
www.melodic.cloud

 Title:

Metadata Schema Management

Abstract:

This document presents two design-time tools of the Melodic
platform: the Metadata Schema editor used to create and
manage the Metadata Schema, and the Weights Calculation tool
that can be used to estimate and/or fine-tune the weights of
polynomial utility functions used by Melodic solvers. Apart from
tool descriptions, theoretical information needed to
comprehend their functioning is also given. In addition, a short
walkthrough (accompanied by screenshots) is provided for each
tool, in order to help the reader getting an idea of how these
tools look and operate.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication
Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D3.1

Date:

26 Jan 2018

Responsible partner:

ICCS

Editor(s):

Ioannis Patiniotakis

Author(s)

Yiannis Verginadis,
Ioannis Patiniotakis,
Christos Chalaris,
Gregoris Mentzas

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/d
eliverables/D3.1 Metadata
Schema Management.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2018)1056407 - 24/02/2018

http://www.melodic.cloud/
http://www.melodic.cloud
http://www.melodic.cloud/deliverables/D3.1%20Metadata%20Schema%20Management.pdf
http://www.melodic.cloud/deliverables/D3.1%20Metadata%20Schema%20Management.pdf
http://www.melodic.cloud/deliverables/D3.1%20Metadata%20Schema%20Management.pdf

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 2

Document

Period Covered M4-12

Deliverable No. D3.1

Deliverable Title Metadata Schema Management

Editor(s) Ioannis Patiniotakis

Author(s) Yiannis Verginadis, Ioannis Patiniotakis, Christos Chalaris,
Gregoris Mentzas

Reviewer(s) Sebastian Schork, Feroz Zahid

Work Package No. 3

Work Package Title Upper ware

Lead Beneficiary ICCS

Distribution PU

Version 5.0

Draft/Final Final

Total No. of Pages 33

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 3

Table of Contents

Table of Contents ... 3

1 Introduction .. 5

1.1 Scope of the Document ... 5

1.2 Structure of the Document .. 5

2 Metadata Schema Editor ...6

2.1 Metadata Schema – Overview ... 6

2.1.1 Metadata Schema Management .. 8

2.2 Metadata Schema Editor .. 9

2.2.1 Use Cases and Requirements .. 9

2.2.2 Architecture .. 10

2.2.3 Serialization ... 15

2.2.4 Metadata Schema and CAMEL model...16

2.3 Metadata Schema Editor Walkthrough ... 17

2.3.1 Initialization .. 17

2.3.2 Editor usage ...18

2.4 Eclipse EMF-based Metadata Schema editor .. 20

3 Weights Calculation Tool ... 22

3.1 Weight Calculation Method .. 22

3.1.1 Relative Weight Calculation ... 25

3.1.2 Overall Weight Calculation ... 26

3.2 Weights Calculation Tool ... 27

3.2.1 Use Cases and Requirements .. 27

3.2.2 Architecture .. 28

3.3 Weights Calculation Tool Walkthrough ... 30

3.3.1 Initialization ... 30

3.3.2 Tool usage .. 30

4 Conclusion ... 32

5 References .. 33

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 4

List of Figures

Figure 1: Melodic Metadata Schema overview .. 7

Figure 2: “Metadata Schema Management” use case ... 9

Figure 3: “Metadata Schema Import/Export” UML use case .. 9

Figure 4: “Metadata Schema usage in App Modeling” UML use case .. 10

Figure 5: Metadata Schema Editor Architecture ... 12

Figure 6: “Create Sub-Concept” sequence diagram ... 14

Figure 7: Metadata Schema Editor Menu ... 17

Figure 8: Selection of the parent concept ..19

Figure 9: Editor’s context popup menu ...19

Figure 10: New Concept form ... 20

Figure 11: Eclipse EMF-based Metadata Schema editor ... 21

Figure 12: Sample hierarchy derived from Metadata Schema ... 23

Figure 13: Example hierarchy with relative and overall weights .. 26

Figure 14: “Criteria Management” use case (includes weights calculation) .. 27

Figure 15: “Weight Calculation tool usage in App Modeling” use case .. 28

Figure 16: Weights Calculation Tool Architecture ... 28

Figure 17: “Load Weights from Server” sequence diagram ... 29

Figure 18: Weights Calculation using the Weights Calculation tool .. 31

Figure 19: Pairwise comparisons in Weights Calculation tool .. 31

List of Tables

Table 1: Standard meaning of relative importance values in AHP ... 24

Table 2: Example comparison pairs for top-level group.. 24

Table 3: Example comparison pairs for second-level group ... 24

Table 4: Relative weight calculation steps ... 25

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 5

1 Introduction

The purpose of this deliverable is to present two design-time tools developed in the Melodic
project, related to the Melodic Metadata Schema. The first tool is the Metadata Schema editor,
which can be used to create and maintain the metadata schema. The second tool is used during
application modeling, in order to help application developers to calculate and fine-tune the
weights (priorities) of the polynomial utility functions. This information will be valuable for
formulating the utility function to be used by the Melodic Solvers and Utility Generator
mechanisms, as described in the Melodic project deliverable D2.2 Architecture and Initial Feature
Definitions [1], in order to generate deployment plans meeting the constraints of a CAMEL model.
This tool also takes advantage of the Metadata Schema.

1.1 Scope of the Document

This document is intended for the general audience interested in learning about two design-time
tools of the Melodic project used to manage the Metadata Schema and assist administrators to
assign appropriate weights to those Metadata Schema elements used in a CAMEL model utility
function. The work reported in this deliverable relies on concepts and ideas of the Melodic
Metadata Schema introduced and detailed in the Melodic project deliverable D2.4 Metadata
Schema [2].

1.2 Structure of the Document

The rest of this document is structured as follows. In Chapter 2, a brief recap of the Melodic
Metadata Schema is given, followed by the technical description of the Metadata Schema editor.
In the first part of Chapter 3, a weights calculation method based on pairwise comparisons is
presented. In the second part of the chapter, the Weights Calculation tool is analysed. The
document concludes in Chapter 4.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 6

2 Metadata Schema Editor

In this chapter, the Melodic Metadata Schema editor is presented. It is a graphical web-based tool
that has been developed in the context of the Melodic project, in order to enable the creation,
modification and management of the Melodic Metadata Schema. We note that we have also
developed an eclipse EMF-based version of this editor for cases where the potential Melodic
adopter would prefer to use it. Before delving into the details of the Metadata Schema editor, it is
necessary to briefly recap the purpose and nature of the Melodic Metadata Schema. For more
information, the reader may also refer to deliverable D2.4 [2] .

2.1 Metadata Schema – Overview

In the following, the Melodic Metadata Schema and Metadata Schema Management process are
briefly presented. The former is a scheme for organising various concepts and metadata
information related to cloud and big-data applications into a vocabulary. The latter refers to the
process of defining and maintaining the Metadata Schema for a specific application.

As stated in D2.4 [2] “Melodic Metadata Schema is meant to provide a comprehensive, modular
and extensible vocabulary for modelling cloud application aspects, including application
placement, application security and big-data aspects.” It comprises three sub-models.

 Application Placement sub-model.
 Big-data sub-model.
 Security Context sub-model.

Each sub-model comprises a hierarchical (tree-like) structure of concepts, where the more
generic concepts reside at the higher level of the sub-model, whereas the more specialised ones
are placed at lower levels under the generic one. Concepts can be characterized by several
properties while they can be instantiated through concept instances. For example, if we need to
know the geographical location where processing of a certain big-data type will take place, then a
relevant geographical processing location concept should be defined, along with its related
instances (e.g., EU, GR, ASIA) and properties (e.g., latitude, longitude).

The three sub-models of the Metadata Schema are thoroughly detailed in the corresponding
deliverable D2.4 [2] , while a bird’s eye view of the schema can be found in Figure 1, where the
most significant top-level concepts of each sub-model are depicted.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 7

Figure 1: Melodic Metadata Schema overview

The first sub-model of the Metadata Schema is the Application Placement sub-model, which
encompasses a number of concepts and properties that can be used for two main purposes: (a) for
describing the requirements, constraints and preferences of a cloud application placement, and
(b) secondly for describing the available cloud offerings, mainly at IaaS and PaaS levels. IaaS
related concepts, like processing (e.g. CPU), storage (e.g. Capacity), network capabilities (e.g.
Bandwidth) or virtualization, as well as PaaS related concepts, like platform type and security
controls, are part of the Application Placement sub-model.

The second sub-model is the Big-data sub-model, which is meant to describe cross-cloud
application and data management. It includes concepts used to describe data properties and
aspects that must be taken under consideration during application placement and application
reconfiguration planning. Big-data related concepts like Volume, Velocity, and Quality; data
management concepts like Acquisition, Persistency, Processing, and Data Location; and temporal
context as well as data domains, for instance Finance, Social Networking, have been captured in
this sub-model.

The Security Context sub-model is the last part of the Melodic Metadata Schema, which
encompasses concepts useful when describing and enforcing context-aware access control
policies. The two central concepts are Security Context Elements and Context Patterns, which

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 8

are used to define context-aware access control policies for the Melodic platform's authorisation
service (see deliverable D2.2 [1]), which will be detailed in the related deliverable D5.3 Security
Requirements and Design.

It is expected that the Metadata Schema will be adapted to the specific business and technical
requirements of each application of a single organisation.

2.1.1 Metadata Schema Management

Metadata Schema Management can be defined as the process of creating and maintaining the
Metadata Schema for a specific Melodic-enabled application. This may involve the refinement or
grounding of the metadata schema proposed in D2.4 [2] for the needs of a specific cloud
application. Typically, this task is undertaken by the administrator.
Metadata Schema Management is required in cases where new concepts need to be taken into
consideration, already modelled concepts need to be redefined, or even when obsolete concepts
are no longer used and thus need to be removed from the schema. The following are just a few
exemplary cases where the Metadata Schema is affected and it needs to be validated and
possibly updated.

 At application design-time, i.e. when designing an application and modelling the
application data domain. Alternatively, when modeling a pre-existing application that is
ported to the Melodic platform.

 When new application placement or big-data processing conditions arise (including new
requirements). For instance, when an application needs to process or manage new data
types, or when the application data processing and/or storage specifications evolve.

 When new access control policies need to be enforced using new (additional)
environmental conditions that must be taken into consideration emerge.

Specialised tools are required in order to efficiently manage the Metadata Schema. For this
purpose, a Metadata Schema editor has been developed and will be presented in the next section.
Moreover, the CAMEL editor (from the PaaSage project1) will be enhanced with the capability to
encompass Metadata Schema elements into its models, catering for a loose interaction with it
and also providing a nice way for extending current semantics of the CAMEL language (further
details will be provided in terms of the deliverable D3.3 IDE-plugin for data-aware design and
development of multi-cloud data-intensive applications [3]).
For more information on the Melodic Metadata Schema and the related CAMEL extensions,
please refer to deliverable D2.4 [2].

1 https://paasage.ercim.eu/

http://www.melodic.cloud/
https://paasage.ercim.eu/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 9

2.2 Metadata Schema Editor

In this section, the Metadata Schema editor is presented. First, we supply its use cases and
design requirements. Next, the design decisions are explained, followed by the description of the
editor architecture and its components. An example of Metadata Schema serialization is also
provided and a short editor walkthrough is eventually presented.

2.2.1 Use Cases and Requirements

The main goal of the Metadata Schema editor is to manage the Metadata Schema elements and
structure. This goal can be broken down to a series of specific capabilities that must be offered to
the application administrator for creating, updating, deleting and retrieving the Metadata
Schema concepts and properties, as well as importing/exporting Metadata Schema to the Models
Repository or to a file. The Metadata Schema retrieval and editing capabilities are depicted in
Figure 2 whereas the import/export capabilities are depicted in Figure 3.

Figure 2: “Metadata Schema Management” use case

Figure 3: “Metadata Schema Import/Export” UML use case

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 10

A special requirement for the Metadata Schema editor is the capability to connect and interact
with the Melodic Models Repository, used by several Melodic components, in order to store the
Metadata Schema as it happens with the application’s CAMEL model. When stored in the Models
Repository, the Metadata Schema becomes “visible” to the rest of the Melodic components, thus
achieving metadata-level integration between components. The Models Repository is
implemented using the Eclipse Connected Data Objects (CDO) persistence and distribution
framework2. The Metadata Schema editor is able to store the Metadata Schema into and retrieve
it from the Models Repository.
Figure 4 depicts the use case of the storage of the Metadata Schema into the Models Repository
of the Melodic platform, and its subsequent usage in application modeling via the CAMEL editor.
This diagram implies the metadata-level integration between the two editors.

Figure 4: “Metadata Schema usage in App Modeling” UML use case

2.2.2 Architecture

In this section, the architecture of the Melodic Metadata Schema editor is discussed. Figure 5
depicts the components of the architecture as well as the interacting “external” components (i.e.,
the Models Repository of the Melodic platform) and user roles.

2 http://www.eclipse.org/cdo/

http://www.melodic.cloud/
http://www.eclipse.org/cdo/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 11

According to consortium decisions (based on requirement analysis), the Metadata Schema editor
is delivered as a web-based application that takes advantage of several modern technologies
available (AJAX3, CSS4, DOM5, and REST6 to name a few). This decision aspires the project to
deliver tools that are easy to learn and intuitive to use, and at the same time are relatively simple
to integrate with the rest of the relevant Melodic framework components.
Another important decision taken was to separate the editor capabilities, responsible for the
actual processing, storage and management of the Metadata Schema, from other capabilities
responsible for interacting with the end user and other Melodic platform components. The
Metadata Schema Management (MSM) capability acts as the middleware responsible for the
Metadata Schema CRUD operations7, schema serialization and deserialization, and applies the
necessary validation checks8. The MSM middleware is implemented as a web service that
provides a RESTful API for use by the other editor components (MSM middleware in Figure 5).
This design results in a multi-tier architecture, which is typical to several modern web-based
systems. Following this pattern helps keeping the Metadata Schema Management capability
neutral to whom or through which channels Metadata Schema Management and control will
take place. In release 1.5 of the Melodic platform, the Metadata Schema editor includes a web-
based user interface (Admin-facing component in Figure 5), and an additional component for
connecting to Melodic Models Repository for retrieving and storing metadata schema (CDO client
in Figure 5). Eventually, an internal storage capability has also been included in the architecture
for temporarily caching schema changes and for faster viewing, thus reducing interactions with
the Models Repository. In this way we motivate the storage of complete and coherent versions of
the vocabulary in the Models Repository. This is quite beneficial since changes to the vocabulary
persisted in the Models Repository directly affect the CAMEL editor (see more details in section
2.2.4). The Models Repository depicted in Figure 5 is not part of the editor architecture, but part of
the overall Melodic platform (see deliverable D2.2 [1]).

A feature of this design is that the Metadata Schema editor can be embedded into or integrated
with other platforms, by adapting or replacing the admin-facing and CDO client components with
other platform-specific services and components.

3 http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
4 https://www.w3.org/Style/CSS/Overview.en.html
5 https://www.w3.org/DOM/#what
6 https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
7 CRUD operations: create, read, update, and delete
8 Basic validation checks are currently supported; mainly uniqueness and type checks

http://www.melodic.cloud/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3.org/DOM/#what
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 12

Figure 5: Metadata Schema Editor Architecture

The core of the Metadata Schema editor lies within the area enclosed by the red dotted line in
Figure 5. It encompasses four components, which implement the relevant functionalities. Three
of them provide the means for humans or external software to interact with the editor, whereas
the fourth (in grey box) implements the integration to the Melodic platform's Models Repository.
Next, a brief presentation of the Metadata Schema editor components is provided:

 Metadata Schema Management middleware (MSM middleware). This component is the
core of the editor. It implements the business logic and is responsible for maintaining and
modifying the internal Metadata Schema representation and related data structures. It
offers a RESTful API implemented as a dedicated web service, which can be invoked in
order to retrieve, modify and import/export the Metadata Schema. The Admin-facing
component interacts with the MSM middleware through this API, in order to carry out the
administrator commands. Furthermore, the same API can be used by third party software
to interact with the MSM middleware, thus allowing editor extensions towards new
versions with enhanced or differentiated capabilities. The MSM middleware uses the CDO
client component in order to store or update the Metadata Schema model in the Melodic
Models Repository. It also uses the Local datastore (internal to the editor), for temporarily
storing and caching Metadata Schema.

 Admin-facing component. This component constitutes the user-facing part of the editor.
Specifically, it offers a dynamic web page that enables the administrator to retrieve and
manage the Melodic Metadata Schema using a graphical user interface. It also serves all
accompanying web assets required (JavaScript libraries, CSS style sheets, images, etc).
Furthermore, it provides the back-end web endpoint that serves the web page AJAX
requests. The web page (it runs in the administrator’s browser) captures user actions and
forwards them to the back-end endpoint, using AJAX calls. The back-end subsequently

MSM

middleware

Admin-facing

component

Admin UA

Local DS

Models Repository

CDO client

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 13

translates the actions into appropriate MSM middleware API calls, receives the
middleware responses and translates them back to user-presentable information
(returned as JSON9 responses).

 Local datastore (DS). The Local DS is an internal repository that the editor uses to
temporarily store the Metadata Schema (see chapter 3). This datastore is also used by
Weights Calculator to store information about weights (see section 3.2.2). The current
implementation uses a triple store as its Local datastore component (namely Fuseki10)
through a dedicated serialization library that loosely follows JPA11 conventions.

 CDO client. This component is responsible for the communication with the Melodic
Models Repository. It encompasses a number of EMF12-style classes and interfaces,
suitable for creating EMF models of the Metadata Schema, thus making its saving to CDO
a relatively simple task. The CDO client also acts as an abstraction layer, allowing a
revision of the current Melodic CDO model and upgrades of the Models Repository,
without affecting the rest of the editor.

The Melodic platform components that interact with the Metadata Schema editor are described
in the following.

 Models Repository. This is the Melodic platform component responsible for storing the
various application and data models, pertaining both to design-time and runtime phases.
The Models Repository has been implemented using the Eclipse Connected Data Objects
(CDO) framework. The XML Metadata Interchange (XMI13) format is used for importing and
exporting models to/from the Models Repository. Furthermore, suitable EMF-style classes
have been defined in order to facilitate the programmatic access to the models stored in
the Models Repository.

 Admin User-Agent (UA). It is the administrator’s web browser, which must be a modern
web 2.0 one.

Figure 6 describes a “sub-concept creation” action, thus illustrating by example the internal
functioning of the editor. Sub-concept creation means the creation of a new concept that
specialises a pre-existing (more generic) concept and its addition into the Metadata Schema.

9 https://www.json.org/
10 https://jena.apache.org/documentation/serving_data/
11 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
12 http://www.eclipse.org/modeling/emf/
13 XMI is an OMG standard for exchanging metadata information using XML.

http://www.omg.org/spec/XMI/ http://www.omg.org/spec/XMI/

http://www.melodic.cloud/
https://www.json.org/
https://jena.apache.org/documentation/serving_data/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/XMI/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 14

Figure 6: “Create Sub-Concept” sequence diagram

The Metadata Schema editor has been implemented using Java and is based on the architecture
discussed above. The source code of the Metadata Schema editor is publically available on the
official Melodic code repository14.

14 https://bitbucket.7bulls.eu/projects/MEL/repos/metadata-schema/browse/muse

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/metadata-schema/browse/muse

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 15

2.2.3 Serialization

In this section a small but easily comprehensible example of Metadata Schema serialization is
given (see Listing 1 below), involving the following concepts: Application Placement model, IaaS,
Processing, GPU and some of their properties. The serialization format complies with the well-
known XMI standard for metadata exchange and storing. The editor is capable of importing and
exporting the metadata schema into/from the Models Repository using this format.

Listing 1: Sample XMI serialization

<?xml version="1.0" encoding="UTF-8"?>

<mms:MmsConcept xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:mms="http://www.melodic.eu/metadata/0.0.1"

 name="Melodic Metadata Schema" id="attr-mms" uri="mms:attr-mms"

 description="Root Concept" topLevel="true">

 <concept name="Application Placement model"

 id="attr-mms--app-placement"

 uri="mms:attr-mms--app-placement"

 description="Application Placement model">

 <concept name="IaaS"

 id="attr-mms--app-placement--iaas"

 uri="mms:attr-mms--app-placement--iaas"

 description="IaaS">

 <concept name="Processing"

 id="attr-mms--app-placement—iaas--processing"

 uri="mms:attr-mms--app-placement--iaas--processing"

 description="Processing">

 …

 <concept name="GPU"

 id="attr-mms--app-placement—iaas—processing--gpu"

 uri="mms:attr-mms--app-placement--iaas—processing--gpu"

 description="GPU">

 <property name="hasMinNumberofCores"

 id="attr-mms--app-placement--iaas—processing--gpu--hasMinNumberofCores"

 uri="mms:attr-mms--app-placement--iaas—processing--gpu--

hasMinNumberofCores"

 isDataProperty="true" rangeUri="xsd:positiveInteger"

 description="hasMinNumberofCores"/>

 …

 </concept>

 </concept>

 </concept>

 …

 </concept>

 …

</mms:MmsConcept>

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 16

2.2.4 Metadata Schema and CAMEL model

As already mentioned, the Metadata Schema is meant to be used as a common vocabulary
between Melodic components. Since CAMEL is used to describe the deployment of a Melodic-
enabled multi-cloud application and its requirements, it encompasses references to the Metadata
Schema. Therefore, CAMEL has been extended to support such references (see deliverable D2.2
[1]).

Listing 2 gives an excerpt of a CAMEL model referencing two Metadata Schema elements (the
GPU concept and the hasMinNumberofCores concept property). The highlighted parts are the
references and they are introduced with the annotation field.

In this example, the CAMEL model requires that the VM's GPU should have at least 2 cores. The
introduced requirement has taken the form of a sub-feature of CAMEL's VM element which
references the GPU concept, from Metadata Schema, for which an attribute mapping to the
hasMinNumberofCores property has also been defined, taking the value of 2.

Listing 2: CAMEL model excerpt referencing Metadata Schema property

<?xml version="1.0" encoding="ASCII"?>

<camel:CamelModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:camel="http://www.camel-dsl.org/camel"

 xmlns:constraint="http://www.camel-dsl.org/camel/constraint"

 xmlns:type="http://www.camel-dsl.org/camel/type" xsi:schemaLocation="…"

 name="MyApplication">

 <deploymentModels name="MyApplicationDepModel">

 <internalComponents name="MyComponent">

 <requiredHost name="MyComponentRequiredHost">

 </internalComponents>

 <vms name="MediumProcessingVM">

 <subFeatures name="GPU" annotation="mms:GPU">

 <attributes name="minCoreNumber" annotation="mms:hasMinNumberofCores"

 unitType="CORES">

 <value xsi:type="type:IntegerValue" value="2"/>

 </attributes>

 </subFeatures>

 <providedHosts name="VMHost"/>

 </vms>

 <hostings name="ComponentToVM" providedHost="…" requiredHosts="…">

 </deploymentModels>

 …

</camel:CamelModel>

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 17

2.3 Metadata Schema Editor Walkthrough

In this section, we present a short walkthrough of the Metadata Schema editor usage, which
involves the modification of the Metadata Schema. Based on the editor’s GUI, the administrator is
able to update the Metadata Schema concept hierarchy by adding, removing or modifying
concept details. In the following section, we will present (a) the initialization of the editor’s Local
Repository from Models Repository, and (b) a simple use case, where a new sub-concept is added
under a parent concept.

2.3.1 Initialization

Before using the editor, it is necessary to fetch the Metadata Schema from the Models Repository
into the Local datastore. This is achieved by clicking on the “Models repos. → Local repos.” menu

item. The menu appears by clicking the hamburger style glyph at the upper left corner of the
page. Figure 7 illustrates the editor menu.

Figure 7: Metadata Schema Editor Menu

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 18

From the menu, the user can also transfer any changes made in the Metadata Schema, from the
Local Repository into the Models Repository (menu item “Local repos. → Models repos.”) thus
making them visible to the rest of the Melodic components. Other options include emptying the
Local Repository (menu item “Clear Local repos.”), exporting Metadata Schema from Models
repository (in XMI format), and reversely importing XMI files into the Models Repository.
Eventually, the menu provides links to the Metadata Schema editor's home page as well as to the
Weights Calculation tool web page (presented in the following chapter 3).

2.3.2 Editor usage

By selecting “Metadata Schema management” from the menu, the Metadata Schema editor web
page is loaded (see Figure 8). Using the tree-view in the left-hand side of the page, the user can
navigate through the Metadata Schema. The tree is lazy-loaded from the web server, as the user
expands its nodes. Concepts are represented with yellow folder icons in the tree view, whereas
other artifacts (e.g. concept properties) are represented with coloured balls. By selecting a tree
node, its details are loaded into the “Node Properties” form, found in the main area of the page. No
web page reloading takes place, but the page dynamically refreshes its data when they become
available from server. Furthermore, the form fields change according to the type of the tree node
selected (i.e. concept, concept property or concept instance). For example, the Range form field is
only available for the concept property nodes. The white text fields can be edited while the grey
ones are read-only. At the bottom of the page, there is a row of buttons for creating new nodes
(concepts, properties, and instances), deleting the selected node or saving changes in the form.
Buttons are disabled and re-enabled as the selected node in the tree-view changes. For instance,
when selecting a property, the buttons for creating new child concepts, instances or properties
are disabled.
In the remaining section, a simple use case, where a new sub-concept will be created, is detailed.
First, the user selects the “Data management” node in the tree view, as shown in Figure 8. This
node will be the (immediate) parent concept of the concept to be added. Upon selection, the
node’s data are fetched from the Local Repository and are displayed in the “Node Properties”
form. Next, the “Create Concept” button must be pressed to start creating the new sub-concept.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 19

Figure 8: Selection of the parent concept

The same functionality is also available through a context popup menu, which is available by
right clicking on the parent node, and then clicking the “New Concept” item (see Figure 9).

Figure 9: Editor’s context popup menu

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 20

Both actions (i.e. pressing “Create Concept” or clicking “New Concept” in the context popup menu)
will make the “Node Properties” form (in the main page area) to adapt in order to include only
those fields that are relevant to Concepts (i.e. Id, Parent Id, URI, Type, Name, and Description). The
values of the Id and the URI fields are automatically completed using a random Unique ID and the
Parent Id field is populated with the Id of the parent node (which is selected in the tree view), as
shown in Figure 10.

Figure 10: New Concept form

The user can modify the Id and URI values if needed, fill-in the new concept’s name, for instance
“Data Visualization”, and optionally give a description, in the corresponding fields. Eventually, by
pressing the “Save Changes” button, the new sub-concept’s data are submitted to the Local
Repository for storing. Afterwards, the tree view is refreshed in order to include the newly added
concept.

2.4 Eclipse EMF-based Metadata Schema editor

Apart from the web-based Metadata Schema editor, a Java-based desktop release of the editor is
also available. It was generated using the Eclipse EMF tools and the same Ecore model used to
generate the Metadata Schema Java classes and interfaces. This editor, shown in Figure 11, will
not be further detailed since it is a by-product of modeling the domain classes using Eclipse EMF.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 21

Figure 11: Eclipse EMF-based Metadata Schema editor

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 22

3 Weights Calculation Tool

In this chapter, the Melodic Weights Calculation tool will be presented. This is a web-based tool
developed in the context of the Melodic project, in order to provide application administrators
with a systematic method of assigning weights to polynomial utility functions that can be
encompassed in CAMEL models. However, this is a generic tool, which can be used in any case
where weight or priority calculation is required. Therefore we have preserved the terminology
used in the original method and thus referring to the items being compared as “criteria”,
regardless of if they are utility function terms or something else. A short description of the
weight calculation method will be presented in the next section, followed by the detailed
description of the tool in the rest of the chapter.

3.1 Weight Calculation Method

In release 1.5 of the Melodic platform, the CAMEL editor and the CP generator component (part of
the Upperware) will be enhanced in order to be able to model polynomial utility functions.
Typically, weights are real numbers ranging between 0 and 1 and can also be represented as
percentages (between 0% and 100%). If the sum of all weights equals to 1 or 100%, the weight set is
called normalized.
Despite being simple and straightforward to assign weights to a small number of criteria, it is,
however, a tedious task to find suitable weights for a larger number of criteria, especially when
some of them are contradicting (e.g. increase availability and decrease cost). To help application
administrators alleviate this problem, the Weights Calculation tool has been developed and is
offered.
The method implemented in the Melodic Weights Calculation tool is based on the Analytic
Hierarchy Process (AHP) [4]. The most prominent feature of AHP is that it decomposes the weight
calculation problem into a series of pairwise comparisons. That means that the application
administrator must indicate which criterion is more significant in every pair, and how much
more significant, using an empirical scale typically ranging from 1 (indicating “equally
important”) to 9 (meaning “extremely more important”). Using these partial, pairwise
comparisons, the method combines them into a set of weights. Although subjective judgements
are involved (i.e. pairwise comparisons made by expert users) the method delivers correct results,
and it has been widely used for several years across different application domains [5].
To help the reader better comprehend the method, in the remaining section an example will be
given after explaining each step of the method. In this example, the six following Metadata
Schema concepts will be used in the (polynomial) utility function:

 Data Domains, Data Location and Data Timestamp (in the Big-data sub-model), and
 Processing, Redundancy and Transfer (in Data Management in the Big-data sub-model)

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 23

Figure 12: Sample hierarchy derived from Metadata Schema

The method exploits the first two phases of the AHP. The first one requires to group criteria into a
hierarchical (tree-like) fashion. Pairwise comparisons can take place only between criteria
belonging to the same group and level (i.e. criteria represented by sibling nodes in the hierarchy).
This approach reduces the number of required comparisons. For example, if there are 10 criteria,
without hierarchical structuring it would require 45 pairwise comparisons. If, however, criteria
are organized in two equal-sized groups, under a common root, it would take 21 pairwise
comparisons. Moreover, hierarchical structuring enables organizing criteria into relatively
homogenous groups and sub-groups, based on their domain, type or degree of detail.
The Metadata Schema presented in deliverable D2.4 [2] will be used as the hierarchical criteria
grouping in terms of the first phase of AHP, for comparing the terms of the utility function.
Therefore, application administrators are not required to undertake the task of grouping criteria
and creating the corresponding hierarchy. Figure 12 illustrates the hierarchical grouping of the
six criteria of the example, as it derives from the Metadata Schema.

In the second AHP phase, pairs are derived from the hierarchical structure of the first phase. For
the root node and each intermediate node their direct children nodes must be compared, each
one with all its siblings. In the example, there are two such nodes, (i) the root node (marked as
Overall), and (ii) the Data Management node. Therefore, two groups of nodes are formulated,
where the included nodes must be pairwise compared to all their siblings. Table 2 and Table 3
(the leftmost columns) list all possible combinations of the corresponding comparison pairs. The
order of criteria in each pair is not significant.

Overall

Data Location Data Mgmt

Processing

Redundancy

Transfer

Data
Timestamp

Data Domains

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 24

Following, the pairwise comparisons take place, where the application administrator indicates
the most important criterion in each pair, as well as its relative importance over the counter
criterion. Relative importance is expressed as a positive integer, typically between 1 and 9. Table 1
lists the commonly used meanings attributed to each relative importance value. In the example,
the administrator responses for the two groups are included in Table 2 and Table 3. Eventually,
the relative importance values from all comparisons are then combined to calculate weights (see
next section 3.1.1).

Table 1: Standard meaning of relative importance values in AHP
Importance Definition

1 Equal importance
2 Equal to moderately importance
3 Moderate importance
4 Moderate to strong importance
5 Strong importance
6 Strong to very strong importance
7 Very strong importance
8 Very to extremely strong importance
9 Extreme importance

Table 2: Example comparison pairs for top-level group
Pairs Preference

Location vs. Management 2 – Almost equal
Location vs. Timestamp 4 – Moderate to strong
Location vs. Domains 9 – Extreme
Management vs. Timestamp 4 – Moderate to strong
Management vs. Domains 9 – Extreme
Timestamp vs. Domains 5 – Strong

Table 3: Example comparison pairs for second-level group
Pairs Preference

Processing vs. Redundancy 5 – Strong
Processing vs. Transfer 1/3 – Moderate less pref’d
Redundancy vs. Transfer 3 – Moderate

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 25

3.1.1 Relative Weight Calculation

For every group, a relative importance comparison matrix is compiled using the responses of
administrator in the corresponding pairwise comparisons. Let the criteria of a group be
numbered from 1 to K. The outcome of the comparison of criterion i and criterion j (where i, j are
between 1..K), will be placed in row i and column j of the matrix. In its transposed position (i.e. row
j and column i) the inverse value will be set (e.g. if the comparison outcome is 4, in transposed
position we will put ¼); see Table 4. On the matrix diagonal, all elements are set to 1, meaning that
comparing a criterion to itself always yields equal importance.
Following, eigenvector analysis is applied on the matrix. Eigenvectors including non-real
elements are rejected since they would lead to weights that are complex numbers. An
eigenvector where all elements are real numbers and at least one is non-zero is a suitable
solution. This eigenvector is normalized so that its elements sum to 1, thus representing the
relative weights for the criteria of the given group. The above process is applied on all groups at
all levels in the hierarchy. Eventually, every node in the criteria hierarchy will be attributed with
a relative weight. Table 4 gives the relative importance comparison matrices and the
corresponding relative weights (resulting after eigenvector analysis and normalization) for the
two groups of the example.

Table 4: Relative weight calculation steps
Relative importance comparison matrix

Relative weights after eigenvector analysis
Criteria Weights

Data Location 0.49
Data Management 0.35
Data Timestamp 0.12
Data Domains 0.03

Relative importance comparison matrix

Relative weights after eigenvector analysis

Criteria Weights

Processing 0.39
Redundancy 0.28
Transfer 0.33

Normalization is achieved by scaling each weight using a normalization factor (Eq. 1) so that the
sum of the scaled (normalized) weights sum to 1 (Eq. 3). The normalization factor is the inverse of
the sum of the initial weight values (Eq. 2). Let K be the number of criteria:

𝐷𝐿 𝐷𝑀 𝐷𝑇 𝐷𝐷
𝐷𝐿
𝐷𝑀
𝐷𝑇
𝐷𝐷

[

1 2
 1/2 1

4 9
4 9

1/4 1/4
1/9 1/9

1 5
1/5 1

]

𝑃𝑅 𝑅𝐷 𝑇𝑅
𝑃𝑅
𝑅𝐷
𝑇𝑅

[
1 5 1 3⁄

1 5⁄ 1 3
3 1 3⁄ 1

]

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 26

 𝑤𝑖
𝑛𝑜𝑟𝑚 = 𝑓 ⋅ 𝑤𝑖

𝑖𝑛𝑖𝑡 (Eq. 1)

 𝑓 = 1 ∑ 𝑤𝑖
𝑖𝑛𝑖𝑡

𝐾

𝑖=1

⁄ (Eq. 2)

After normalization it holds:

 ∑ 𝑤𝑖
𝑛𝑜𝑟𝑚

𝐾

𝑖=1

= 1 (Eq. 3)

3.1.2 Overall Weight Calculation

The last step of the method involves a flattening operation where relative weights are combined
to get the overall weight of each criterion, which expresses its importance compared to any other
criterion across all groups. Without this step, only criteria belonging to the same group would be
comparable. Flattening is achieved by multiplying the relative weight of a criterion with the
relative weights of all its predecessor nodes in the hierarchical structure (i.e. all nodes in the tree
path from criterion node up to the root). Figure 13 depicts the criteria hierarchy of the example,
where every node is annotated with its relative and overall weight. For example, the overall
weight of Processing results by multiplying its relative weight in Data Management group, which
is 0.39, with the relative weights of its parent nodes, i.e. 0.39 × 0.35 × 1.00 = 0.1365 ≈ 0.14.

Figure 13: Example hierarchy with relative and overall weights

Overall

1.00 / 1.00

Data Location

0.49 / 0.49

Data Mgnt

0.35 / 0.35

Processing

0.39 / 0.14

Redundancy

0.28 / 0.10

Transfer

0.33 / 0.11

Data Timest.
0.13 / 0.13

Data Domains
0.03 / 0.03

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 27

3.2 Weights Calculation Tool

In the remaining chapter, the Weights Calculation tool is analysed. This tool has been developed
by following the architecture and design decisions used for Metadata Schema editor. Moreover,
the two tools share the same (technical) infrastructure and are included in the same codebase.

3.2.1 Use Cases and Requirements

The main goal of the Weights Calculation tool is to enable selecting concepts, properties or
instances of the Metadata Schema that may be used as terms in a polynomial utility function,
and also estimate or fine-tune their weights. This goal can be broken down into a series of
specific capabilities that must be offered to the application administrator for selecting criteria,
assigning weights and answering to a set of pairwise comparisons, from which weights can be
calculated. These capabilities are depicted in the following use case diagram (Figure 14).

Figure 14: “Criteria Management” use case (includes weights calculation)

A final requirement for the Weights Calculation tool is the capability to connect to the Models
Repository, as the current Melodic components do, in order to save the selected criteria along
with their weights. Criteria will be saved into the utility function specification (as terms) in the
CAMEL model, and will be retrieved and used at runtime by the Melodic solvers and the Utility
Generator.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 28

Figure 15 depicts the update of a utility function specification in a CAMEL model, in the Models
Repository, as well as its usage in other melodic components at runtime. This diagram implies
metadata-level integration between the two components.

Figure 15: “Weight Calculation tool usage in App Modeling” use case

3.2.2 Architecture

As already mentioned, the Weight Calculation tool has been designed following an architecture
similar to the Metadata Schema editor architecture. For this reason, only the components that
are different will be discussed in more detail.

Figure 16: Weights Calculation Tool Architecture

WCalc

middleware

Admin-facing

component

Admin UA

Local DS
Models Repository

CDO client

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 29

In Figure 16, the Weights Calculation (WCalc) middleware component is new to the architecture,
compared to the Metadata Schema editor. Common components will not be presented in detail:

 Weights Calculation middleware (WCalc middleware). This component is the core of the
tool. It implements the business logic and is responsible for storing and modifying the
criteria weights and comparison results. It provides a RESTful API that can be used to
retrieve, modify and clear criteria, weights and pair comparisons. The Admin-facing
component interacts with the WCalc middleware to carry out the administrator
commands. The WCalc middleware also uses the CDO client component to update the
CAMEL model in the Melodic Models Repository. It also uses the Local (internal) datastore
for temporarily storing comparisons and weights, without contacting or affecting the
Models Repository at every user action.

 Admin-facing component. This component is shared with the Metadata Schema editor
and encompasses operations specific to weights calculation, which are distinguishable
from the Metadata Schema editor operations.

 Local datastore. This component is shared with the Metadata Schema editor. It
temporarily stores weights and comparison values.

 CDO client. This component is shared with the Metadata Schema editor. It permanently
stores weights into the utility function specification. It therefore facilitates the update of
the CAMEL model in the Models Repository.

Figure 17 describes the fulfillment of a “Load Weights from Server” action, which fetches
previously stored weights along with any comparison pairs from the WCalc server. Thus, it
illustrates by example the internal functioning of the tool.

Figure 17: “Load Weights from Server” sequence diagram

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 30

3.3 Weights Calculation Tool Walkthrough

In this section, we present a short walkthrough of the Weights Calculation tool usage that
involves the selection of criteria, the pairwise comparisons of them, weight calculation and
eventually the update of the utility function specification in the CAMEL model.

3.3.1 Initialization

Before starting to use the tool, it is necessary to fetch the Metadata Schema from the Models
Repository into the Local datastore. This is achieved by clicking on the “Models repos. → Local

repos.” menu item. The menu appears by clicking the hamburger style glyph in the upper left
corner of the page (see Figure 7).

3.3.2 Tool usage

By selecting “Criteria Weight Calculation” in the menu, the Weights Calculation tool web page is
loaded (see Figure 18). Using the tree-view in the left-hand side of the page, the administrator can
navigate through the Metadata Schema and select concepts, properties and concept instances, by
checking the corresponding checkboxes. For faster loading of the web page, the tree is lazy-
loaded from the web server as the user expands its nodes. A selected tree node (concept, instance
or property), will be added at the bottom of the criteria list, under the “Criteria Weights” tab, in the
main area of the web page. The first time a criterion is added, its weight equals to zero (0). The
user is able to change it and assign a value between 0.0 and 1.0. Under the list, the sum of all
weights is given, which is updated every time a weight is set. If the sum does not equal to 1.0 (i.e.
weights are not normalized), a warning message is displayed and the “Normalize Weights” button
(on the right) is enabled. If this button is clicked, all weights will be normalized at once. Using the
“Save to Local repos.” and “Reload from Local repos.” buttons, one can save or reload weights (and
any associated pairwise comparisons) to/from the Local datastore. Clicking the “Update Models
Repos.” button will update the CAMEL model with the new utility function terms and weights.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 31

Figure 18: Weights Calculation using the Weights Calculation tool

Apart from adding the selected criterion into the criteria list, ticking a tree node will also cause
the creation of new comparison pairs, where the newly selected criterion participates. The new
pairs are added in the comparison pairs list under the “Comparison Pairs” tab (see Figure 19). If
the pairs list is not visible then clicking the “Comparison Pairs” tab will hide the criteria list and
display the comparison pairs list. In this tab, the user can indicate the relative importance of a
criterion over its counterpart in a pair. Clicking the “Calculate Weights” button will calculate
weights based on pairwise comparison and set them in the criteria list.

Figure 19: Pairwise comparisons in Weights Calculation tool

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 32

4 Conclusion

In this document, we have presented two design-time tools of the Melodic project. Specifically,
we have presented (i) the Metadata Schema editor, used to create and maintain the Melodic
Metadata Schema, and (ii) the Weights Calculation tool, used to estimate or fine-tune the weights
of utility functions. Furthermore, we have described the method used in weights calculation,
which derives from the well-known Analytic Hierarchy Process. This document serves as an
introduction to the two aforementioned tools.

In the final release of Melodic platform, we plan to enhance the Metadata Schema editor and
Weights Calculation tool with new features and functionalities. The following features are being
considered: (i) leveraging of new features that will be implemented in CAMEL, (ii) automated
prefill of criteria from the utility function specified in a CAMEL model, and (iii) use of the Weights
Calculation tool for calculating weights and priorities of additional Melodic models (apart from
utility function), such as the priorities of optimisation goals in Requirements model of CAMEL.

http://www.melodic.cloud/

Editor(s):
Ioannis Patiniotakis

Deliverable reference:
D3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 33

5 References

1. Verginadis, Y., Horn, G., Kritikos, K., Zahid, F., Baur, D., Seybold, D., Mazumdar, S., Skrzypek, P.,
Prusiński, M.: D2.2 Architecture and Initial Feature Definitions. (2017)

2. Verginadis, Y., Patiniotakis, I., Halaris, C., Mentzas, G., Kritikos, K., Jeffery, K.: D2.4 Metadata
Schema. (2017)

3. To Be Submitted on M16: D3.3 IDE-plugin for data-aware design and development of multicloud
data-intensive applications. (2018)

4. Saaty, T. L.: Decision Making for Leaders: The Analytical Hierarchy Process for Decisions in a
Complex World. Wadsworth, Belmont, California (1982)

5. Franek, J., Kresta, A.: Judgment Scales and Consistency Measure in AHP. In Procedia
Economics and Finance, Vol. 12, pp. 164-173, ISSN 2212-5671, doi: 10.1016/S2212-5671(14)00332-3
(2014)

http://www.melodic.cloud/

