon, covered by this editor
(see Camel Release column) as well as the corresponding (user) role that is going to manipulate
them. Please note that there is now also space for the business (manager) role in terms of allowing
this role to specify some high-level requirements (e.g., overall application cost constraints and
optimisation objectives). The asterisk in the values/cells of the CAMEL Release column indicates
that the respective aspects are covered in the R1.5 release of CAMEL, but they are planned to be
extended/modified towards delivering the CAMEL R2.0 release.

Table 1: The aspects covered by the editor according to which CAMEL release and the respective role responsible for
manipulating them

CAMEL Aspect CAMEL Release User Role

Deployment R1.5* Devops

Requirement R1.5* Devops, Business

Metric R1.5* Devops

Scalability R1.5* Devops

Data R2.0 Devops

Unit R1.5* Devops

Type R1.5* Devops

Organisation R1.5* Admin

2.2 Use Case Analysis and Requirements

 Requirements

The original web-based CAMEL editor version was first presented to the project use case partners
both in a teleconference as well as at the 3rd partner meeting in Oslo. There, the use case partners
expressed their preference of the web-based editor over the textual editor of CAMEL as the web-
based editor seemed to better suit their requirements. In particular, the web-based editor seemed
to better follow the current working practices of their users while it was also more user-intuitive,
especially with respect to better guiding the users in providing the right information in a valid
manner.

http://www.melodic.cloud/

www.melodic.cloud 9

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

In this respect, once this web-based editor was selected to become part of the Melodic platform
and especially its UI, particular further requirements were posed to it in order to extend its usage,
both in terms of covering additional aspects as well as covering all possible user roles. Such
requirements (both new and old; old in terms of the original design of the editor), which were also
expressed via the Melodic project’s JIRA service, were the following:

 R1 – Application Deployment Coverage: Enable a valid specification of the deployment
structure and requirements for big data applications

 R2 – Requirement Coverage: Enable a valid specification of the non-functional
requirements of big data applications

 R3 – Scalability Coverage: Enable a valid specification of scalability rules for these
applications

 R4 – Metric Coverage: Enable a valid specification of metrics and their computation
formulas. The latter should be specified via mathematical expressions by exploiting a
certain mathematical language.

 R5 – Big Data Coverage: Enable a valid description of the (big) data that are manipulated by
big data applications

 R6 – Organisation Coverage: Enable a valid specification of organisational information,
including users and their roles

 R7 – Online CAMEL Model Manipulation: Allow the manipulation of models, including both
the addition, updating and deletion of models in an online manner by applying the
respective changes immediately on the underlying Model Repository. This enables users
not to perform an extra step after the editing of CAMEL models for storing them in the
Model Repository before their exploitation by the Melodic platform can be initiated.

 R8 – Controlled Model Access: Allow a controlled access on the different model aspects
based on the respective roles of an organisation and their rights.

 R9 – Application Deployment Launching: Launch the deployment of a big data application
once its CAMEL model has been specified and is complete.

 R10 – Cooperation with Metadata Schema Related Editors: Cooperate (directly or indirectly)
with the metadata-schema-related editors to allow the user to: (a) incorporate the weights
of specific optimisation objectives to the respective optimisation requirements in the
CAMEL model; and (b) to annotate the various information pieces that are specified in the
CAMEL model via respective metadata elements (i.e., concrete elements from the instance
of the metadata schema exploited by the Melodic platform).

Requirements R1-R6 cover the extent of the kinds of models to be manipulated via the web-based
editor while highlighting the need for imposing the semantics of the CAMEL language.
Requirements R7-R8 explicate what kind of manipulation over the models should be allowed to
be performed, but only in a controlled manner by corresponding valid users of the platform.
Requirement R9 enables users to immediately launch the deployment of a big data application
once its CAMEL model has been completely specified, bypassing in this way any kind of

http://www.melodic.cloud/

www.melodic.cloud 10

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

script/command-line based method or interface that might alternatively be supplied by the
Melodic platform. Finally, Requirement R10 enables the cooperation between the CAMEL and the
metadata-schema-related editors towards enhancing the CAMEL model with user preferences
and annotations.

Please note that as a side-effect of Requirements R1-R6, the CAMEL web-based editor would need
to also cover the unit and type aspects of CAMEL. This could be regarded as a derived Requirement
R11. However, as it will be shown later on in this chapter, the management of these two aspects is
included in the management of metrics, thus the realisation of Requirement R4. Furthermore,
Requirement R9 could be considered as slightly beyond the scope of the CAMEL editor. However,
it has been decided to be satisfied for facilitating the more rapid deployment of big data
applications. Moreover, as the CAMEL editor is the main responsible component for checking the
validity of CAMEL models, it is more natural to employ it in order to also assess their completeness
before they can be used for launching the deployment of the corresponding big data applications.

 Use Case Analysis

Based on the above requirements as well as the expected functionality to be delivered by the
CAMEL editor, a set of use cases were developed so as to guide the design of the extension of this
editor. These use cases are now analysed in detail in the following paragraphs.

http://www.melodic.cloud/

www.melodic.cloud 11

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2.2.2.1 Overall Editor Exploitation Use Case

Figure 1: The overall editor exploitation use case

In this use case, which is depicted in Figure 1, the user first logs in using the editor. Once the user
authentication is successful, the user should launch the respective model in order to start editing
it. Such a launching can be performed in three different ways: (a) a new model is created; (b) an
existing model is loaded; (c) a model is uploaded/imported (which could map to the case where
this model has been specified by a different editor, like the textual one). Once this launching is
done, the editing of the model can be conducted. This editing is elaborated more in a separate use
case. Finally, the user can exploit the final model, after its editing in two alternative ways: (a)
export the model (e.g., in order to be exploited via a different CAMEL editor, like the textual one);
or (b) use the model for initiating application deployment.

http://www.melodic.cloud/

www.melodic.cloud 12

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2.2.2.2 CAMEL Editing Use Case

The editing of a CAMEL model is covered by the following use case which is depicted in Figure 2.
As can be seen, the editing of a CAMEL model can be broken down into the editing of the
respective CAMEL sub-models (e.g., requirement, deployment, etc.). Such an editing can be
activated or de-activated depending on the rights of the user that performs it. In particular, an
admin user can only edit organisation models while a business user can edit only requirement
models. On the other hand, the most privileged role is that of the devops which can edit all kinds
of CAMEL models apart from the organisation model.

In the editing of any kind of CAMEL sub-model, the respective elements can be annotated through
the usage of an instance of the Metadata Schema. In this respect, a corresponding sub-case (seen
at Figure 2 – 3.7 Annotate Model) has been generated which involves the retrieval of this metadata
schema instance and its exploitation for the annotation of the CAMEL elements edited. In a more
restricted form of exploitation, user preferences are retrieved from the Connected Data Objects
(CDO) Model Repository and exploited for updating the weights of the respective optimisation
objectives given by the user within the requirement model that is currently edited. This is
depicted in Use Case 3.2.1 Exploit Weights (seen Figure 2). Both the instance of the metadata
schema as well as the user preferences are the output of two editors, the Metadata Schema Editor
and the Weights Calculator, respectively. Their indirect exploitation by the CAMEL editor is also
in line with the Use Case “Metadata Schema usage in App Modelling” in deliverable D3.1 [1].

http://www.melodic.cloud/

www.melodic.cloud 13

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 2: The actual CAMEL model editing use case

2.2.2.3 User Management Use Case

This use case, depicted in Figure 3, attempts to elaborate more on the way an organisation model
can be edited by the admin user. Such an elaboration is performed also to highlight that this
editing should precede the actual editing of a CAMEL model of a user application. First the devops
users of the organisation need to be modelled, before they can start editing any application-
specific CAMEL model.

http://www.melodic.cloud/

www.melodic.cloud 14

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 3: The CAMEL organisation model editing use case

As it can be observed from Figure 3, the editing of an organisation model includes: (a) the
management (creation, deletion, updating) of the users, or user groups, of the organisation
operating the Melodic platform; (b) the management of the roles that can be assigned to users; and
(c) the management of the role assignments, i.e., the assignments of roles to respective
organisation users or user groups. Please note that any organisation user should be assigned a
respective role (i.e., admin, business or devops) in order to be able to exploit the web-based CAMEL
editor.

2.3 Architecture

The architecture of the web-based CAMEL editor, which is depicted in Figure 4, is quite simple, as
it includes mainly three components: (a) the Admin which is responsible for the manipulation of
the CAMEL organisation model of an organisation; (b) the Importer which is responsible for the
importing of base CAMEL models (e.g., metric models which include basic metrics like average
execution time that can be used for the specification of SLOs or non-functional events) that can
be exploited/re-used for creating new ones; and (c) the Editor itself which is a servlet, realising
the core web-based editor by offering the CAMEL model editing and storage functionality. The
latter component embeds the CDO Client component in order to enable the management of the
models edited within the Model Repository. This management includes the storage and loading
of CAMEL models as well as their validation.

http://www.melodic.cloud/

www.melodic.cloud 15

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The Editor also interacts with other components of the Melodic platform in order to deliver its
functionality. In particular, it indirectly interacts with the Weights Calculator in order to obtain
the weights of non-functional metrics (to be used to annotate respective optimisation objectives),
which have been derived from the user preferences and stored in the Model Repository.
Furthermore, the Editor indirectly interacts with the Metadata Schema Editor in order to obtain
an instance of the metadata schema, stored in the Model Repository, which can be exploited for
annotating the CAMEL model elements. On the other hand, the Editor interacts with the platform
Control Plane in order to launch the deployment of a big data application specified by the
currently manipulated CAMEL model.

Figure 4: The architecture of the web-based CAMEL editor

2.4 Implementation Details & Usage Instructions

Implementation-wise, all of the components of the web-based CAMEL editor have been realised.
However, some of their intended interactions with other Melodic components have not yet been
implemented. In particular, the editor is not yet able to exploit output produced by the Metadata
Schema Editor and the Weights Calculator. This is due to the fact that the focus of implementation
was more on covering all aspects of the R1.5 release of CAMEL.

All the web-based CAMEL editor components have been developed in Java as Maven projects. The
Editor development exploited the Eclipse’s Remote Application Platform (RAP3) technology. This
technology enables the production of modern web-based applications using a rich in features
widget toolkit with a Standard Widget Toolkit4 (SWT) API. The latter includes interesting

3 www.eclipse.org/rap
4 https://www.eclipse.org/swt/

http://www.melodic.cloud/
http://www.eclipse.org/rap
https://www.eclipse.org/swt/

www.melodic.cloud 16

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

capabilities like drag’n drop, on-demand data loading, and inline editing and drawing. RAP
enables to build web applications through pure servlet technology, which can be run on any J2EE
container and integrated with Open Service Gateway Initiative5 (OGSi), if needed. Most
importantly, RAP enables to re-use code from different target platforms. This is an essential
feature that enabled us to integrate important Eclipse plugins like EMF6 and CDO.

The source code is available in the project gitlab7 and can be compiled via Maven. However, for
manageability reasons, the code has been split into three projects, mapping to the three main
components of the editor architecture. The Admin and Importer components do not depend on
each other, so they can be compiled as a first step (with the usual command “mvn clean install”).
However, as the Editor depends on the Admin component, it needs to be compiled subsequently.

There is a need for a specific execution order via which the editor can be actually run. As a pre-
requisite, the CDO Server8 component should already be running in secure mode. The latter
indicates that the security feature9 of the CDO technology is exploited to secure access to the
models managed by the CDO-based Model Repository. Once this is done, the order of execution is
as follows:

 First, the Admin component needs to be executed as it needs to give proper rights to the
admin user on the underlying Model Repository. These rights indicate that the user can
edit the organisation model of the organisation that operates the Melodic platform (i.e., the
platform operator). This component can be executed by supplying the following command:
“java -jar administration-2.0.0-SNAPSHOT-jar-with-dependencies.jar

 -Deu.paasage.configdir=<path>",
where <path> is the file directory path where the eu.paasage.mddb.cdo.client.properties
file resides (required for properly configuring the encompassed CDO Client for
connecting to the CDO Server that manages the underlying CDO Model Repository).

 Second, the Importer component needs to be executed in order to import all CAMEL base
models into the Model Repository. Such models, as already indicated, enable the re-use of
their elements for building CAMEL application models. For instance, they include metric
& unit models, which enable their re-use for specifying metric conditions and
corresponding SLOs as well as the units of new metrics, respectively. The command to
execute this component is the following:
“java -Deu.paasage.configdir=<path> -jar

 importer-2015.9.1-SNAPSHOT-jar-with-dependencies.jar", where
again <path> is the file directory path where the eu.paasage.mddb.cdo.client.properties file
resides.

5 https://www.osgi.org/
6 http://www.eclipse.org/modeling/emf
7 https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/web_editor?at=refs%2Fheads%2Foxygen
8 https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/cdo_server
9 https://wiki.eclipse.org/CDO/Security_Manager

http://www.melodic.cloud/
https://www.osgi.org/
http://www.eclipse.org/modeling/emf
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/web_editor?at=refs%2Fheads%2Foxygen
https://bitbucket.7bulls.eu/projects/MEL/repos/upperware/browse/cdo_server
https://wiki.eclipse.org/CDO/Security_Manager

www.melodic.cloud 17

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Finally, the Editor component needs first to be installed within a servlet container, like
Tomcat. Once this is done, then the Editor will be launched as a servlet, which can then be
immediately exploited by the respective users of the platform operator. An example of how
this would be done in a Windows execution environment with Tomcat as the servlet
container is as follows: (a) configure Tomcat to point to the directory where the
eu.paasage.mddb.cdo.client.properties file resides by modifying the catalina.bat file with
the following entry: ‘set "JAVA_OPTS=%JAVA_OPTS% -Deu.paasage.configdir=<path>" ‘; (b)
copy the compiled war file of the Editor to the webapps directory of Tomcat, followed by a
start or restart of Tomcat, depending on its current status (down or running, respectively).

The Editor can be utilised by devops or business users once the admin user has updated the
platform operator’s organisation model to both model them as users as well as to associate them
with respective roles. This actually maps to the following usage scenario, which should be
followed in the very first moment that the editor has started to run:

1. Login as super administrator with credentials ("Administrator","0000").
2. Create the Organisation Model

a. Create a User in that model
b. Via a role assignment, assign that user to the devops (or business) role (please note

that the dates for this assignment should be in correct order, i.e., start date ≤
assignment date ≤ end date)

3. Logout
4. Login as the devops (or business) user by using your already specified credentials
5. Start playing around by creating an application and its deployment/requirement models

(or requirement model in case of a business user)

2.5 Features and Requirement Satisfaction

By considering the design requirements of the editor, which have been specified in section 2.2.1,
Table 2 explicates the level of satisfaction. As it can be seen, most of the requirements are already
satisfied while a few of them will be addressed in the future evolution of this editor in the context
of the Melodic project. This is in line with the implementation status that has been explicated in
section 2.4.

http://www.melodic.cloud/

www.melodic.cloud 18

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 2: The current satisfaction level of the editor design requirements

Requirement Satisfaction Level

R1 – Application Deployment Coverage Full

R2 – Requirement Coverage Full

R3 – Scalability Coverage Full

R4 – Metric Coverage Full

R5 – Big Data Coverage -

R6 – Organisation Coverage Full

R7 – Online CAMEL Model Manipulation Full

R8 – Controlled Model Access Full

R9 – Application Deployment Launching -

R10 – Cooperation with Metadata Schema Related Editors -

The editor is a modern web-based application that is available to be used by the platform users in
a remote manner, no matter where they reside. Apart from its coverage of the above requirements,
which map to certain basic features, additional features have been implemented which are
analysed as follows:

 Use of perspectives to allow focused editing of different CAMEL model kinds
 The ability to switch from one perspective to another dynamically and in a controlled

manner
 Immediate availability of edited information from one perspective to another
 User-intuitive error handling – errors with respect to user input and CAMEL model

validity are appropriately highlighted in a suitable form with up-to-the-point error
messages communicated to the modeller while the respective “problematic” input UI
element grabs the focus to rapidly correct the current error

 User-intuitive tree-based navigation of different CAMEL model elements pertaining to
the current model kind of focus

 Exporting of the whole CAMEL model in XMI form

2.6 Editor Walkthrough

The editor has been implemented as a modern web application which is available via a certain
URL and is deployed on the VM in which the respective Melodic platform instance resides. In case
that the user needs to remotely manage the respective CAMEL models of his/her applications, the

http://www.melodic.cloud/

www.melodic.cloud 19

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

VM should be configured to have the corresponding port open on which the servlet container
hosting the editor listens (e.g., 80 or 8080). Obviously, the IP address of the VM should also be
known to the user.

Figure 5: Initially launched form of the CAMEL editor

The UI of the editor in its initially launched form is depicted in Figure 5. As can be seen, the UI
comprises three main parts: (a) the menu bar on the top of the UI; (b) the tree viewer on the left;
and (c) the form-based editor on the right. The menu bar comprises different menus which map
to the different aspects that need to be dealt with by the editor. These menus include:

 User: this menu allows the user to login or logout from the editor.
 Application: this menu enables the user to manage applications as well as launch their

deployment.
 Deployment: this menu enables the user to manage the deployment structure of his/her

big data applications.
 Requirement: this menu enables the user to manage the requirements of his/her

application.
 Metric: this menu enables the user to manage metrics as well as other metric-related

elements, like metric contexts and units.
 Scalability: this menu enables the user to manage the scalability rules that will drive the

local adaptation behaviour of his/her applications.

http://www.melodic.cloud/

www.melodic.cloud 20

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Organisation: this menu enables the admin to manage organisational information
including users and roles.

 Perspective: this menu enables the user to switch from one perspective to the other
according to his/her rights.

Apart from the first menu, the next 6 menus enable the actual manipulation of respective CAMEL
models. Each menu is dedicated to one kind of CAMEL model with the sole exception of the Metric
menu via which also other CAMEL model kinds apart from the metric one can be manipulated
(unit and type model kinds, in particular). Please note that in this case the manipulation of the
other model kinds comes through the actual interface and not via certain items from the menu.
Each menu actually maps to a different perspective, which when launched leads to the population
of the two other UI parts, i.e., the tree and form-based editor. While the last menu, as already
explained, enables switching to another perspective, depending also on both the current user
rights as well as the existence of the respective model kind (e.g., metric), inside the current overall
CAMEL model that is edited. In particular, the user is presented with perspectives which can be
already activated only if both the user has the right to manage the corresponding model kind and
this model kind is already included in the overall CAMEL model.

The population of the tree and form editing parts of the UIs depend on the content of the
respective CAMEL model (kind), if such a content exists. In any case, the tree-based UI part shows
a tree hierarchy with the whole model as the respective root tree node and respective children
which map to containers of different elements. For example, in the case of a metric model, the top
element of the tree would be a node named after the metric model, while the children of this node
would map to containers for metrics, properties and other metric-related elements which are
named in plural form after the respective name of the element kind to which they map (e.g.,
“metrics”, “properties”, etc.). Indeed, if there exist already elements for a specific element kind, like
a metric, then the respective children of the container node (e.g., “metrics”) would have been
already created (e.g., “average response time” in case of a specific metric).

On the other hand, the form-based UI part of the editor is structured in the form of tabs, where
each tab is dedicated to the definition or updating of a respective element kind. These tabs are
also named in plural form after the name of the corresponding element kind (e.g., “metrics”). Upon
the first launch of the corresponding perspective, the first tab in order is always selected and its
actual content is shown. It is always represented as a form, which includes different parts
organised into respective named UI element groups/containers. At the bottom of this form, the
buttons that enable to manipulate the element to be created or updated are situated. Such an
element should be selected from the tree part of the editor. For this selection, the following two
cases hold.

First, a container node has been selected. In this case, the form is rather empty as it is prepared to
host the editing of information for a new element of the current element kind. For instance, if the
“metrics” container is selected, this means that a new metric element will need to be created in

http://www.melodic.cloud/

www.melodic.cloud 21

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

the current CAMEL metric model. Upon this selection, both the respective tab (“metrics”) and the
corresponding form will be initialised, while only the “Add” button will be enabled.

Second, a particular element has been selected, e.g., a specific metric. In this case, we have again
the selection of the correct tab in the form-based UI part with the exception that now: (a) the form
is populated with the information of the current element (e.g., its name and unit, in case of a Metric
element); and (b) the “Add” button is now disabled and the “Update” and “Delete” buttons are
enabled. The latter buttons allow the user either to update the information of the metric, if it has
been modified, or to delete this metric from the current (CAMEL metric) model.

An important feature of the editor is that the editor does not require users to supply all the
information needed by a normal, valid CAMEL model. The editor actually takes care of the
completion of some information automatically by considering its correlation with information
already supplied. For instance, in the context of VMs in deployment models, the user does not
have to provide the provided host port for this VM. This is internally created by the editor as soon
as the VM element is graphically created by the user. This nice feature, along with proper error
handling for model validation purposes, makes the editor not only user-intuitive and friendly, but
also an important companion to the modeller which guides and assists him/her in faster
production of only valid CAMEL models.

We should highlight that error handling actually enables to conform to the semantics of CAMEL
which have been supplied by both the Ecore10 CAMEL model and its OCL specification. Such a
conformance is achieved by forbidding the creation or updating of elements which are not valid
(either internally or externally as they introduce inconsistencies with respect to other CAMEL
models). This denying of user CAMEL model manipulation actions is accompanied by proper error
messages as well as a change of UI element focus to exactly pinpoint for the user the right UI part
in which the respective resolution needs to be performed. For example, in the case of VM creation,
if the user does not provide any name or an empty one for the VM, then an error will be prompted
indicating that a non-empty VM name should be supplied. Further, the respective text field in the
form-based UI part of the editor will grab the focus to allow the user to supply the needed (VM)
name.

In order to start the walkthrough on the different aspects of CAMEL that can be manipulated via
the editor, we consider the scenario which has been partly explained in section 2.2.2 (user
registration – also mapping to Use Case 3.1 seen at Figure 3). The only difference lies in the very
last step of this scenario, which will be elaborated further. In order for the presentation to be as
real and up-to-the-point as possible, we consider the situation that a registered devops user
desires to create a CAMEL model for the Melodic’s Traffic Management use case11.

10 https://wiki.eclipse.org/Ecore
11 http://melodic.cloud/use-cases.html

http://www.melodic.cloud/
https://wiki.eclipse.org/Ecore
http://melodic.cloud/use-cases.html

www.melodic.cloud 22

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

In order not to make the presentation verbose and lengthy, we rely on a restricted form of this use
case for editor illustration purposes. In this restricted form, we will focus mainly on four main
CAMEL aspects, i.e., deployment, requirement, metric and scalability. These are actually the
aspects that are usually edited in the context of a traditional (i.e., non-data-based) CAMEL model.

Concerning the deployment aspect, the devops user requires to model two internal application
components, the Simulation Manager and the Simulation Worker. The first component is
responsible for managing the whole traffic simulation experiment, while the worker is a piece of
functional unit that takes care of conducing a single simulation. Obviously, both of these
components will communicate with each other and will be associated with certain configuration
commands. In addition, they will be hosted on VMs with different quantitative hardware
characteristics. However, both VMs will also share some features, like the same operating system
(OS) (Ubuntu, in this particular case).

The quantitative hardware requirements that each VM will need to satisfy are the following:

 SimulationManagerVM: cores in [1,4], CPU in [1.0,3.0], RAM in [2,4] GB and storage size in
[100, 1000] GB.

 SimulationWorkerVM: cores in [72,144], RAM in [144,288] GB and storage size in [100, 500]
GB.

The devops user will require to scale the Simulation Worker component with 5 more instances
where its average execution time goes beyond 5 minutes. The average execution time of such a
component will be measured every 7 minutes with a measurement window of 10 minutes. Such a
metric is computed from the raw execution time metric, which is computed on demand at the
component (instance) side every time a simulation is ended.

 Admin Login

The admin of the platform operator needs to select the User menu and the Login option. Once this
is done, a pop-up window (see Figure 6) is launched which enables the admin to provide his/her
credentials. The admin can then press the “OK” button in order to be authenticated.

http://www.melodic.cloud/

www.melodic.cloud 23

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 6: Login popup window shown to admin

 Organisation Model Editing

Upon successful admin authentication, the respective perspectives/menus that the admin user
can manipulate can be selected. As we consider that the Melodic platform has been just created,
the platform operator’s organisation model is not yet generated. In this respect, the “New
Organisation Model” option in the Organisation menu will be activated by the editor (see Figure
7). The admin would need to press this option in order to start the editing of the organisation
model to be created. Please note that in the case that the organisation model already existed, it
would have been directly launched, but only for users which undertake the admin role.

As the organisation model will be newly edited, the admin is first presented with a pop up window
that prompts him/her to supply the name of that model, as well as to determine whether this
model should belong to a simple or cloud provider organisation. This is depicted in Figure 8.

http://www.melodic.cloud/

www.melodic.cloud 24

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 7: Organisation menu enabled content

Figure 8: New organisation model popup window

http://www.melodic.cloud/

www.melodic.cloud 25

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Once the right input is given by the admin, the two central UI components of the editor start to
become populated.

Initially, the model, as shown in the tree-part of the UI (see Figure 9), involves the creation of an
organisation plus three role elements (admin, devops, business). Once the admin selects the
organisation element (named as “cet”), the form-based UI part will focus on the respective
Organisation tab, which includes forms enabling the admin to supply particular information for
his/her organisation - like the email and contact address. If the organisation is a cloud provider,
additional information can be enabled and thus supplied.

Figure 9: Organisation perspective launched, populated with the new organisation model information

As the admin requires to create a new user, he/she selects the “users” node in the tree part of the
UI. This selection then enables to focus on the “Users” tab in the form-based UI part. There, the
admin can provide all necessary information about the user (e.g., first and last name, email, and
name/login & password) and press the “Add” button. This can then lead to: (a) the creation of a new
element named after the name/login of the user created in the tree under the “users” container
node; as well as (b) the change in status of the management buttons in the form-based UI part to
now allow the modification of information of the newly created user or its deletion (see Figure 10).

http://www.melodic.cloud/

www.melodic.cloud 26

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 10: New user creation

However, the duty of the admin is not yet over. The created user also needs to be assigned to a
certain role. This creates the need for selecting the “role assignments” container in the tree. This
action will then lead the focus on the “Role Assignments” tab of the form-based UI editor part,
which is now ready to host information related to the current user. In particular, the admin can
select both the user from a drop-down user list (containing all users that have been created so far)
as well as the actual role to be assigned to him/her (again obtained from a drop-down list, which
initially contains the already generated 3 aforementioned roles). The admin should also supply
the starting and final validity date for the assignment, as well as the date in which the assignment
was introduced to the system. Once all this information is entered, the admin can press the “Add”
button and the role assignment will be created, shown then as an element/child of the “role
assignments” container node in the tree (see Figure 11).

http://www.melodic.cloud/

www.melodic.cloud 27

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 11: The new role assignment created

As the responsibility of the admin hereby ends, the admin can now logout from the editor.
Internally, the admin needs to communicate to the user his/her credentials to enable him/her to
utilise the editor - as will be shown next.

 Devops Login

The newly created devops user can now authenticate in order to have access to the editor’s main
functionality. He/she just have to provide his/her credentials in the pop up window that will be
launched when the “Login” option is selected in the “User” menu.

 CAMEL Model Editing via Devops

2.6.4.1 Application Aspect

The devops user, once successfully authenticated, will be allowed to manipulate almost all
aspects apart from the organisation model. The first action that he/she has to perform is to create
a new application. Please note that such an application is considered to be mapped to a whole
CAMEL model which includes one (sub-)model per each kind (e.g., one deployment and
requirement sub-model). The devops would then have to select the “New Application” option in
the “Application” menu.

Upon this selection, the two main UI parts of the editor will be initially populated, as shown in
Figure 12. The tree part will contain one node temporarily named as “NEW”. On the other hand, the
form-based part will depict a form that includes text fields, which can be filled in by the user,

http://www.melodic.cloud/

www.melodic.cloud 28

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

related mostly to the actual permanent name of the application to be created and its version. Once
the completion of these fields is over and the user presses the “Add” button, the application is
created as a child node of the current one in the tree, while at the form-based UI part we have the
disabling of the “Add” button and the enablement of the other two. This is depicted in Figure 13.
Please note that the application creation also leads to the change of the temporary name of the
CAMEL model to be permanently constructed by considering the generated application’s name
and version.

Figure 12: New application with unfilled information

Figure 13: New application with completed information

http://www.melodic.cloud/

www.melodic.cloud 29

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2.6.4.2 Deployment Aspect

The devops now has to create the deployment model of his/her application. In this respect, he/she
can select the “New Deployment Model” option in the “Deployment” menu. A pop-up window will
then be launched which will enable the user to supply the name of the deployment model to be
generated (see Figure 14).

Figure 14: The new deployment model pop up window

Once this is successful, the two main UI parts of the editor are initiated. This then enables the
devops user to start the fill-in of the right information. The devops user should first start with the
creation of the internal application components. Two main components need to be generated:
SimulationManager and SimulationWorker. These two components need to also communicate
with each other such that the first exposes a required communication port and the second a
provided communication port. As each application component is always hosted by a specific VM,
the required hosting port of both components does not need to be provided. However, this does
not hold for their configuration, which needs to be supplied.

Due to space economy reasons, we focus now on what the devops user will perform to specify all
the needed information for the SimulationManager component. First, he/she would select the
“components” container in the tree part of the UI. Then, the devops user would need to supply the
name and the configuration of the component. The latter is within an UI element group devoted

http://www.melodic.cloud/

www.melodic.cloud 30

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

to the supply of the different component lifecycle commands that should be utilised for properly
configuring an application component. The devops would also need to add the port in the provided
communication list in the form-based UI part. Once this is done, the user can press the “Add”
button at the bottom part of the form-based UI part. This would then lead to the creation of the
SimulationManager component as a child of the “components” container in the tree UI part (see
Figure 15).

Once both the SimulationManager and SimulationWorker components are created, the devops
user is required to specify the needed communication between the two components. He/she
should then select the “communications” container node in the tree UI part and then supply the
right information at the form-based UI part: (a) the name of the communication; (b) the two
components to be connected by selecting the right items from the respective drop-down lists; and
(c) the provided and required communication ports of these two components from two
corresponding drop-down lists. We should note here that selecting one component is not enough
as we need to know its exact port that is to be used in the respective communication. However,
we need to highlight that once a component is selected from the drop-down list, only then will its
ports be shown in another drop-down list so that they can be selected. Once this is done, the user
can then press the “Add” button and the respective communication node will be created in the
tree UI part (see Figure 16).

Figure 15: Addition of SimulationManager component

http://www.melodic.cloud/

www.melodic.cloud 31

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 16: The addition of the communication node

Each application component needs to be deployed on a different VM. The SimulationManager
needs to be deployed on the SimulationManagerVM, while the SimulationWorker needs to be
deployed on the SimulationWorkerVM. Both VMs have some common requirements, but also
different ones, thus they will be associated with different VM requirement sets. However, these
sets can be completed only when the requirement model of the current application is specified.
In this sense, the only thing that the devops user would need to perform now is to specify the VMs
as well as their respective hostings, i.e., their connection with the internal application
components that they will host.

For space economy reasons, Figure 17 depicts what the devops user will specify for the
SimulationManagerVM. As it can be seen, the hosting port of that VM does not need to be specified
as it is internally managed by the editor. Figure 18 depicts the hosting to be specified for
connecting this VM with the SimulationManager component. As it can be observed, the devops
user will need to specify in this case the name of the hosting as well as the two components that
are to be connected together in it.

http://www.melodic.cloud/

www.melodic.cloud 32

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 17: The creation of the SimulationManagerVM virtual machine

Figure 18: The creation of the SimulationManager Hosting

2.5.4.3 Requirement Aspect

Once the devops user finishes the first round of deployment model specification, he/she can move
on to the requirement aspect. In this case, as there is no existing requirement model yet, he/she
will need to specify its name by selecting the Create New Requirement Model option from the
Requirement menu (see Figure 19). Once he/she finishes with specifying the name and presses
the OK button, the model will be created and the respective two main UI parts of the editor will be
launched as initially empty.

http://www.melodic.cloud/

www.melodic.cloud 33

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 19: The enabled content of the Requirement menu

The devops user will first concentrate on specifying requirements for the respective VMs that
have been already modelled. First, he/she will specify an OS requirement. He/she then needs to
select the OS tab and provide three pieces of information: (a) the name of the requirement; (b) the
actual OS by selecting it from a drop-down list; and (c) whether this OS should be 64-bit or not.
This information, as completed by the devops user, is depicted in Figure 20.

Figure 20: The creation of the ubuntu OS requirement

http://www.melodic.cloud/

www.melodic.cloud 34

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Next, the devops user will specify the quantitative hardware requirements for the two VMs. For
economy of space reasons, we just show Figure 21, which depicts the information to be specified
for the SimulationManagerVM after the devops user selects the Hardware tab.

Figure 21: The quantitative hardware requirements specified for the VM of the SimulationManager

Now, it could be argued that the user has finished with the modelling of the requirements, as the
SLO that he/she needs to specify would require the specification of a new metric, which can only
be performed via the metric perspective. Fortunately, the editor can utilise already defined
metrics that are incorporated in the (basic) metric model initially imported in the (CDO) Model
Repository (by the Importer). In this sense, the devops user can immediately move to specifying
the SLO with the sole exception that details concerning the context of the respective metric will
still need to be specified via accessing the metric perspective.

To specify this SLO, the devops user can select the NonFunctional node in the tree-based UI part
or just the Quality tab. Figure 22 depicts the information that he/she has to enter. In particular, the
user needs to define the actual metric to be used, the comparison operator (LESS_THAN) and the
respective threshold (5) for this SLO. He/she also needs to explicate that the metric condition
concerns the SimulationWorker component and that a new metric context needs to be specified
(and not an existing one re-used). Once the “Add” button is pressed, we can observe (see Figure 23)
that the metric context has taken a different name, which reflects the fact that this context has
been automatically produced by the system and not manually edited by the devops user.

http://www.melodic.cloud/

www.melodic.cloud 35

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 22: Filled in information before the SLO is added

Figure 23: Visualisation of the added SLO

http://www.melodic.cloud/

www.melodic.cloud 36

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2.6.4.4 Metric Aspect

As indicated previously, the metric context specified for the average execution time metric is not
complete. In particular, we also need to specify additional details which map to the measurement
schedule and window of the metric. These details require from the devops user to revert to the
metric perspective.

Astonishingly, the devops user can already observe that a metric model has been already created,
as well as an execution context included in it. This is due to the fact that an SLO has been already
specified at the requirement model. This means that such an SLO should map to a metric
condition, which should be associated in turn with a certain metric context. Both latter elements
are automatically inserted (taking also automatically specific names) into the metric sub-model
of the current CAMEL model, while this sub-model is newly created, if it does not already exist.

In order to complete the modelling of the composite metric context that is automatically created,
the user needs to specify two information elements: a schedule and a window. Concerning the
schedule, the devops supplies information about (a) the type of the schedule (FIXED_DELAY); (b)
its (repetitive) interval/time period (i.e., 7); and (c) its time-based unit (minutes). This is depicted
in Figure 24.

Figure 24: The metric schedule added

http://www.melodic.cloud/

www.melodic.cloud 37

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

For the (measurement) window, the devops should specify the following information pieces,
which are depicted in Figure 25: (a) its type (SLIDING); (b) its size type (TIME_ONLY); (c) the time
period (10); and (d) the time-based unit (minutes). This information indicates that a time-based
sliding window is to be created with a size of 10 minutes.

Figure 25: The measurement window added

Once the devops creates both metric model elements, he/she can click on the metric context of
focus and just select these two elements from the respective drop-down lists/combos. This is
depicted in Figure 26. He/she can then press the Update button and the context will be updated.
This then ends the editing of the CAMEL metric model.

http://www.melodic.cloud/

www.melodic.cloud 38

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 26: Update of the composite metric context

2.6.4.5 Deployment Aspect Revisited

Please remember that the devops user has created two VMs to host the two components of the
Traffic Management application, respectively, for which no requirements have yet been specified.
In this respect, as the right set of requirements has been already created, through the use of the
editor, the user can now switch to the requirement perspective. He/she can then click on each of
the two VMs and map them to the requirements that they need to satisfy.

The latter is shown in Figure 27. For economy of space reasons, we focus only on the
SimulationManagerVM. For this VM, the devops user will specify the name of the corresponding
VMRequirementSet as well as select the right kinds of requirements from the respective drop-
down lists that have been populated from the actual content of the requirement model. In this
case, the user will select the ubuntu OS and the SimulationManagerQHW quantitative hardware
requirements. He/she can then press the Update button to persist his/her changes. After updating
both VMs, the deployment model is finalised. Thus, the only thing remaining to be modelled is the
scalability rule for scaling the Traffic Management application on-demand.

http://www.melodic.cloud/

www.melodic.cloud 39

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 27: The requirement set associated to the VM of the SimulationManager

2.6.4.6 Scalability Aspect

In order to specify the scalability rule for scaling the SimulationWorker component, the devops
user will have to create a new scalability model from scratch. In this sense, he/she will first select
the “New Scalability Model” option from the Scalability menu and then supply the name of the
model to be created as well as press the “OK” button. This is depicted in Figure 28.

http://www.melodic.cloud/

www.melodic.cloud 40

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 28: The specification of the name for the new scalability model

A scalability rule is a mapping of events to scaling actions. As such, before such a rule is created,
there is a need to specify its two main associated information elements.

An event can be single, non-functional or a composition of other events. In the context of the
current application, we just need a non-functional event to be modelled. Fortunately, due to the
cross-correlation between the different kinds of CAMEL models, the creation of the SLO has led
to the generation of a metric condition. The violation of such condition would then trigger the
horizontal scaling action. As such, this violation is the event of focus here. In this case, as the
metric condition has been already created, the user can just select it from the respective drop-
down list and then indicate that its violation is of interest. This is depicted in Figure 29. By
pressing the Add button, the respective event will be created in just a matter of 4 moves: the
specification of the event name, the selection of the right metric condition, the enabling of the
violation check box and the pressing of a button.

http://www.melodic.cloud/

www.melodic.cloud 41

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 29: The SLO violation non-functional event created

The required scaling action can be easily generated again in a limited number of moves (see
Figure 30). In this case, the devops user needs to supply the name of the action; to select the
respective VM (SimulationWorkerVM) to be scaled from a drop-down list; to select the radio button
mapping to an horizontal scaling action; and then to specify both the internal application
component to be scaled (SimulationWorker) from a drop-down list as well as the number of
instances (5) to be created for that component. Once the Add button is pressed, the respective
scaling action will be created and the sole task remaining to be performed would be to finally
specify the corresponding scalability rule.

http://www.melodic.cloud/

www.melodic.cloud 42

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 30: The horizontal scaling action created for the SimulationWorker component

For the latter rule, its specification is conducted in just a matter of 4 moves (see Figure 31):
supplying the rule name, selecting the right event and scaling action from the drop-down lists,
and finally pressing the Add button.

http://www.melodic.cloud/

www.melodic.cloud 43

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 31: The scalability rule created for the SimulationWorker component

This concludes the specification of the scalability sub-model as well as the whole CAMEL model
of the Traffic Management application. As we have seen, the user can very rapidly create a whole
CAMEL model via a set of carefully conducted moves which should be performed in the right order
and according to the right perspectives/aspects. The user does not need to know fluidly the
CAMEL language to perform this. He/she just needs to know what is the correlation between the
different kinds of CAMEL models in order to follow the right editing order with respect to these
model kinds. This is one of the main advantages of exploiting this editor with respect to the other
two ones, which do require a deeper knowledge and a more thorough understanding of CAMEL.

http://www.melodic.cloud/

www.melodic.cloud 44

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3 Future Work

The complete implementation of the web-based CAMEL editor is not yet done. Apart from the
design requirements that are still not satisfied, additional features are planned to be incorporated
in the editor while existing ones will be updated to conform to forthcoming CAMEL meta-model
modifications. In this respect, the editor will evolve over time within the context of the Melodic
project. In the following table, we present an overview of the features that will be soon realised, or
those that will be updated along with their actual mapping to the respective CAMEL and Melodic
platform release that they cover – thus presenting a timeline of the respective future
implementation. All these features will be analysed in the next three sections of this chapter
which have been split into three groups depending on whether they concern existing features
that will be updated, specific editor design requirements which have not been met yet, or new
editor features.

Table 3: Timeline for the delivery of forthcoming updates and new features of the web-based CAMEL editor

Feature CAMEL Release Melodic Release

R5 – Big Data Coverage R2.0 R2.0

R9 – Application Deployment Launching R2.0 R2.0

R10 – Cooperation with Metadata Schema related
Editors

R2.0 R2.0

CAMEL Meta-Model Extensions/Modifications R2.0-R2.5 R2.0-R3.0

Advanced Model Specification Guidance R2.0 R2.0

Textual Camel Editing R2.5 R3.0

As can be seen from the above table, there is a plan to produce two new CAMEL releases:

 R2.0: this release will conform to the R2.0 release of the Melodic platform and will cover all
the big data related CAMEL extensions.

 R2.5: this release will conform to the final release of the Melodic platform and will
incorporate additional extensions or modifications to the CAMEL meta-model, which will
be possibly derived from both use case and technology partner feedback, or will be related
to new features of the platform.

Please note that the notation of the releases conforms to the lifetime of the Melodic project, in
accordance to the way the releases of the Melodic platform are identified. In this respect, R2.0 and
R2.5 reflect releases that map to the 24 first months (2.0 years) and 30 first months (2.5 years) of
the project. Please also mark that stopping at a CAMEL R2.5 release means that the final CAMEL

http://www.melodic.cloud/

www.melodic.cloud 45

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

web-based editor version will be mainly delivered at the 2.5 year of the project, with a possible
sole evolution delivered in the last month of the project, incorporating any kind of bug fixing and
the possible integration (see analysis and justification below) with the textual editor.

3.1 CAMEL Meta-Model Extensions / Modifications

CAMEL will certainly evolve and this has been already indicated with the explication of its
forthcoming releases. This means that its meta-model evolutions will lead to a required updating
of the web-based editor (if it is decided to migrate to a given release, of course, which will be the
case in the context of the Melodic project). However, such an updating can be quite substantial. In
particular, it can move into two main directions:

 updating of the UI: some CAMEL elements have a direct reflection on the editor UI. So, if
they are removed or modified, this also needs to be reflected in the editor implementation.
Furthermore, new aspects, like the (big) data one, will need to be handled with new editor
perspectives, while their information updating should be reflected on the rest of the
perspectives, in case cross-references are concerned.

 updating of the backend implementation: the UI is backed up with a backend, which has
as the main duty to reflect the user model manipulation actions online in the (CDO) Model
Repository. This reflection comes mainly with some (model) manipulation and validation
logic, as well as some querying abstraction. In both cases, the respective code would need
to be updated as meta-model modifications will lead to changing both the main
business/manipulation logic as well as the queries that are issued over the Model
Repository.

With respect to the first direction, the extend of the reengineering work to be conducted
concerning the second direction will be substantial. Fortunately, by also following the CAMEL
release plan, we believe that the CAMEL meta-model modifications will be performed in a gradual
manner, while some of the new/modified CAMEL features might be usable only in the last Melodic
platform release. In this sense, we will have the opportunity to distribute the work to be conducted
for accommodating this feature until month 30 of the Melodic project.

3.2 Coverage of Unsatisfied Requirements

Three main design requirements are not yet covered by the CAMEL web-based editor. Thus, their
forthcoming coverage is analysed in the following three sub-sections.

http://www.melodic.cloud/

www.melodic.cloud 46

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Requirement R5 Coverage

Requirement R5 concerns the coverage of the big data aspect. This aspect has an impact also on
the CAMEL meta-model and will lead to the modification of some aspects already covered by this
meta-model. In this respect, the CAMEL editor will not be just extended, but also updated to cover
these modifications. In particular, as the deployment aspect will be mainly impacted, this will
then lead to modifying the deployment perspective in the CAMEL editor. The incorporation of a
new aspect will also lead to the production of a new perspective, the data one. All these
extensions/updates will require some extensive work to be conducted in the editor
implementation, which will fortunately be realised in time, especially as the CAMEL meta-model
R2.0 release is more or less finalised, with only some details missing to be handled.

 Requirement R9 Coverage

Requirement R9 is the easiest to handle in the sense that interacting with the Control Plane of the
platform will just require re-using (client) code that already exists. However, we should note that
before deploying a cloud-based application, we need to ensure that the respective CAMEL model
is complete and thus “deployable”. This then relates to the realisation of a CAMEL model
completeness checking functionality, which is coupled to the satisfaction of this requirement.
However, as the realisation of this functionality is also quite easy to handle and perform, the
overall implementation requirements for this piece of work will be quite lightweight and less
time-consuming. In the following, we provide some details on how the model completeness
functionality could be realised.

A complete and thus deployable CAMEL model requires to have at least a complete deployment
(sub-)model. Such a deployment model should contain internal application components that are
not only hosted on a certain VM, but also associated with configuration scripts as well as with
communication connections between each other. In this respect, validation of the model
completeness would need to assess whether all this information is present. In addition, the editor,
in the context of this functionality, could also issue some warning messages in case some
optional information is missing, which could include:

 communication connections between components: it might be possible that a deployment
model would be accepted without having such connections. While this is valid in terms of
completeness, it might disclose a possibly erroneous situation where such connections
were forgotten to be modelled by the user. In fact, logically speaking, an application which
comprises multiple components most of the times, if not always, includes some
communication connections between them.

 quantitative hardware requirements: without such requirements, any kind of VM might be
selected which is not what the user would desire. Usually, application components come
with unique hardware requirements that need to be respected. If not, then either the

http://www.melodic.cloud/

www.melodic.cloud 47

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

components will not function properly or there will be a waste of resources, e.g., in the
case that the components cannot have their performance improved above a certain
resource limit.

 OS requirements: some times, components require to be hosted on certain environments
that include a specific OS. As such, it can be probable that the non-existence of this kind
of requirements can lead to misconfiguration of the respective components and then
impact their actual execution.

 optimisation requirements: the non-existence of such requirements can lead to random
selection of VMs which satisfy the local constraints supplied for each component (or VM
type that hosts it). It is thus advocated that such requirements are posed in order to
connect this selection with some overall optimisation objectives which are required by
the respective user, possibly going from the infrastructure to the application level.

The warning message will indicate the actual cause of the warning as well as ways to remedy it.
It could also signify some other missing modelling opportunities, mainly in the context of
additional requirements that could be supplied by the user.

We should highlight that the validation of model completeness will be restricted over a structural
or syntactic checking of the respective information that might be missing. It is rather hard to raise
this at the semantic level as this would then require checking with respect to for instance whether
the respective configuration commands given by the user were correct or that components of a
certain type should be connected to each other.

In this respect, we expect that this kind of structural or syntactic checking, along with the CAMEL
model issuing functionality, will be easy to implement and will be surely delivered at month 24 of
the Melodic project.

 Requirement R10 Coverage

Requirement R10 at first sight seems easy to implement. However, this is not actually the case.
Only one part of its implementation can be considered as easy, i.e., the indirect interaction with
the Weights Calculator. Indeed, fetching just some weights and incorporating them in a specific
part of a CAMEL model is not very hard to realise. Furthermore, any update to the weights can be
lazily reflected once the editor is launched and the user desires to modify the current set of
weights incorporated in the respective CAMEL model. We highlight here the desire of the user to
perform this reflection/updating due to the following reason: the user might have modified the
weights in order to incorporate them in future evolutions of his/her application CAMEL model. In
this respect, it is not correct to automatically update the current application CAMEL model with
the new weights that have been produced.

On the other hand, the synchronisation with the instance of the meta-data schema in terms of
the cooperation with the Metadata Schema Editor is of a different nature and cannot be just lazily

http://www.melodic.cloud/

www.melodic.cloud 48

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

performed. Indeed, the modification of the metadata schema instance can immediately lead to
the invalidation of some annotations already provided in a CAMEL model. Such modifications
might require to take different actions in an automatic manner: (a) in the case of the name of an
element in the metadata schema instance is modified, this will require updating the respective
annotations in the CAMEL model; (b) in the case of a specific element from this instance is
removed, then the respective annotations in the CAMEL model should be reset/removed.

Fortunately, we have incorporated a certain mechanism (see D2.2 [3] for more details) in the
CAMEL meta-model in order to cover both kinds of modifications. In particular, the metadata
schema has become part of the CAMEL meta-model. In this sense, the annotations in a CAMEL
model directly refer to elements of the metadata schema instance and are thus not supplied in
the form of a (indirect) String. In this way, both kinds of modifications are immediately reflected
in a CAMEL model.

While this automatic synchronisation is well handled through the incorporated mechanism in
the CAMEL meta-model, still the work to be performed in the CAMEL web-based editor is
substantial as: (a) there is a need to supply annotations for any kind of CAMEL model element that
is edited; and (b) in some cases, e.g., in the deployment aspect/perspective, there will be a need to
introduce some dynamic CAMEL parts (in form of feature sub-models – see D2.2 [3]) that are
produced through referring to the metadata schema instance elements (e.g., supply of a feature of
a VM which is not covered in the CAMEL meta-model).

Overall, the coverage of the R10 requirement will map to a certain amount of work. While this work
is considerable, we still believe that it can be delivered by the end of the 2nd year of the project.

3.3 New Features

 Advanced Model Specification Guidance

This is the easiest feature to implement apart from the one related to the R9 Requirement. In
particular, this feature relates to properly guiding the user/modeller in providing valid CAMEL
models. The obligatory fields should be always marked within a UI. This enables the user to always
supply information for them without risking in retrieving error messages when the respective
information submission functionality is invoked. As such, we believe that this feature is essential
to have a better user experience when using the web-based CAMEL editor. To realise it, we will
follow some, if not all, of the directions below:

 label in a certain way all obligatory fields within a certain perspective. For instance, we
could introduce a red asterisk for all these fields.

 label in a certain way all semi-obligatory fields/elements within a certain perspective. A
semi-obligatory field is a field that can become obligatory in certain situations. For
example, in case of a unary event pattern, if its type is WHEN, this means that a timer

http://www.melodic.cloud/

www.melodic.cloud 49

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

should be given for it. As such, the timer combo in the respective UI should be marked
down as semi-obligatory. In this way, by also covering the behaviour of the UI accordingly
to enable or disable this combo depending on the type of the unary event pattern, the user
is visually presented with hints that will enable him/her to conditionally provide this
element. In particular, when the timer combo is enabled, as it is marked down as semi-
obligatory, it will need to be supplied.

 supply links to each element or enable to hover over it in order to supply additional
information for a certain element, including the fact of whether and when it is obligatory
and what are its semantics.

 link the editor to its documentation (e.g., through a help menu) in order for the user to be
able to inspect the ways a particular information aspect or piece should be supplied. In this
respect, it is also good to produce a very nice and detailed documentation of the editor to
be considered as a companion to its actual usage, further guiding the user in the
specification of CAMEL models.

 Textual CAMEL Model Editing

The web-based CAMEL editor has been developed for those users which are accustomed to use
form-based UIs to perform their tasks and which do not require to learn the actual CAMEL syntax.
In case particular novice users are accustomed towards using textual-based editors, there is a
need to support this via the CAMEL editor by considering that the exploitation of the Melodic
platform and its UI components should not be confined only in the context of the current use
cases and the respective working modes of the corresponding organisations.

In order to cover this possible need, we foresee an incremental strategy to realise it. This strategy
includes the following three steps:

 Acquire the ability to (semi-)automatically produce a standalone textual editor for
CAMEL. Fortunately, based on the current experience from the PaaSage project, this is
easy to to perform by exploiting respective Eclipse technologies, and XText12 in particular.
In fact, XText gives the possibility to automatically produce a default textual syntax for a
DSL, based on its abstract syntax (i.e., its Ecore model). This signifies that the only issue
would be how to modify this default syntax to make it more precise and laconic in order
to enable users more rapidly to specify textual CAMEL models. We should also highlight
here that such a semi-automatic way of producing the textual syntax of a DSL is really
convenient with respect to introducing modifications to it that are reflected according to
corresponding DSL updates (on its abstract syntax). In other words, once modifications
are performed on certain parts of a DSL, one just has to modify the respective parts of the
textual syntax in order to reflect them (and there can be different ways to achieve that).

12 https://www.eclipse.org/Xtext

http://www.melodic.cloud/
https://www.eclipse.org/Xtext

www.melodic.cloud 50

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Transform the standalone textual editor to a web-based one: Fortunately, Eclipse again
supplies the capability to produce this editor from the textual syntax of a DSL. However,
based on our experience in PaaSage, this capability is not fully automatic, as it is
advertised, and some effort is required to support this transformation/transition.
However, as Eclipse technologies evolve, we might also foresee that this will be
automatically performed in the near future. Nevertheless, we do have the know-how to
support this transformation, even if certain manual interventions need to be performed.

 Integration of the textual editor to the web-based one: this is the outmost goal of this
strategy. In this way, both the form- and textual-based editor will be supplied in a web-
based manner. While this will enable CAMEL to cover different needs and different kinds
of users, it is not so easy to perform based on certain restrictions which we outline below:

o the textual editor works purely on models which are not stored in CDO. In other
words, it functions in an offline manner. In order to make it function over CDO,
there will be a need to extend it. This will certainly require performing an extensive
amount of work, which might be overwhelming and might also be considered
outside the scope of the Melodic project.

o to remedy for the above, we could imagine the case that the CDO-based models
that are manipulated by the web-based editor are transformed into a different form
which is CDO-free. In this sense, the textual editor could still work on non-CDO
models. The issues with this approach are that: (a) it is not always possible to cover
the textual editing of a certain model if it cross-references information from other
models. In other words, if there is a CAMEL model which cross-references other
CAMEL models that have been already stored in CDO, this then means that we
cannot transform it completely into a CDO-free model. So, the usage of the textual
editor will be restricted in the context of CAMEL models which do not cross-
reference other CDO models. Unless we find a certain way to remedy this; (b) there
is a need to revert back the textual model into its CDO-based form. This could be
tricky as there will be a need to recognise which elements have remained
untouched and which ones have been modified. One remedy for this would be to
just remove the previous CAMEL model and replace it with a new one. After all, the
previous CAMEL model would still be free from cross-references, thus there will be
no harm in deleting it from CDO and re-inserting it back.

As the strategy involves multiple steps with a possible increased complexity and effort, we have
put the delivery of this feature to year 2.5 of the project, i.e., the final delivery date of the last
version of the web-based editor. However, as this feature does not forbid editing CAMEL models
via different ways, i.e., the web-based CAMEL form editor, we could still have the possibility to
delay its delivery until the end of the Melodic project - which would be beneficial in order to also
cover bug fixing and last minute changes. Overall, there will also be a need to make a decision
about the resources to be devoted for achieving this integration. If the resources are not enough,

http://www.melodic.cloud/

www.melodic.cloud 51

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

we could still live with the accomplishment of the first step of the above strategy. After all, what
matters is to have a way to support the textual editing of CAMEL models. Whether this will be
performed in an off-line or a web-based manner is not very critical. An off-line textual editing can
still exploit the other forms of interfaces of the Melodic platform in order to initiate application
deployments based on CAMEL models. So, we are actually safe even from this side.

Furthermore, we should not forget that there are import and export mechanisms in the web-based
editor. This can enable different ways via which the editors can cooperate:

 a user starts with the textual editor and then imports the respective model into the web-
based editor. This has the advantage that the model is stored in the CDO model repository
and can then be exploited for triggering application deployments.

 while a CAMEL model is edited in the form-based editor, the user might feel more
comfortable in specifying some details for it via the textual editor. He/she can then export
the model in textual form, edit it via the textual editor and then re-import it back to the
web-based editor.

Thus, based on the above analysis, a full integration between the editors is not actually needed,
and should only be realised subject to resource availability and the overpassing of corresponding
technical obstacles.

4 Conclusions

This deliverable focused on presenting the web & form-based CAMEL editor, which can be
exploited for on-line editing of CAMEL models and their immediate issuing for launching the
application deployment process. The presentation started by supplying the main requirements
that drove the design of this editor. Then it continued with the presentation of the respective
cases devoted to the usage of this editor, next the architecture and main features of the editor
were analysed, and finally a detailed walkthrough of the editor with respect to the specification
of the CAMEL model for a reduced form of a specific Melodic use case, i.e., the Traffic Management
one, was elaborated.

The editor has been developed to fully comply with the current release of CAMEL, which is
identical to the one that was finally produced for the PaaSage project. This release has been
deemed the most appropriate for the delivery of the 1.5 release of the Melodic platform. However,
moving on to support big data application deployment and adaptive provisioning, both the CAMEL
and Melodic platform releases will evolve. In this respect, the editor will be also updated to keep
up with the changes in the CAMEL language.

Furthermore, the editor will evolve according to four main directions: (1) metadata-schema-
related editor cooperation: realisation of the ability to exploit the output from the metadata-
schema-related editors for annotating CAMEL models, and completing the weights/priorities of

http://www.melodic.cloud/

www.melodic.cloud 52

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

optimisation objectives in the CAMEL requirement sub-models; (2) application deployment
launching (i.e., Requirement R9): realisation of CAMEL model completeness checking
functionality and the consequent launching of an application deployment via this CAMEL model;
(3) advanced model specification guidance: the UI of the editor will be updated to better guide the
user in specifying valid CAMEL models; and (4) textual CAMEL modelling: to cater for particular
kinds of users, that might be involved in organisations that intend to exploit the Melodic platform,
which might be accustomed to the textual way of specifying models, it would be a nice and added-
value feature to integrate the form-based with the textual editor. This would enable to switch
between the different model specification modes on-demand and according to the current
situation and user preferences. For instance, the form-based mode could be enabled for specifying
most of the CAMEL model while some particular technical details, like the specification of metric
formulas, could be performed in a textual manner.

The overall planning of how the web-based CAMEL editor will evolve has also been supplied by
explicating which new features will be incorporated and which existing ones will be updated
according to specific time points. We should highlight that the last direction can be considered as
quite difficult to realise due to a plethora of technical issues. In this respect, we have designated
that its possible realisation will be moved to the end of the project, provided that there will be
enough resources for achieving it. Even if this is not accomplished, the textual CAMEL editor,
working in an offline mode, will also be delivered. Furthermore, we have indicated different ways
the two CAMEL editors can interoperate, even if exploited in an individual manner. As such, we
signify that: (a) we will supply different kinds of editors to suit different user needs and
preferences; and (b) such editors can not only interoperate, but also lead to circumstances where
different users collaborate towards specifying the full CAMEL model of an application. In our
opinion, this is a major offering to the respective community while it can also cater for achieving
a better sustainability of CAMEL, essentially having an effect also after the end of the Melodic
project.

http://www.melodic.cloud/

www.melodic.cloud 53

Editor(s):
Paweł Skrzypek

Deliverable reference:
3.3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5 References

[1] Y. Verginadis, I. Patiniotakis, C. Chalaris and G. Mentzas, "D3.1 Metadata Schema
Management", The Melodic H2020 Project Deliverable D3.1, 2018.

[2] Y. Verginadis, W. Żołnierowicz, P. Skrzypek, D. Seybold, K. Kritikos, S. Mazumdar, A.
Schwichtenberg, F. Zahid, J. Domaschka, G. Horn, E. G. Gran, D. Baur, H. Masata and P. Góra,
"D2.1 System Specification Document", The Melodic H2020 Project Deliverable D2.1, 2017.

[3] Y. Verginadis, G. Horn, K. Kyriakos, F. Zahid, D. Baur, P. Skrzypek, D. Seybold, M. Prusiński and
S. Mazumdar, "D2.2 Architecture and Initial Feature Definitions", The Melodic H2020 Project
Deliverable D2.2, 2018.

http://www.melodic.cloud/

