

www.melodic.cloud 1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Title:

D2.5 Report on Data Placement and
Migration Methodologies

Abstract:

This document presents methods, techniques, and technologies
incorporated in the Melodic middleware for optimised Cross-
Cloud data placements and migrations. The document is
logically divided into two parts. The first part provides a review
of the existing state-of-the-art data management techniques in
the Cloud. The second part reports on the Data Life-cycle
Management System (DLMS), developed as part of the Melodic
Upperware. All data sources available to the applications
deployed through Melodic are modelled and registered in the
DLMS. The job of the DLMS is to manage data sources on behalf
of the Melodic users throughout their life-cycle. This covers,
when required, the selection of an appropriate location for the
initial placement of the datasets on a Cloud based on the user-
defined requirements and data storage costs in various Cloud
systems, and subsequent data migrations based on the
application and data deployment solutions calculated by the
solvers. DLMS also assigns a utility value to all proposed
deployment solutions calculated by the solvers to assist in the
optimisation based on the current application topology and data
source locations. The utility value represents the degree to
which a solution is favourable by the DLMS, considering any
data migrations required and impact on the application
performance by the prescribed placement of application
components and data sources. The DLMS computes utility value
based on historical data access patterns reflecting affinities
between application components and data sources, dataset
characteristics, average network latencies and throughput
between data centres, Cloud provider costs, and predictions
from past DLMS decisions, as implemented through the DLMS
algorithms.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D2.5

Date:

18 June 2018

Responsible partner:

Simula Research Laboratory

Editor(s):

Feroz Zahid

Author(s):

Kyriakos Kritikos, Feroz Zahid,
Somnath Mazumdar, Daniel
Seybold, Yiannis Verginadis

Approved by:

Antonia Schwichtenberg

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/del
iverables/ D2.5 Report on
data placement and migration
methodologies.pdf

Ref. Ares(2018)3343400 - 25/06/2018

http://www.melodic.cloud/
http://www.melodic.cloud
http://www.melodic.cloud/deliverables/%20D2.5%20Report%20on%20data%20placement%20and%20migration%20methodologies.pdf
http://www.melodic.cloud/deliverables/%20D2.5%20Report%20on%20data%20placement%20and%20migration%20methodologies.pdf
http://www.melodic.cloud/deliverables/%20D2.5%20Report%20on%20data%20placement%20and%20migration%20methodologies.pdf
http://www.melodic.cloud/deliverables/%20D2.5%20Report%20on%20data%20placement%20and%20migration%20methodologies.pdf

www.melodic.cloud 2

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Document

Period Covered M6-20

Deliverable No. D2.2

Deliverable Title
Report on Data Placement and
Migration Methodologies

Editor(s) Feroz Zahid

Author(s)
Kyriakos Kritikos, Feroz Zahid,
Somnath Mazumdar, Daniel Seybold,
Yiannis Verginadis

Reviewer(s) Daniel Baur, Paweł Gora

Work Package No. 2

Work Package Title Architecture and Data Management

Lead Beneficiary Simula Research Laboratory

Distribution PU

Version 1.0

Draft/Final Final

Number of Pages 57

http://www.melodic.cloud/

www.melodic.cloud 3

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table of Contents

1 Introduction .. 6

1.1 Scope of the Document .. 8

1.2 Structure of the Document ... 8

2 Data Storage Technologies ... 9

2.1 Taxonomy ... 9

2.2 Non-Functional Requirements ... 10

3 Database Management Systems (DBMS) ... 14

3.1 Relational Storage .. 14

 Relational DBMS (RDBMS) .. 15

 NewSQL .. 15

3.2 Non-Relational Storage.. 16

 Key-Value .. 16

 Document .. 16

 Wide-Column... 17

 Graph .. 17

 Time-series .. 17

 Multi-model.. 18

4 Distributed File Systems (DFSs) ... 19

4.1 Client / Server Model .. 19

4.2 Clustered Distributed Model .. 20

 Centralised Metadata ... 20

 Distributed Metadata .. 21

4.3 Symmetric .. 21

5 Data Placement and Migration Methodologies ... 22

5.1 State-of-the-Art Analysis .. 22

5.2 State-of-the-Art Comparison .. 25

6 Data Modelling .. 29

6.1 Metadata Description and Management .. 29

http://www.melodic.cloud/

www.melodic.cloud 4

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6.2 Data Catalog ... 32

7 Data Life-cycle Management System (DLMS) .. 34

7.1 Approach for Data-aware Optimisations .. 35

7.2 Design Principles and Functionality .. 37

7.3 Handling DFSs ... 38

Architecture and DLMS Integration.. 40

User Applications .. 41

7.4 Handling DBMSs ...42

7.5 Architecture and sub-components ...42

7.6 DLMS Agents .. 45

8 DLMS Algorithms ...46

8.1 Affinity between Application Components and Data Sources ..46

8.2 Data Source Characteristics ... 49

8.3 Network Monitoring .. 50

8.4 Cloud Providers Costs .. 50

8.5 Learning From Previous Decisions ... 51

9 Conclusions and Future Work .. 53

References ... 54

http://www.melodic.cloud/

www.melodic.cloud 5

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

List of Figures

Figure 1: Overview of the Melodic Upperware ... 7

Figure 2: A taxonomy of the data storage technologies .. 10

Figure 3: Data meta-model in CAMEL ... 31

Figure 4: Updated Data Storage Class of Metadata Schema ... 32

Figure 5: Overview of the DLMS Architecture.. 34

Figure 6: Alluxio as the storage middleware, figure adopted from the Alluxio web pages 38

Figure 7: An example of the unified namespace offered by DLMS through Alluxio 40

Figure 8: Interaction between DLMS and Alluxio ... 41

Figure 9: DLMS component diagram ... 43

Figure 10: Conceptual overview of the utility assignment by the DLMS ... 44

Figure 11: An example of a couplet value table ..48

Figure 12: Graph from the deployment solution ... 52

Figure 13: Example candidate deployment solutions for graph similarity .. 52

http://www.melodic.cloud/

www.melodic.cloud 6

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1 Introduction

Big Data is one of the major current trends in ICT. In areas as diverse as social media, business
intelligence, information security, Internet of Things (IoT), and scientific research, a tremendous
amount of both structured and unstructured data is created and collected at a speed surpassing
what we can handle using traditional data management techniques. Users create content,
behaviour is recorded, sensor data are collected, and experiments are run, to mention just a few
potential producers and sources of big data. Within the large amount of data produced, a great
potential resides in the form of undiscovered values, structures, and relations. To facilitate
realising this potential, which is turning out to be a new competitive advantage to businesses and
to researchers [1], enterprises are increasingly relying on computational and data storage
capacities offered by the Cloud. In the Melodic project, we are developing a middleware platform
that enables data-intensive applications to run within defined security, cost, and performance
boundaries seamlessly on geographically distributed and federated Cloud infrastructures.
Melodic thereby realises the potential of heterogeneous Cloud environments by transparently
taking advantage of distinct characteristics of available private and public Clouds.

An important challenge in Cross-Cloud application deployments is data-awareness, which refers
to the deployments that consider locations of the data sources into account. Applications
consume and process data, potentially originating from various data sources, as well as generate
data to be stored at various on-Cloud and off-Cloud locations. The lack of data-awareness may
lead to poor application performance and costly data migrations. For instance, when application
deployment decisions do not take in account locations of the existing data sources and their size,
as well as any security and privacy constraints applicable, application performance degrades
and/or expensive data migrations incur. In addition, intelligent and pre-emptive data placement
and migration strategies are important for efficient data-intensive computing in Cross-Clouds.
For instance, unlike applications, data placement in Clouds is generally subjected to long-term
storage selection as migration generally incurs high costs. Moreover, the initial Cloud selection
can also potentially affect the subsequent placement of applications due to data gravity. Data
gravity is an analogy of the nature of data and its ability to attract applications and services. As
the size of data grows, services and applications are more likely to be placed near the data, rather
than vice versa [2].

Trust has also remained a major issue hindering the broader adaptation of Cloud services by
enterprises for data-intensive computing [3], [4]. It is a common perception that, due to lack of
control and transparency, data stored in the Cloud is prone to theft, misuse and unauthorised
access. Hence, it is critically important that the user-defined data constraints and requirements
are satisfied during the complete application and data life-cycle.

http://www.melodic.cloud/

www.melodic.cloud 7

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 1: Overview of the Melodic Upperware

The Melodic Upperware includes a dedicated component, Data Life-cycle Management System
(DLMS), which enables data-aware application deployment and optimisation in Cross-Cloud
environments. In this deliverable, we report on research and development activities associated
with designing data placement and migration methodologies for Cross-Cloud data management
through the DLMS. The main functionality that DLMS offers includes:

• Management of data sources on behalf of the Melodic user
• Optimal data placement in the Cloud based on user-defined data placement

requirements, constraints, and associated costs
• Keeping user-defined data requirements satisfied throughout the data lifetime
• Assignment of a utility value to the proposed deployment solutions with respect to

current and proposed data source and application component locations

As shown in Figure 1, the DLMS interacts with the Utility Generator and the Adapter components
of the Upperware. For each solution proposed by the Melodic Optimisation Solvers, the Utility
Generator consults DLMS, which assigns a utility value based on the penalty for adopting the
proposed configuration taking into account the effect the proposed solution will have on data
sources and their access by the application components. To elaborate further, the utility value
represents the degree to which a solution is favourable by the DLMS, considering any data
migrations required and impact on the application performance by the prescribed placement of
application components and data sources. The DLMS computes utility value based on historical
data access patterns reflecting affinities between application components and data sources,

http://www.melodic.cloud/

www.melodic.cloud 8

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

dataset characteristics, average network latencies and throughput between data centres, Cloud
provider costs, and predictions from past DLMS decisions, as implemented through the DLMS
algorithms.

The utility value from the DLMS will then be used by the Utility Generator to assign an application-
level utility value to the candidate solution as per the defined utility function. In autonomic
computing utility functions have been extensively used to express the goodness of a particular
application configuration as seen and perceived by the application owner [5]. Further, the Adapter,
which is the component responsible for analysing and validating a new deployment model and
defining a number of reconfiguration action tasks to be executed in a specific order, consults
DLMS for specific data migrations and configurations needed for a deployment reconfiguration.
The detailed architecture of the Upperware is discussed in [6].

1.1 Scope of the Document

This document is intended for the general audience interested in learning about the state-of-the-
art data management techniques in the Clouds, and the details about the DLMS design and
methodologies in the Melodic platform. Parts of the document require a high-level understanding
of the Cloud technologies and the Melodic platform, for which readers are referred to [7] and [6].
The document is also complemented by the Melodic deliverable D3.2 Business logic for supporting
the complete data and data-intensive application life-cycle management [8], which presents
implementation details of the DLMS.

1.2 Structure of the Document

The rest of this document is logically divided into two parts. In the first part, comprising Chapter
2 through Chapter 5, a state-of-the-art analysis of data management in the Cloud is provided. In
Chapter 2, data storage technologies are discussed and a framework with a taxonomy and non-
functional requirements is provided. Chapter 3 provides a review of database management
systems, while file systems are reviewed in Chapter 4. We present a comprehensive survey of the
existing data placement and migration methodologies in the Cloud in Chapter 5. The second part
of this document reports on the research and design activities leading to the Melodic DLMS
component. Chapter 6 details the data and meta-data schema used for data modelling in Melodic.
The architecture of the DLMS is discussed in Chapter 7. Chapter 8 provides DLMS algorithms used
for optimising data placement and migrations in Cross-Clouds. We conclude in Chapter 9 while
also supplying some future work directions.

http://www.melodic.cloud/

www.melodic.cloud 9

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2 Data Storage Technologies

Data storage technologies refer to the tools, techniques, and methods for storage, management,
and access of datasets. In the context of big data in the Cloud, data management has become an
important issue, challenged by the rapidly growing scale of the problem. The amount of digital
data in our world has become enormous and is growing at exponential rates. It is estimated that
the size of the digital universe will grow from 4.4 zettabytes in 2013 to 44 zettabytes by 2020 [9]. A
major factor influencing this rapid data explosion is the growing popularity of data-intensive
applications in a variety of domains. Formally, big data refers to the datasets whose size is beyond
the ability of conventional software tools to store, manage and analyse. However, size or volume
is not the only feature that prescribes which data should be classified as big data and which
should be not. Besides plausibly the high volumes of data, big data also imposes challenges in
handling the variety of these volumes with different forms (structured and unstructured), at a
considerably high velocity or transfer rate. The volume, velocity, and variety, together make up
the three most important challenges associated with the management of big data in
communication networks, and are referred to as the three Vs in the literature [10]. Besides these
three Vs, it is equally important that the value of big data can be extracted, even in the presence
of veracity or uncertainties in them [11]. An important point to note here is the fact that as more
and more digital data is being produced in different areas, many of the computational problems
formerly known to be associated with structured or low volume data, for instance data query, are
converging to big data problems -- pushing the need for efficient data management and
processing [12], [13].

In this chapter, we present a taxonomy of storage systems relevant for the big data management
in distributed systems. Moreover, we also provide a set of non-functional requirements that such
data storage systems should satisfy to efficiently support data-intensive applications in the
Cloud.

2.1 Taxonomy

We have developed a reference taxonomy for the classification of data storage technologies
relevant to the Cloud environments. As shown in Figure 2, we classify data storage into two main
categories: Database Management Systems (DBMSs), and File Systems. The taxonomy presented
in each of these respective categories is based on the classification presented in the literature for
file systems [12], [13] and DBMSs [14], [15]. The DBMS-based storage systems can be divided into

http://www.melodic.cloud/

www.melodic.cloud 10

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

two types based on the storage model used: Relational storage and Non-Relational storage, each
of which is further classified into sub-categories. An overview of the DBMSs is provided in Chapter
3. File systems can be basically classified into local and distributed file systems (DFSs). The DFSs
are classified based on the architectural model used in the distribution. Both Client/Server and
Clustered Distributed architecture models are in common use. An overview of the DFSs is
provided in Chapter 4.

Figure 2: A taxonomy of the data storage technologies

2.2 Non-Functional Requirements

The primary non-functional goals of a traditional distributed storage system are increased
availability, better scalability, higher performance, better workload distribution among the storage
nodes and higher fault tolerance. However, big data management in the Cloud raises the level of
complexity by adding more unique management features such as: on-demand resource access
(related to elasticity), heterogeneous hardware or storage model support and faster data retrieval
through better data query interfaces, and security. In Cross-Cloud environments with
heterogeneity of data sources, as targeted by Melodic, a unified namespace and transparent
access for the applications is also important. The aforementioned challenges have led us to define
a set of non-functional requirements that existing DBMSs and DFSs should satisfy. The
requirements are listed in Table 1.

Data
Storage

Database
Management

Systems

Relational
Storage

RDBMS New SQL

Non-
Relational
Storage

Key-Value Document
Wide-

Column
Graph Time-Series Multi-Model

File
Systems

Local Distributed

Client/

Server

Clustered
Distributed

Centralised
Metadata

Distributed
Metadata

Symmetric

http://www.melodic.cloud/

www.melodic.cloud 11

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 1: Non-functional requirements for data storage systems

Requirements

High Performance

Typical performance metrics are read/write throughput and latency. Throughput refers to the
number of requests that can be processed per unit time, while latency defines the time
required to transfer a request to the client and the storage system.

Performance benchmarking suites for both distributed file systems [10] and DBMSs [11], [12]
have been presented in the literature.

Scalability

Scalability is the ability of a system to sustain increasing workloads by making use of additional
resources [14]. Scalability can be defined by the terms scale-up, scale-down, scale-out and scale-
in in order to manage growing/shrinking workloads. Scale up/scale down or vertical scaling
applies by adding (or reducing) more computing resources to a single node, while horizontal
scaling, namely scale-out (i.e., adding nodes to a cluster) and scale-in (i.e., removing nodes from
a cluster) applies for a distributed data storage system comprising multiple nodes [15].

The scalability of a DBMS is measured by its ability to exhibit constant latency and a
proportionally growing throughput with respect to the number of nodes and the workload size
for horizontal scalability or the applied computing resources for vertical scalability [16].

DFSs based on a centralised architecture depend on a single server bottleneck which limits
their scalability. However, techniques such as multi-threading and caching are commonly
employed to improve scalability [17].

Many performance benchmarking suites also support scalability analysis [10] [11], [12].

Consistency

Traditionally, database transactions are needed to conform to the ACID guarantees,
comprising Atomicity, Consistency, Isolation, and Durability. However, maintaining ACID
transactional guarantees over large distributed infrastructures have been proven to be hard
[18]. For instance, when data is replicated over geographically-dispersed locations,
maintaining consistency can have a substantial negative effect on the availability of the

http://www.melodic.cloud/

www.melodic.cloud 12

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

system [19], [20]. Alternative guarantee approaches, such as BASE (Basically Available, Soft
State, Eventual consistency), are practically sufficient for most Cloud applications [21], they
make Cloud transition harder for some enterprise applications that heavily rely on
transactions. Supporting transactional databases in Cross-Clouds is subject to challenges
physically bounded by latency between distributed Cloud data centres.

In DFSs, synchronisation of the data copies across multiple replicas is important. Both
synchronous and asynchronous methods are used. In synchronous methods, the request to a
modified data block is blocked until all copies are updated, which slows the query. While, in
asynchronous methods, requests accessing out-of-date copy of data are allowed [17]. More
advanced semi-asynchronous methods have also been developed to bridge the trade-off
between consistency and performance.

Cache consistency is also a problem of synchronisation of data which is stored in cache.
Several methods, such as Write Only Ready Many (WORM), Transactional locking, and leasing
are commonly employed for achieving cache consistency in both DFSs and DBMSs.

Elasticity

Elasticity is tightly coupled to horizontal scalability and enables the overcoming of sudden
workload fluctuations by dynamically scaling the cluster without any downtime [16].

Shared-Nothing architectures are particularly useful for achieving rapid elasticity in Cloud
computing systems. In a shared-nothing architecture, each node in a distributed system is
independent and self-sufficient. Shared-nothing architectures are employed in both DBMSs
and DFSs.

Fault Tolerance

Fault-tolerance refers to the ability of the system to continue operating in case of failures.
Replication is a common way to achieve fault-tolerance. This includes, among others,
continuous incremental backup of data, duplicate transactions logs for warm-failover, and
periodic check-pointing.

Transparency

Transparency refers to the property of a storage system that the users have access to the
same file system structure / storage model regardless of their location, and irrespective of the
underlying system implementation.

Unified namespace is a common way to achieve transparency. Further, in Cross-Cloud
environments where applications access data sources, for example from multiple DFSs and

http://www.melodic.cloud/

www.melodic.cloud 13

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

storage systems, a global unified namespace can warrant easy access and manipulation of
data.

Application Access

Application access refers to the requirement of easy data access interface. Many DBMSs
provide easy access and manipulation of data stored using the Standard Query Language
(SQL). DFSs clients are usually provided through programming language libraries, command
line interfaces, and REST APIs.

Security and Privacy

An important requirement for the data storage systems is their ability to provide mechanisms
to ensure security and privacy of the data stored. This includes support for authentication,
authorisation, confidentiality, integrity, and auditability.

http://www.melodic.cloud/

www.melodic.cloud 14

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3 Database Management Systems (DBMS)

In the last decade, the landscape of database management systems has grown significantly.
Enabled by the Cloud and driven by new application domains such as big data, distributed DBMSs
(DDBMSs) with heterogeneous storage models moved into the focus of academia and industry
[22], [23]. DDBMSs are built on a shared-nothing architecture and promise to cater for typical big
data related requirements, such as scalability, elasticity, and availability by running on
commodity hardware or in the Cloud [24]. In this context a diverse set of new data storage models
appeared on the DBMS landscape besides the relational storage model, which has been the
common storage model for DBMSs over the last several decades.

An up-to-date overview of the current data storage models of DBMS is provided in Figure 2, which
is distilled from current trends in the DBMS, cloud and Big Data research communities. The data
storage models are classified into the two main categories, relational and non-relational storage.
Relational storage offers the common SQL query interface and ensures ACID consistency [25], as
well as referential and functional integrity. Non-relational storage (commonly referred as NoSQL)
provides more heterogeneous storage models with weaker consistency guarantees that are
commonly referred to as BASE consistencies [26]. Yet, the non-relational storage models ease a
distributed architecture and favour horizontal scalability, elasticity and high-availability of the
respective DBMS [27].

In the following, an overview of the common relational and non-relational storage models of
Cloud and big data related DBMSs is provided. In addition, common DBMS representatives1 of each
data storage model are briefly presented.

3.1 Relational Storage

Relational storage has been the common data storage model for many decades, represented by a
relational DBMS (RDBMS). Yet, driven by the big data evolvement, also so called NewSQL DBMS
appeared in the DBMS landscape besides the RDBMS as depicted in Figure 2. NewSQL adopt the
relational storage model with the focus on a distributed architecture of the DBMS [28]. In the
following, both RDBMS and NewSQL are introduced.

1 https://db-engines.com/en/ranking

http://www.melodic.cloud/
https://db-engines.com/en/ranking

www.melodic.cloud 15

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Relational DBMS (RDBMS)

A Relational DBMS (RDBMS) stores data as tuples, forming an ordered set of attributes. A relation
consists of sets of tuples such that a tuple represents a row, an attribute is a column and a relation
forms a table. Tables are defined using a static, normalised data schema and different tables can
be referenced using relationship. RDBMSs provide SQL as the established interface for generic
data definition, manipulation and querying. Moreover, a rich support for analytical queries and
aggregations is generally available. Due to the relational data model and the strong ACID
consistency guarantees [25], RDBMSs offer only limited horizontal scalability or elasticity. Popular
RDBMSs include MySQL2 and Postgres3 in the open source context and IBM DB24 and Oracle
RDBMS5 in the enterprise context. In addition, RDBMSs are also offered as Database-as-a-Service
(DaaS) by major public Cloud providers, such as Amazon RDS6 or Azure SQL7.

 NewSQL

As the traditional relational data model only provides limited support for data partitioning, and
thus, limited horizontal scalability and elasticity capabilities, NewSQL DBMSs try to bridge this
gap. Initiated by Google Spanner [29] in 2013, NewSQL DBMSs are built upon the relational data
model and SQL as the standardized interface but target horizontal scalability and elasticity to
enable large-scale distribution [22]. However, only a few NewSQL DBMS are built using novel
architectures, whereas many NewSQL DBMSs are built upon existing DBMS solutions [28]. The
NewSQL landscape is rather new and currently evolving, but some adopted representatives are
VoltDB8, CockroachDB9 and NuoDB10.

2 https://www.mysql.com
3 https://www.postgresql.org/
4 https://www.ibm.com/analytics/us/en/db2/
5 https://www.oracle.com/database/technologies/index.html
6 https://aws.amazon.com/rds
7 https://azure.microsoft.com/services/sql-database/
8 https://www.voltdb.com/
9 https://www.cockroachlabs.com/
10 https://www.nuodb.com/

http://www.melodic.cloud/
https://www.mysql.com/
https://www.postgresql.org/
https://www.ibm.com/analytics/us/en/db2/
https://www.oracle.com/database/technologies/index.html
https://aws.amazon.com/rds
https://azure.microsoft.com/services/sql-database/
https://www.voltdb.com/
https://www.cockroachlabs.com/
https://www.nuodb.com/

www.melodic.cloud 16

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3.2 Non-Relational Storage

Non-relational storage or NoSQL has significantly evolved over the last decade. Even though early
non-relational databases were available as early as 1970s [30], a large-scale popularity started with
Amazon Dynamo in 2007 [31] and Google Bigtable in 2008 [32]. Since them, the non-relational
DBMS landscape has constantly evolved with respect to the data storage models and existing
DBMSs. In the following the most common non-relational storage models with respect to big data
are presented, which are depicted as the respective Non-Relational Storage sub-categories in
Figure 2. In addition, for each storage model, we give examples of the most common
representative DBMSs.

 Key-Value

The key-value storage relates to hash tables of programming languages. The data records are
tuples consisting of key/value pairs. While the key uniquely identifies an entry, the value is an
arbitrary chunk of data. Operations are usually limited to simple create, read, update, delete
(CRUD) operations of items referenced by their key. Inspired by the consistent hashing approach
of Dynamo [31], key-value DBMS are optimised for operation in large-scale clusters and support
horizontal scalability and elasticity. Popular key-value DBMSs are Riak11, Redis12 and the Amazon’s
DBaaS offering S313.

 Document

The document storage model builds upon a similar data model as in key-value storage. Yet, in
contrast it defines a structure on the values in formats, such as XML or JSON. These values are
referred to as documents, but usually without fixed schema definitions. Compared to key-value
DBMSs, they allow for more complex queries, as document properties can be used for indexing
and querying. Document storage models also support advanced queries for aggregations and
analytical functions. Further, document DBMSs support a distributed operation and enable

11 http://basho.com/products/
12 https://redis.io/
13 https://aws.amazon.com/s3/

http://www.melodic.cloud/
http://basho.com/products/
https://redis.io/
https://aws.amazon.com/s3/

www.melodic.cloud 17

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

horizontal scalability and elasticity even for geographically distributed clusters. Common
document storage DBMSs are MongoDB14, Couchbase15 and the DBaaS offering Azure Cosmos DB16.

 Wide-Column

Wide-column storage is inspired by Google’s Bigtable [32] and Apache Cassandra [33]. Wide-
column storage stores data by columns rather than by rows. This enables storing large amounts
of data in bulk and for efficiently querying over very large, structured data sets. A column-oriented
data model does not rely on a fixed schema. Instead, it provides nestable, map-like structures for
data items which improves flexibility over fixed schemas. Column-oriented DBMS support
horizontal scalability and elasticity for large scale and geographically distributed clusters.
Besides Google’s DBaaS offering Bigtable17, Apache Cassandra and Apache HBase18 are popular
wide-column DBMS.

 Graph

Graph-based DBMS are inspired by graph theory. They use graph structures for data modelling,
and nodes and edges represent (and store) data. Nodes are often used for the main data entities,
while edges between nodes are used to describe relationships between entities. Querying is
typically executed by traversing the graph. Due to their graph-focused data model which implies
strong relations between data entries, graph storage only offers limited support for horizontal
scalability and elasticity. Common graph storage DBMS are Neo4j19 and TitanDB20.

 Time-series

Time-series (TS) storage is driven by the need for monitoring of large-scale Cloud and IoT
applications and infrastructures, which require horizontally scalable DBMSs with analytical query
support. Therefore, time-series DBMS typically built upon existing DBMS data models, preferably

14 https://www.mongodb.com/
15 https://www.couchbase.com/de
16 https://azure.microsoft.com/services/cosmos-db/
17 https://cloud.google.com/bigtable/
18 https://hbase.apache.org/
19 https://neo4j.com/
20 https://github.com/thinkaurelius/titan

http://www.melodic.cloud/
https://www.mongodb.com/
https://www.couchbase.com/de
https://azure.microsoft.com/services/cosmos-db/
https://cloud.google.com/bigtable/
https://hbase.apache.org/
https://neo4j.com/
https://github.com/thinkaurelius/titan

www.melodic.cloud 18

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

key-value or column-oriented, and add a dedicated time-series data model on top [34]. The TS
storage model is built upon data points which comprise a timestamp, an associated numeric value
and an unstructured set of metadata. TS DBMS are typically optimised for write performance and
they support horizontal scalability and elasticity for distribution the load across large scale
clusters. In addition, TS DBMS often provide additional tools for the collection and visualization
of the monitoring data. Common TS DBMS are InfluxDB21, Prometheus22 and Axibase23.

 Multi-model

Multi-model storage combines different storage models into a single DBMS to improve flexibility,
e.g. providing document storage and graph storage tables to cater for scalability or improved query
support, depending on the respective table data. Common multi-model DBMS are ArangoDB24 and
OrientDB25.

21 https://www.influxdata.com/
22 https://prometheus.io/
23 https://axibase.com/
24 https://www.arangodb.com/
25 https://orientdb.com/

http://www.melodic.cloud/
https://www.influxdata.com/
https://prometheus.io/
https://axibase.com/
https://www.arangodb.com/
https://orientdb.com/

www.melodic.cloud 19

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4 Distributed File Systems (DFSs)

A DFS provides a permanent storage to the data objects through a set of storage resources
connected by a communication network [35]. DFSs allow multiple distributed nodes to share files,
which is a common requirement for many distributed applications. The data is created and
consumed by the client applications using a unified DFS fabric. The DFSs offer scalability, fault
tolerance, concurrent access of the files, and a unified namespace.

As shown in our taxonomy of Figure 2, the DFSs can be classified into two broad classes based on
the architecture model used: Client/Server and Clustered Distributed DFSs. In the following, we
discuss each of these classes and provide examples of the representative DFSs.

4.1 Client / Server Model

In a Client/Server architecture model of DFSs, the data storage server provides a standardised
view of its local file system to the clients on a network through a communication protocol. The
Client/Server DFS model was used by early network file systems, such as Sun Microsystem’s
Network File System, and is still popular and has also found its way into Cloud computing
systems. An example of a Cloud-supported Client/Server based DFS is GlusterFS26.

GlusterFS (combined Gnu and cluster FS) is an open source, POSIX compatible, DFS that
aggregates disk storage resources from multiple servers into a single global namespace.
GlusterFS relies on an elastic hashing algorithm instead of a distributed metadata model. The
built-in scalability feature can support several petabytes while supporting thousands of clients
running on the commodity hardware. It also can support multiple workloads using various local
file systems that supports extended attributes and also provides (geo)-replication, quotas, and
snapshots. The master nodes are deployed as storage bricks which expose a local file system to
the network via a GlusterFS daemon. A custom protocol over TCP/IP, Infiniband or sockets direct
protocol is employed for the communication between the client and the servers.

26 https://docs.gluster.org/en/latest/

http://www.melodic.cloud/
https://docs.gluster.org/en/latest/

www.melodic.cloud 20

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4.2 Clustered Distributed Model

Clustered Distributed architecture model of DFSs is the most commonly employed architecture
model in modern DFSs. In a clustered distributed model, metadata and data are decoupled and
stored in a set of distributed nodes in a cluster. Clustered distributed model can be further
classified into three models, based on how the metadata is stored, as explained in the following.

 Centralised Metadata

In clustered distributed DFSs which are based on centralised metadata, the metadata is stored in
a centralised metadata node, while other nodes store the data. Hadoop Distributed File System
(HDFS)27, Integrated Rule-Oriented Data System (iRODS)28, and MooseFS29 are some examples of
such DFSs.

Hadoop Distributed File System is an open source, DFS implementation of Google’s file system
(GFS) that can run on commodity hardware. HDFS consists of a NameNode (the master) and
multiple DataNodes (the slaves). The master node manages the file system namespace and
controls the file access by clients. It also determines the mappings of blocks to DataNodes which
are also responsible for serving read and write requests from the file system’s clients. HDFS
divides files into same sized data blocks for allocating them to DataNodes. DataNodes are
responsible for storing data blocks.

Integrated Rule-Oriented Data System (iRODS) is a policy-based, distributed data management
system. The most important feature of iRODS is its rule engine. It allows data to be managed with
policies and expressed as actionable objects which can further be executed using microservices.
Rules can be invoked by users using a command line or API. Apart from the engine, iRODS
supports complex metadata. The complex metadata can be defined by the users using the triplet
(key, value, unit) format provided by the iRODS. This feature provides more control over the
metadata customisation.

MooseFS is another open source, POSIX compliant, fault-tolerant, centralised metadata based
clustered DFS. It distributes the user data across a large number of servers, which are perceived
by the user as a single virtual disk.

27 http://hadoop.apache.org/
28 https://irods.org/
29 https://moosefs.com/

http://www.melodic.cloud/
http://hadoop.apache.org/
https://irods.org/
https://moosefs.com/

www.melodic.cloud 21

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Distributed Metadata

In clustered distributed DFSs which are based on distributed metadata, the metadata together
with the data, is distributed among the participating nodes in the DFS cluster. CephFS30 is a
popular example of such DFSs.

CephFS is an open source, distributed, a POSIX-compliant file system that uses a Ceph Storage
Cluster to store its data. Ceph is designed to offer block, object, and file storage to improve
performance, reliability, and fault tolerance by data replication. A Ceph Storage Cluster supports
multiple metadata servers. Each Ceph metadata server stores the metadata on behalf of the
CephFS. A specialised replication algorithm, named as CRUSH (Controlled Replication Under
Scalable Hashing) enables the Ceph Storage Cluster to scale, rebalance, and dynamically recover
from the failures.

4.3 Symmetric

Symmetric also called as peer-to-peer (P2P) file systems employ P2P technologies [36] as the basis
of their architecture. Both the metadata and the data is distributed among a set of nodes, and each
node offers an equivalent functionality [37]. Examples include Red Hat GFS, PVFS [38], and ivy [39].

Red Hat GFS is a POSIX compatible cluster file system which offers a single, consistent view of
the file-system namespace across the GFS nodes in the cluster. The nodes in GFS operate in
share-nothing architecture, each having the same set of roles.

Parallel Virtual File System (PVFS) is a parallel file system that aims at offering high bandwidth
concurrent read/write operations for parallel applications. The PVFS enables user-controlled
partitioning of data across disks on the participating I/O nodes. Ivy supports concurrent read-
write file system access using a P2P system. The whole file system is built around a set of logs,
one log from each participating node. Each node writes its own log but reads logs from all other
nodes. The logs are stored in a distributed hash (DHash) table. Ivy offers both conventional file
system interface as well as traditional network file system (NFS) like semantics.

30 http://docs.ceph.com/docs/mimic/cephfs/

http://www.melodic.cloud/
http://docs.ceph.com/docs/mimic/cephfs/

www.melodic.cloud 22

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5 Data Placement and Migration Methodologies

In this chapter, we provide a state-of-the-art analysis of the existing data placement and
migration methodologies, algorithms, and tools.

5.1 State-of-the-Art Analysis

The data placement and migration methodologies relate to both the initial placement of data in
the Cloud and the subsequent migrations of the data based on an optimisation criteria. The data
placement solutions, in general, also result in data migration decisions when considering the
current locations of data sources into account.

The data placement problem in Clouds can be formulated as a variance of the knapsack packing
problem, which is NP-Hard [40]. The main aim is to find a solution with optimal mapping of
datasets to respective resources (VMs in Cloud datacentres). To solve this problem, different
optimisation objectives can be used. The most common criteria relate to the minimisation of the
amount of data transfer needed during the placement, and data storage costs. However, other
criteria representing the impact of the data source locations on application performance, for
instance, can also be utilised.

In [41] (bdap), a big data placement algorithm is proposed which goes to the level of VMs. This
algorithm does take into account the existence of big datasets as well as of intermediate data
produced during the application runs. It relies on using a meta-heuristic approach for the solution
by applying a genetic optimisation technique over a data interdependency matrix.

The approach in [42] (Xu et al.) focuses on a coarser level of granularity to solve the data placement
optimisation problem. It tries to optimise the overall number of data transfer schedules by
applying genetic programming to the respective optimisation model produced which does
consider data centre capacity constraints and the non-replication of datasets.

Yuan et al. [40] propose a k-means dataset clustering algorithm that can be executed at two time
points: (a) at application build time; (b) at application execution time. At application build-time,
the algorithm constructs a data dependency matrix which is then transformed into another form,
where similar items are paired together by applying the Bond Energy Algorithm (BEA) [43] and
finally the items are clustered based on their dependencies/similarities by following a recursive
binary partitioning algorithm. An interesting aspect of the latter algorithm is that it does take into
account the fact that data can grow over time and considers the use of bounds to restrain the
further use of a datacentre when data size goes above them. During application runtime, the data
placement is executed mainly over new datasets which are positioned accordingly in the most

http://www.melodic.cloud/

www.melodic.cloud 23

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

suitable data centres by following a similar approach. However, in this case, the existing
placement can be invalidated due to different reasons: (a) there is no further space to devote to a
new dataset in the datacentre selected; (b) new workflows enter the system. To this end, a
restricted form of the application build-time algorithm is applied to find a new solution which is
applied incrementally from the current data placement solution. Please note that the proposed
approach goes beyond data placement to also deal with the deletion of obsolete data. Such data
unnecessarily occupies storage, which could be freed, and lead to an increase in the storage cost.

Kaya et al. [44] propose an approach which is able to simultaneously decide about the optimal data
placement and task scheduling. To achieve this, they model the workflow as a hypergraph and
then extend the PaToH hypergraph partitioning algorithm [45] to employ heuristics that attempt
to simultaneously reduce the computational and storage load while trying to minimise the total
amount of file transfers. The proposed approach is applied over the granularity of data centres.
However, it seems that currently it cannot be dynamically applied at runtime.

Yu and Pan [46] advocate that traditional placement algorithms incur a high cost on storing and
transferring of logs as well as an increased runtime. To this end, they propose the use of sketches
of request traffic in the distributed infrastructure to lower the data placement overhead. Such
sketches represent data structures that approximate properties of a data stream via a sublinear
space. In the proposed work, two types of sketches are maintained in a sliding window fashion:
(a) sampling sketches covering the uniform event sampling in the stream and (b) counting
sketches covering the frequency of event occurrence in the stream. These two sketches types are
exploited to construct a hypergraph sparsifier, via employing a randomised heuristic and an
interactive protocol between the sketches and the data processing controller, on which a
hypergraph partitioning algorithm is applied to derive the respective data placement decisions.

Zhang et al. [47] propose a Mixed-Integer Programming (MIP) model for modelling the big data
placement problem which takes into account both the data access cost as well as the storage
limitations in the data centres considered. This model is then solved through the use of a
Langrangian relaxation-based heuristic algorithm.

Lan et al. [48] focus on optimal variable big data stream partitioning, especially for the IoT data. To
this end, they propose a clustering-based particle swarm optimisation (PSO) search method which
relies on statistical feature extraction for stream classification. Prior to training the classification
model, redundant features can be discarded by applying conventional feature selection
techniques like correlation feature selection, information gain, PSO and genetic algorithm. In the
classification phase, the basic learner of Hoeffding Tree is exploited.

Kayyoor et al. [49] focus on minimising the query span for query workloads through applying
replica selection and data placement algorithms. Their algorithms can be applied on both multi-
site data warehouses and general-purpose data centres. They also assume that a query workload

http://www.melodic.cloud/

www.melodic.cloud 24

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

trace always provides the set of data that need to be accessed. Query workloads are represented
as hypergraphs mapping the data as nodes which map to hyperedges over the nodes. The main
goal is to optimally map the nodes to a subset of all clusters by also taking into account storage
capability constraints on the clusters such that the average cost among all queries is minimised.
This goal is achieved by considering a hypergraph partitioning algorithm (HPA) as a blackbox,
checking and selecting different partitioning algorithm classes for this blackbox and then
exploiting data replication in order to minimize the average query span. The implementations
considered include: (a) Iterative HPA: the HPA algorithm is iteratively executed until no space is
left, (b) dense sub-graph-based: a dense sub-graph algorithm is used to exploit the redundancy, (c)
pre-replication: identification of a set of nodes for replication, modification of the input graph and
application of the HPA algorithm for finding the most optimal data placement and (d) local move-
based: opposite to the previous case, a certain solution from HPA is used as a baseline for
replicating a small set of data items at a time. A proposal for extending the four algorithm classes
for supporting three-way replication is also discussed.

Volley [50] analyses logs of the data centre requests using an iterative optimisation algorithm
based on data access patterns and client locations, and recommends data migrations to the cloud
service to increase performance.

Scalia [51] is a cloud brokerage solution that continuously adapts the placement of data based on
its access patterns and subject to the optimisation objectives, such as storage costs.

The data placement and migration algorithms discussed above are generalised and can be applied
to both DFSs and DBMSs storage technologies. Some solutions, however, are more specific to
specific DFS and DBMS technologies, as discussed in the following.

Hsu et al. [52] propose an extension of Hadoop over heterogeneous environments focusing on
achieving: (a) dynamic data redistribution at each data node before the Map phase by considering
the data processing speed of each VM calculated through profiling, (b) VM mapping for reducers,
a feature not supported by Hadoop, based on partition size and the availability of VMs on the
respective physical machines, as well as (c) optimal reducer selection through assigning reducers
with higher workloads to VMs with higher processing speed.

A data-group-aware placement scheme is proposed in [53] (daware) for Hadoop. This scheme
exploits data access patterns from data access logs and then extracts optimal data groupings and
reorganises the data allocation in order to achieve maximum parallelism per group to better
balance the respective load. The scheme operates at the level of the rack/cluster. It also
recursively employs the BEA algorithm in order to transform the original data dependency matrix
into a clustered one. To also take into account the vertical relationships between data apart from
the horizontal ones so as to ensure that the blocks on the same node have a reduced probability
to be part of the same group, the Optimal Data Placement Algorithm (ODPA) is applied over a sub-

http://www.melodic.cloud/

www.melodic.cloud 25

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

matrix obtained from clustered dependency matrix, thus considering the dependencies between
the data already placed and those being placed.

SWORD [54] proposed a workload-aware data partitioning and placement approach for online
transaction processing (OLTP) workloads. The implementation is based on PostgreSQL RDBMS.

A data management middleware targeting NoSQL databases has been presented in [55], which
makes abstraction of multiple Cloud storage technologies, and follows a policy-driven approach
for making data placement decisions.

5.2 State-of-the-Art Comparison

In order to evaluate how suitable are the data placement and migration methodologies performed
by the state-of-the-art algorithms selected from the literature, we have compiled a set of criteria.
Please note that we use these criteria not to analyse only pure data placement algorithms but also
data placement strategies in the sense that such strategies also include data placement
algorithms that need to be also evaluated.

• Fixed data positioning: Due to regulations or privacy reasons, specific datasets of an
organisation might need to reside in a data centre or in a specific country. We consider
whether the data placement strategies and algorithms are capable of including fixed data
positioning.

• Constraint solving technique: Which constraint solving techniques are employed.
• Host Granularity: This criterion indicates what the granularity of the placement of big

data is. A coarse-grained granularity can means the selection of the data centre on which
a dataset can be placed. A fine-grained granularity means the selection of the VMs where
data needs to be placed.

• Intermediate data handling: while applications are running, they produce intermediate
data which are most of the times consumed by other application tasks. The production
and use of such data leads to the case where the current data placement decisions need
to be invalidated in order to immediately grab better optimisation opportunities.

• Multiple application handling: An application might have multiple instances running
which could operate over the same datasets while a system might need to support the
placement of multiple applications that share a common set of datasets.

• Data size uncertainty: Data might be processed by applications but they are not always
static in nature. In many cases, they can grow in even unanticipated paces. However, this
data size increase, even if it is expected, can do lead to invalidating data placement
decisions.

http://www.melodic.cloud/

www.melodic.cloud 26

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

• Replication: Whether placement decisions consider data replication.
• Optimisation Criteria: While data transfer cost plays an important role in big data

placement, it is not the sole factor that needs to be optimised. In particular, for the Cross-
Cloud data placement, it is important to consider other criteria that affect the
performance of the application.

A summary of our comparison between selected state-of-the-art approaches is given in Table 2.

Table 2: Comparison of the State-of-the-Art data placement approaches

Approach
Fixed

DS

Solving
Technique

Host
Gran

Int.

data

Multi
Apps

Data
Size

Rep Criteria

bdap [41]
Yes Meta-heuristic

(genetic
programming)

Fine Yes No No No Communication
Cost

Xu [42]
No Genetic

programming
Coarse No No No No Data transfer

amount

Yuan et
al. [40]

Yes Recursive
binary
partitioning
(BEA)

Coarse Yes Yes Yes No Data transfer
amount

Kaya et
al. [44]

No Hypergraph
partitioning

Coarse No No No No Data transfer
amount

daware
[53]

No Recursive
Clustering via
BEA and ODPA

Fine No No No No Data transfer
amount

Yu and
Pan [46]

No N-way
Hypergraph
partitioning
through
sparsification

Fine No No No No Cut weight
calculated based
on edge weight
and partition
number

http://www.melodic.cloud/

www.melodic.cloud 27

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Zhang et
al. [47]

No Lagrangian
relaxation of
MIP

Coarse No No No No Data access cost

Hsu et al.
[52]

No - Fine No No No No Processing speed

Lan et al.
[48]

No Clustering-
based particle
swarm
optimisation
search

Fine No No No No Volatility,
Autoregressive
Moving Average,
Hurst component,
distance

Kayyoor
et al. [49]

No Hypergraph
partitioning -
different classes
of algorithms

Coarse

No No No Yes Average query
span

As we can see from Table 2, there are shortcomings in the state-of-the-art data placement and
migration techniques. First, we can deduce that very few approaches consider the existence of
fixed data sets that cannot be moved. Out of these approaches, the policy enforcement ones are
discerned based on the fact that policy enforcement could be highlighted as the usual way to deal
with such datasets by considering that policies actually prescribe the data gravity. However, we
need to stress here that copying/enforcing policies is not just an act of denying or accepting a
data placement request. Instead, policies should be seen as global or data-specific constraints that
need to be taken into account when attempting to solve the big data placement problem.

Second, most of the approaches in data placement focus mainly on the initial positioning of data
and do not interfere with the actual runtime of the respective applications. However, most of the
application classes in the real-world are really dynamic in nature, can have different variation
points in load and certainly produce additional data which need to be promoted accordingly to
the next computation steps. As such, data placement cannot be just a one-short process but a
continuous one which is continuously run in order to re-evaluate placement decisions as well as
reach new ones, when the respective need arises.

Third, concerning the optimisation criteria considered, it seems that half of the approaches focus
on just one criterion which is related to the minimisation of the data transfer amount, and not the
actual data transfer costs which varies from Cloud to Cloud. Moreover, the impact on the
application performance based on the location of data sources is not considered in several

http://www.melodic.cloud/

www.melodic.cloud 28

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

approaches. This could enable, for instance, recommendation of moving a data set to another data
centre when it could be predicted (from the historical records) that the respective data transfer
costs would be significantly less considering the performance gain during the application life-
time In general, we believe that optimisations based in a single objective are not sufficient for a
Cross-Cloud deployment solution, targeted by the Melodic DLMS.

http://www.melodic.cloud/

www.melodic.cloud 29

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6 Data Modelling

In Melodic, before application and data placement decisions are made, both the data as well as
application components need to be modelled to capture required information for efficient
application deployments and optimisations. The information used to describe data is usually
called metadata, i.e., data about data.

6.1 Metadata Description and Management

Two major issues are related to the description and management of metadata: (a) how they are
described to summarise in the best possible way the data that they need to characterise; (b) how
they are managed and stored such that they can be retrieved and exploited by the respective
management system, which is DLMS in this case. In this respect, in the following, we explicate
how we deal with these two issues.

In the Melodic deliverables D2.2 [6] and D2.4 [56], we explain how metadata about data are specified
in the Melodic middleware. In this section, we will thus shortly summarise the way this
description is modelled and structured. More details can be found in the corresponding
deliverables.

The solution that has been envisaged and realised in the Melodic project involves two main
aspects:

1. A schema for the metadata, Metadata Schema, has been produced, covering several
aspects of data along with concepts that can be used to describe constraints and
requirements on how a certain application can be placed on Cross-Cloud resources;

2. An extended CAMEL model that focuses on the description data and relationship
between data and application components

Specifically, Metadata Schema is a taxonomy of concepts, properties and relationships that can
be exploited for supporting data management as well as application deployment reasoning. In
particular, this schema can be exploited, first, for specifying cloud service requirements and
capabilities to support application deployment reasoning, secondly, for defining features and
constraints to support data management and, third, data security-related concepts for driving the
access control in the Melodic platform. The schema is clustered into three parts, which match the
aforementioned three aspects, respectively.

http://www.melodic.cloud/

www.melodic.cloud 30

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The first part captures the main characteristics that Cloud service offerings possess that can be
used for specifying both requirements and capabilities for that services. Currently, the schema
covers the two lower levels in the Cloud stack, i.e., the infrastructure and platform levels.

The second part attempts to capture those features that characterise data according to different
aspects, covering data core characteristics (i.e., data volume, velocity, variety, value and quality)
as well as their location, management and domains. In this sense, this part could be exploited for
enriching the description of data elements, as it will be shown in the next section, that are
specified in CAMEL. All such information, once specified in CAMEL, can be used to support both
the management of the data specified, including the initial placement as well as its potential
migration actions at runtime, when needed.

The third part attempts to cover security aspects, which can be exploited for specifying the exact
context for permitting the access to data. In the Melodic context, this part of the model will be
exploited as background knowledge for designing and implementing access control policies that
will secure the way the Melodic platform acts on behalf of the user for placing and managing data
and application components over Cross-Clouds. For more information on the Metadata Schema,
the reader are referred to the Melodic deliverable D2.4 [56].

With respect to the second aspect of the Melodic modelling work, i.e., the extended CAMEL model,
the overall structure of the data description has been dictated through a respective new meta-
model that has been incorporated in the CAMEL multi-domain specific language (DSL). This meta-
model is called data, as shown in Figure 3, and covers the description of data at both the type and
instance level. At the type level, data and its sources are defined and can be associated with
respective application components in the deployment meta-model of CAMEL dedicated to their
processing and management. At this level, the structuring and composition of data can be
modelled. At the CAMEL model instance level concrete data and sources can be specified which
can be manipulated by respective instances of the user application, by following the pattern
where one Melodic platform covers the management of the deployment and provisioning of a
single user application.

In order to incorporate the actual characterisation of data and their sources, respective
mechanisms have been incorporated in CAMEL to support this by drawing annotations from the
metadata schema. These mechanisms include:

• The capability to extend the structure of a data model at the model level in order to
incorporate the additional structure that comes with the metadata schema (in terms of
further data aspects which also need to be described for a certain data element);

• The capability to incorporate additional data and data source attributes that are
annotated with concepts and properties from the metadata schema. Further, existing

http://www.melodic.cloud/

www.melodic.cloud 31

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

elements of CAMEL, like a whole dataset or its source, can be directly annotated with
concepts from the metadata schema.

Figure 3: Data meta-model in CAMEL

Concluding this section, we note that based on the detailed classification and analysis of Data
Storage and to conform to the taxonomy presented in Figure 2 (Chapter 2), we have updated the
Metadata Schema presented in [56]. Specifically, the updated parts of the model with respect to
the Data Storage class are depicted in Figure 4.

http://www.melodic.cloud/

www.melodic.cloud 32

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 4: Updated Data Storage Class of Metadata Schema

The detailed mind map for an easier walkthrough of the updated Metadata Schema’s main
aspects can be found here: http://melodic.cloud/assets/images/MELODIC_Model_vFinal.png

6.2 Data Catalog

The Data Catalog is the place where real-time data about data instances, as well monitoring
information about data access patterns of application components is stored. In other words, the
Data Catalog is a storage medium for metadata about data sources, which enables both its storage
and retrieval. In this way, Data Catalog can be regarded as the main knowledge base (KB) which
needs to be consulted by the DLMS (and Upperware in general) to find out any static or dynamic
information about data that can enable optimisation of the provisioned data applications across

http://www.melodic.cloud/
http://melodic.cloud/assets/images/MELODIC_Model_vFinal.png

www.melodic.cloud 33

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

different Clouds. For instance, the DLMS utilises the information stored in the Data Catalog to
establish costs associated with each deployment solution.

There can be different ways and technologies via the Data Catalog can be realised. In the literature,
one can see various alternatives: (a) relational database management systems (RDBMSs) which
impose the structure and content of the metadata schema via the respective schema of the
database that will store the content of the Data Catalog; (b) semantic KBs which conform to
respective semantic standards for metadata description; (c) model repositories which store the
content of the Data Catalog in the form of a model (as in the case of CAMEL).

In the context of the Melodic project, these technological alternatives have been evaluated in sight
of the current solution adopted for the storage of the CAMEL models, which maps to the use of a
unified model repository.

http://www.melodic.cloud/

www.melodic.cloud 34

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

7 Data Life-cycle Management System (DLMS)

Figure 5: Overview of the DLMS Architecture

In this chapter, we describe the basic design principles and the architecture of the Data Life-cycle
Management System (DLMS), and its sub-components. An overview of the DLMS architecture is
presented in Figure 5.

At the heart of the DLMS is a DLMS Controller which manages, and coordinates with various DLMS
sub-components and execute data management tasks. DLMS Controller is also responsible for
periodically running various DLMS algorithms to update the internal DLMS knowledge base that
is used to assign costs to the proposed deployment solutions (detailed in Chapter 8). All data
sources available to the applications deployed through Melodic are modelled (see Section 6 and
the Melodic deliverables D2.2 [6] and D2.4 [56]) and registered in DLMS. DLMS Interfaces provides
interfaces for the data registration, data migration, and utility calculation using a REST based API.
As soon as the user-supplied CAMEL model is available, modelling interfaces call DLMS
registration API which results in reading the CAMEL model and registration of modelled data
sources in the DLMS. Once a data source has been registered in DLMS, its characteristics through

http://www.melodic.cloud/

www.melodic.cloud 35

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

the modelling information provided in the form of CAMEL are available for exploitation by the
DLMS algorithms. Moreover, data sources registered in the DLMS are managed by the DLMS
throughout their life-cycle. Note that both external and internal data sources are possible, where
external data sources are referred to the ones uncontrollable by the Melodic platform and the
DLMS will not be able to migrate or place them. However, all data sources, including the external
ones, will be available for access by the applications through a unified namespace.

From the monitoring plane, DLMS subscribes to the data access metrics associated with the data
processing by deployed application components. To obtain data access metrics, DLMS, through
the Executionware, deploys DLMS Agents on each VM deployed by Melodic. DLMS Agents monitor
data accesses between the instances of the application components and data sources and the
information is eventually recorded in the Data Catalog. Making use of the historical information
about the data access patterns of the application components, data source characteristics,
network monitoring data between data centres, and the incurred costs in the Cloud (data access
and data storage costs), DLMS assigns a utility value to all the candidate deployment solutions
proposed by the solvers. The utility assignment is a multi-facet process, where the DLMS
algorithms are employed, as discussed in Chapter 8. In addition to the cost assignment, when a
reconfiguration to the existing deployment is required, DLMS is consulted by the Adapter
component of the Upperware to trigger any data migrations required for the concerned datasets.

7.1 Approach for Data-aware Optimisations

We tackle the problem of data-aware application deployments and adaptations using a two-step
approach. First, all data sources deployed by Melodic or accessed by the application components
deployed by Melodic (external data sources) are modelled. The modelling enables Melodic
Upperware (Solvers) to consider data-source specific location constraints and SLAs the same way
as it handles the application components when calculating a candidate deployment solution. In
this way, we allow solvers to propose deployment solutions irrespective of the current data
locations, but eliminates any invalid solutions with respect to data constraints. The DLMS
component manages data sources on behalf of the user and, thus, keeps track of current data
location, historical data access patterns by different application components (through Data
Catalog), and Cloud- and datacentre-dependent network performance and data transfer and
access costs. The DLMS then assigns a utility value to each proposed solution, which is used by
Utility Generator in the utility function for the selection of the optimal deployment solution
among proposed candidate solutions.

http://www.melodic.cloud/

www.melodic.cloud 36

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The CP Generator component is responsible for generating constraint programming (CP) models
that are processed and solved by Melodic’s solvers. The CP Generator component reads the
CAMEL application model and based on it creates a CP model that expresses a constraint equation
needed by solvers.

The CP Solver is responsible for solving a certain deployment reasoning/optimisation problem
that is encoded in the form of a constraint model. The constraint model includes a set of
constraints mappings to the SLOs defined by the user in the CAMEL model, a set of variables
which denote the number of instances that individual application components and internal data
components should have over a certain VM offerings that the quantitative hardware
requirements posed by the user for that component. The CP Model, thus produced is solved by the
CP Solver. Besides CP Solver, other optimisation solvers can also be used in the Upperware to
calculate deployment solutions. A detailed Upperware architecture and component description is
provided in [6].

Based on our approach, we revisit the criteria we used for the analysis of the state-of-the-art
solutions in Table 2. A descriptive summary is given in Table 3.

Table 3: Evaluation Criteria and the Melodic approach

Criteria Description

Fixed Data Positioning

CAMEL, extended by data meta-model, allows setting up
constraints related to the data locations as well as any other SLOs
which are handled by the solvers. Hence, the candidate solutions
proposed handle them already before the assignment of the costs
by the DLMS.

Constraint solving
technique

The main solver used by the Upperware is based on Constraint
programming model. The CP Models are extensively used to
search feasible solutions from within large sets of candidate
solutions by modelling the search problem in terms of arbitrary
constraints [57]. The current implementation of the CP Solver
relies on Choco Solver31, which is a free constraint satisfaction
optimisation programming solver.

31 http://www.choco-solver.org/

http://www.melodic.cloud/
http://www.choco-solver.org/

www.melodic.cloud 37

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Host Granularity Fine, based on VMs

Intermediate data
handling

Both fixed and intermediate data sources can be handled.
However, each data source that needs to be managed by the DLMS
and used in its cost assignment, should be modelled.

Multiple application
handling

Multiple application components, and arbitrary relationships
between the application components and data sources is handled,
as described in Chapter 6.

Data size uncertainty
Handled through CAMEL. The actual of the data is not specified at
the type level but at the instance level as they characterise a
concrete dataset. More details are provided in Section 8.2.

Replication

As different storage technologies have encapsulated replication
mechanisms, the DLMS does not target replication to avoid
interfering with the internal data storage technology specific
optimisations. For instance, most DFSs have a configurable
property that govern the number of replicas each chunk of data
will have in the cluster. Such properties can be configured at the
component deployment time through user-supplied scripts.

Optimisation Criteria

A two-step based optimisation approach is used. Optimisation
criteria is based on five different DLMS algorithms. Moreover, new
algorithms and techniques can easily be added in the future. In
addition, different weights can be assigned to each optimisation
criteria (see Section 8.6).

7.2 Design Principles and Functionality

The first design principle of DLMS is that the DLMS does not take data placement and migration
decisions directly, but influences the selection of a proposed solution through the assignment of
a utility value to the solutions. This utility value describes how much a proposed solution is
favoured by the DLMS, given its algorithms. Hence, all the constraints pertaining to the data
sources are defined in CAMEL, and when a solution is proposed by the Solvers, these constraints
are already taken care of. It means that no solution violating the user-defined data placement
constraints reaches the DLMS, and hence DLMS does not validate it.

http://www.melodic.cloud/

www.melodic.cloud 38

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The second important design principle of the DLMS is that all file based data sources (losscal file
systems, DFSs) are available through a unified namespace accessible to all application
components regardless of their locations. Finally, all DLMS algorithms relies on the information
either provided by the user in CAMEL, or on the historical information obtained by monitoring the
deployments. No external input is expected.

In light of these principles, DLMS offers the following functionality:

• Management of data sources on behalf of the Melodic user
• Providing a unified namespace accessible from everywhere in the Cross-Cloud

deployment environment
• Assignment of a utility value to each solution proposed by the solvers
• Providing interfaces to run data-lifecycle events and data migrations
• Providing a set of standard data related metrics

Figure 6: Alluxio as the storage middleware, figure adopted from the Alluxio web pages

7.3 Handling DFSs

Traditionally, data-intensive applications in a cluster generally used to rely on a co-located big
data compute framework and storage system. An example of such a configuration is a Hadoop
MapReduce [58] running on a co-located HDFS cluster. MapReduce applications in this example
will access the shared storage provided by the HDFS on distributed data processing nodes.
However, as the big data ecosystem is rapidly evolving, a whole range of big data processing

http://www.melodic.cloud/

www.melodic.cloud 39

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

frameworks, technologies, and storage systems have been developed in the last several years [59].
The current ecosystem involves a variety of compute frameworks, ranging from traditional
Hadoop MapReduce and Apache Spark to specialised frameworks such as Apache Flink32, Storm33,
and Samza34, to name a few. The storage systems are equally plentiful. A variety of open source
and enterprise distributed file systems, database management systems, and Cloud-specific
storage technologies are in use. Moreover, modern big data applications often manage multiple
data sources, requiring separate management of namespace and access APIs for each data source.
In a Cross-Cloud application deployment, as targeted by Melodic, this heterogeneity of storage
technologies bring interoperability issues and costly storage integrations. After evaluating the
requirements of the DLMS, we decided to use Alluxio35 (formerly Tachyon [60]) as the middleware
for storage technologies. Alluxio is a rapidly growing open source memory speed virtual
distributed storage system enabling big data applications to interact with data from a variety of
storage systems and technologies. Alluxio has attracted a large number of active contributors,
and the project is being used by a number of large companies, such as Google, Baidu, Intel, and
IBM among others. Alluxio provides following salient features useful for the Melodic DLMS.

• Unified Namespace: Enables applications to access data across multiple data sources
with different storage technologies under a single unified global namespace.

• Support for large number of storage systems: Alluxio supports a large number of
underlying storage systems, including HDFS, Microsoft Azure Blob Store, Amazon S3,
Google Cloud Storage, OpenStack Swift, GlusterFS, MaprFS, Ceph, NFS, Alibaba OSS, and
Minio. Moreover, it provides a pluggable under storage system so new storage
technologies can also be added on demand.

• Performance Acceleration through Lineage: Alluxio leverages the concept of lineage, to
accelerate applications accessing remote data using write-caches. The lineage allows
Alluxio to use write-caches without compromising on the fault tolerance. In lineage
based systems, the lost output is recovered by re-executing the tasks that created the
data.

• Flexible File Access APIs: Alluxio provides several file system interfaces, including a
HDFS compatible interface to allow for easy integration of applications without the need
of application code change.

32 https://flink.apache.org/
33 http://storm.apache.org/
34 http://samza.apache.org/
35 http://www.alluxio.org/

http://www.melodic.cloud/
https://flink.apache.org/
http://storm.apache.org/
http://samza.apache.org/
http://www.alluxio.org/

www.melodic.cloud 40

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 7 shows an example of a unified namespace offered by the DLMS through Alluxio. In the
shown example, the user has access to two storage systems, an HDFS cluster with file hierarchy
shown in blue, and a S3 bucket shown in red. When these data sources are registered in the DLMS,
they are mounted at a location (which by convention is selected as
/melodic/[DATASOURCE_NAME] in the unified namespace. The user application can then access
both data sources under a single global namespace regardless of the location of the both the data
sources and application components accessing them in the Cross-Cloud.

Figure 7: An example of the unified namespace offered by DLMS through Alluxio

Architecture and DLMS Integration

Alluxio is implemented using a client/server architecture, with a single primary master node and
multiple worker nodes. Alluxio system is conceptually divided into three component types: the
master, workers and the clients. The master and workers together create the Alluxio storage
servers, while client are applications that accesses the storage systems through Alluxio. The
primary master is primarily responsible for managing the global metadata of the system, whereas
the secondary master replays journals written by the primary master and do periodic check-
pointing to enable fault tolerance in case of a master failure. Alluxio workers are responsible for
managing local resources allocated to Alluxio, such as storage disk, memory etc. As shown in
Figure 8, the DLMS Controller interacts with the Alluxio master to allow for data registrations and
mounting under designed places under the unified file system, while DLMS Clients access Alluxio
worker nodes and Clients to obtain information required for the data access monitors for the
underlying file systems. DLMS Controller and Alluxio master runs on the Melodic middleware VM,
while DLMS Agents and Alluxio Workers are installed on each VM commissioned by the
Executionware.

Note that, even a unified namespace access is provided to the DFSs, DFSs themselves are
considered as black boxes for the DLMS implementation. DFS-specific configurations, such as
number of replicas to be stored, caching schemes used, replication and placement policies,

http://www.melodic.cloud/

www.melodic.cloud 41

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

synchronization methods, and load balancing are configured directly in the respective DFSs. This
is to ensure that the DLMS does not interfere with the DFS-specific features and optimisations.

Figure 8: Interaction between DLMS and Alluxio

User Applications

As the underlying unified file system available to the applications is based on Alluxio, applications
can use client libraries provided by Alluxio for file system access. As described above, we use the
convention that all data sources are mounted, at the time of the data source registration, under a
global namespace prefixed by /melodic/. So, a data source registered as name dsource1 will be
mounted at the path /melodic/dsource1.

The paths in alluxio follow alluxio://server:port/ semantics. So a fully qualified URI of a file file.txt
under dsource1 root directory will be alluxio://127.0.0.1:19998/melodic/dsource1/file.txt, for
example. However, when the path of alluxio master is configured via properties in the Client
libraries, expansion of paths take place automatically, so relative paths such as
/melodic/dsource1/file.txt can be used.

Alluxio provides two different Filesystem APIs, the Alluxio Filesystem API and a Hadoop
compatible API. The Alluxio API provides full file system functionality, whereas, the Hadoop
compatible API allows user to use application based on Hadoop without the need of code change.

http://www.melodic.cloud/

www.melodic.cloud 42

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

We also provide a wrapper file system interface that allows translation of the file system URIs to
the unified global namespace available to the system, based on the information provided at the
time of data registration in CAMEL.

7.4 Handling DBMSs

DBMSs offer encapsulated and technology-specific features for data replication, partitioning,
sharding, and distribution. However, applications written for particular DBMSs can utilise
Standard Query Language (SQL) interface in most DBMS implementations, as described in
Chapter 3. As access to each DBMS is a specific interface, a unified global namespace is not
feasible for the DBMSs. Moreover, just like the DFSs implementation, DBMSs are also considered
black-boxes for the DLMS and specific settings are configured directly in the DBMSs, as per the
user requirements.

Nevertheless, several key-value stores such as Amazon S3, OpenStack Swift36, and databases that
run on top of a DFS such as HIVE or HBASE, can be mounted on an Alluxio based interface as other
DFSs.

7.5 Architecture and sub-components

DLMS offers a modular extensible architecture with each component doing a designated job
under the control of the DLMS controller. As shown in the DLMS component diagram in Figure 9,
Inter-Component interfaces are exposed via REST interfaces through a REST server. In particular,
the DataRegistrar interface allows to register the data sources in the DLMS after they have been
modelled, which follows mounting of a given data source under the unified namespace and
storing the information in DLMS database sub-component. UtilityCalculationInterface offers a
single method that is called by the Utility Generator with the proposed solution, in the form of
Node Candidates, that is evaluated by the DLMS for cost assignments, and a utility value is
returned. A DataMigrationInterface interface is also exposed with various methods dealing with
the data migration between one data source to another. In case the files are under the same
underlying file system, they can be directly migrated through the Alluxio interfaces. However, a
copy and delete file system operation is needed for the data migration operations spanning
multiple underlying file systems.

36 https://docs.openstack.org/swift/latest/

http://www.melodic.cloud/
https://docs.openstack.org/swift/latest/

www.melodic.cloud 43

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 9: DLMS component diagram

The DLMS Agents are run on each VM resource commissioned and they provide interfaces to
consume data access monitoring metrics available by the specialised data source monitors, and
forward them to the Executionware monitoring services, which eventually reach Data Catalog.
For all file based data sources, monitors are based on AlluxioMonitor that records read/write and
RPC operations to the underlying file systems. In addition, a RDBMS-specific monitor is also
available based on the MySQL database, in accordance with Melodic use-case requirements.
However, new monitors can be added if an unsupported data storage system is used. There is also
one specialised NetPerfMonitor which is a server/client script that runs on both ends of a
communication channel between the applications and data sources (data sources that are
deployed on the VMs commissioned by Melodic) to gather metrics related to the available latency
and network throughput which is later utilised by the DLMS algorithms to create a map of
available latency/throughput between different Cloud providers and data centres.

The DLMS Controller has access to the information stored in the CAMEL models, as well historical
information gathered by the DLMS agents, through the Data Catalog (see Section 6.2), which is
also utilised by the DLMS algorithms. Moreover, DLMS Controller also runs data migration tasks

http://www.melodic.cloud/

www.melodic.cloud 44

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

on VMs through DLMS agents, when instructed by the Adapter component of the Upperware.
Periodically, the DLMS Controller runs all DLMS algorithms to update their internal knowledge-
base (KB) used for the cost assignments. A conceptual overview of the utility assignment by the
DLMS is provided in Figure 10.

Applications interact with the data stores through a specialised client library which provides
access to the alluxio-based global file system. However, client library is installed during the
deployment of the application frameworks, such as Spark, so no change in the application code is
needed.

Figure 10: Conceptual overview of the utility assignment by the DLMS

http://www.melodic.cloud/

www.melodic.cloud 45

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

7.6 DLMS Agents

DLMS Agents are installed on each node commissioned by the Melodic Executionware. The job of
the DLMS Agents is to configure DLMS monitors on the nodes, and assist Data Migration Service
in data migration between data sources. The Executionware configures and triggers the
monitoring probes on each of the node. Based on the provided configuration, raw monitoring data
from the respective nodes is provided to the Event Processing Agents and stored in the
MonitoringDatabase, which is queried by the Upperware. The monitoring information gathered
through the DLMS Agents is eventually stored in the Data Catalog and is utilised by the DLMS
Controller and DLMS Algorithms.

Two types of monitors are configured by the DLMS Agents.

1. Monitors probing the data access from the application components to the particular data
sources. These include both the metrics collected through the Alluxio proxy and client
installed on each node as well as the RDBMS monitors configured according to the
component specification. For instance, an important set of metrics gathers are about the
amount of bytes read and written to the configured data sources from the application
component(s) installed on a particular node.

2. Network performance monitors collected using NetPerfMeter37. For the internal data
sources where the data source is located on VM(s) commissioned by the Melodic, the
NetPerfMeter[61], [62] is a convenient and flexible open source tool developed at SRL for
transport protocol performance analysis. It provides multi-platform support and works
with TCP, SCTP, UDP as well as DCCP. NetPerfMeter needs a client/server installation and
is able to send a saturated TCP flow between two given endpoints. During the TCP
measurement, it also runs ping between the same endpoints to record the ICMP Echo
Request/Echo Reply round trip time (RTT). In this way, both RTT and expected application
payload throughput is recorded.

37 https://github.com/dreibh/netperfmeter

http://www.melodic.cloud/
https://github.com/dreibh/netperfmeter

www.melodic.cloud 46

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

8 DLMS Algorithms

DLMS algorithms refer to the algorithms employed by the DLMS to assign utility value to the
deployment solutions. Currently, we employ five different techniques, each assigning a utility
value in the interval [0 , 1] to a given deployment solution. Later, we use a weighted sum method
to calculate the consolidated utility value to be returned to the Utility Generator. The DLMS
algorithms employs techniques that include the use of affinities between application components
and data sources, data source characteristics, network latencies and throughput between data
centres, Cloud provider costs, and learning from previous DLMS decisions. Once all values are
calculated, a weighted approach is used, with configurable weights given to each technique in
calculating the final utility value to be delivered to the Utility Generator.

𝑈𝑠 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑎 . 𝐴𝑓𝑓𝑠 + 𝑏 . 𝐷𝑠 + 𝑐. 𝑁𝑠 + 𝑑 . 𝐶𝑃𝑠 + 𝑒 . 𝐿𝑠)

Each algorithm is a plugin in the DLMS controller and thus, in the future, more advanced
algorithms can also be developed an incorporated in the DLMS with ease.

8.1 Affinity between Application Components and Data Sources

Even though the relationship between data sources and application components is defined in
CAMEL through data modelling, the actual dynamic affinities between data source instances and
application component instances cannot be established in advance. In our model, the affinity
between a particular application component and data source defines the degree representing how
coupled they are together. The consolidated DLMS utility assignment algorithms use these
affinities to assign a utility value to the proposed deployment solutions. For instance, if a solution
proposes that the component x and data source y are located in geographically-distributed data
centres, while the affinity between them calculated through historical information stored in the
catalog is high, the DLMS algorithms are likely to assign that solution a lower value than the one
which prescribes that these entities are co-located in a single data centre.

In our model, the relationship between application components and data sources, which we term
as couplet value, is based on the profiling of data transfers (reads and writes) between them. In
general, data traffic profiling is a vast topic with applications in many areas including network
traffic management, anomaly detection, energy efficiency, and QoS. In our DLMS implementation,
the data transfer profile of a tuple <application component, data source> is defined both by the number

of data transfers, i.e. number of historical access counter with bytes transferred greater

http://www.melodic.cloud/

www.melodic.cloud 47

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

than zero, and the total amount of data read and written from the data source. Number of historical
points in the calculations as well as the update period is configurable through a properties file. In
addition, three simple models for profiling based on linear prediction, Equal Weights, Linear
Weights and Real-time prediction methods can be used. However, more advanced methods such
as those based on autoregressive models, can easily be supported.

If t historical data reads and writes, TR = {Tt

R , Tt-1
R …, T1

R} and TW = { Tt
W , Tt-1

W , …, T1
W}, are

recorded between application component A and the data source D over time {1,2,3,…t} with the
most recent being Tt , the total expected transfer can be calculated at time t + 1, T̂ < A, D >

(t + 1) can be predicted by equation (1).

Where r is the preference value given to the data read which could be 0.5 in case of no preference
over writes (or same costs for reads and writes). The predictor coefficients, ai, represent weights
historical points received in predicting total transfer according to their place in the time series. In
equal weights profiling, each historical counter (which is an entry of historical record) has the
same weight in predicting future traffic, whereas, the linear network profiling uses a linear
function to decrease the weight of each counter further we go in the time series. The third method
we currently support is based on real-time data counters. In real-time network prediction, the
traffic profiles are calculated based on the most recent data counter recorded.

Once all the values for non-normalized expected transfer between each <application component, data

source> have been calculated, normalized values between range [a , b] can be assigned using linear
transformation. In our case, we choose the range [0, 1]. Moreover, the maximum and minimum
values can be self-assigned as well to reduce chances of skewed normalized values in case no
application component has strong relationship with any data source in the application.

http://www.melodic.cloud/

www.melodic.cloud 48

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The same process can be followed to get normalized values for the number of data transfers in
the range [0, 1] from the historical data transfer counters for both read and writes.

Finally, a weighted sum can be applied to calculate the final couple value for each<application

component, data source> tuple.

The result in a couplet value table in the form of a matrix as shown in Figure 11.

Figure 11: An example of a couplet value table

http://www.melodic.cloud/

www.melodic.cloud 49

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The total affinity value of a solution, provided as a solution with actual number of instances of
application components and data sources can be calculated by summing the individual affinities
and normalising to get a value in the range [0 , 1]. Pseudo-code for this simple sum-based solution
is given in the listing below.

8.2 Data Source Characteristics

Data source characteristics are gathered through CAMEL, as well as from size and capacity probe
from the DLMS monitors. Based on the data source size, a utility value is assigned to each
migration requested in the proposed solution by simple linear transformation. However, size is
not the only data source characteristic that can be taken into consideration for assigning utility.
For instance, data source type can also reflect how costly the migration would be, given complex
configurations required for some data sources. This is marked as a future exploration area.

To explain the use of data source characteristics, we provide a simple example. Suppose that we
have an application that processes images. These images map to a specific dataset, which is
continuously increased with a rate of 100 images per day (500 MB per day, as one image is about
5 MB in size). The original size of the dataset is 1 GB.

The respective dataset in CAMEL will be modelled via a certain Data element, as show in Figure
3, which will be annotated directly with respective concepts from the metadata schema. In
particular, this element will be annotated with the File concept from the metadata schema, which
is sub-concept of Format. In this way, we annotate the data set with feature that characterise its
format.

Now, the actual size and increase rate of the data set will not be specified at the type but at the
instance level as they characterise a concrete dataset, which will be actually processed by the
user application. In this respect, we will specify a certain DataInstance element having a type

http://www.melodic.cloud/

www.melodic.cloud 50

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

which maps directly to the Data element that has been created. For this data instance, CAMEL
does not cover directly additional information but allows to enrich its description with extra
information from the metadata schema. As such, one Attribute and one Feature (i.e., the element
in CAMEL that enables the extension of the structure) will be inserted to the data instance
element: (a) an attribute with the name ‘size’, which is annotated with the hasSize property from
the metadata schema and has the value of 1. This attribute is also associated with the unit of GBs;
(b) a feature named as size, which is annotated with the Size concept from the metadata schema.

8.3 Network Monitoring

RTT times and application payload throughput gathered through NetPerfMeter are used to create
a latency and throughput map between data centres. When no information is available, the
latency and available throughput map can be initialized based on whether the two data centre
locations are from the same cloud provider as well as based on their geographical coordinates.
However, with the each new deployment on a different Cloud provider / data centre, network
monitoring metrics gathered through the NetPerfMonitors will result in new entries to the
network monitoring map created by the DLMS. The network monitoring map, in the form of a
matrix, is then used to assign a network performance utility value based on the proposed solution,
prescribing locations of the application components and data sources.

8.4 Cloud Providers Costs

Data transfer from one data centre to another results in a monetary cost associated with the Cloud
provider fees. The actual incurred costs depends on Cloud providers in question, amount of data
being transferred, and the source and destination data centres. A comprehensive cost modelling
of Cloud providers have proven to be difficult, and depends on a large number factors. Some Cloud
providers, for instance Microsoft Azure, do not charge data transfers between their own data
centres, while others may charge different prices for data transfers based on geographical-
locations of the data centres. In addition, data transfer between private Clouds may not cost direct
transfer fees. Moreover, not all information pertaining to the prices can be dynamically loaded
from the Cloud provider APIs, rather the reverse is true. In such situation, a generalised approach
can be used to assign utility values to the data transfers. For instance, a utility of 1 can be issued
if data is transferred in the same data centre of the same Cloud provider, while a utility of 0 can
be designated when data is being transferred across the data centres at different geographical
locations owned by different Cloud providers. In the initial DLMS implementation, we use a simple

http://www.melodic.cloud/

www.melodic.cloud 51

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

algorithm to assign utility value to the data transfers, based on a parameter called distance
between different locations, as shown below in the pseudo-code.

8.5 Learning From Previous Decisions

DLMS utilises the information available through the Data Catalog and uses algorithms to
determine the cost values for each proposed solution. However, the actual application
performance resulted from a decision taken by the DLMS, as perceived by the application, can
only be reflected by the overall utility calculated by the Utility Generator [6]. In order to take that
into consideration, and learn from the decisions made by the DLMS, a specialised sensor is
installed with the value reporting the overall utility of the currently deployed solution. DLMS
subscribes to this metric and use it find out impact of the previous DLMS decisions on the overall
application utility.

To formulate this problem, each selected deployment solution is mapped as a Graph G(V,E), where
vertices V represents both the component instances and datasets. However, as location (which is
drawn as CloudProvider.Region.GeographicalLocation) is associated with each component instance,
the graph expands component instances into two nodes indicating a coupling of component
instance and its location. Same is done for the data source instances. Example graph thus created
is shown in Figure 12. Each selected solution is thus mapped into a graph and annotated with the
total utility value obtained from the sensor. Whenever, a new candidate solution is proposed, we
use graph similarity to find which of the previous proposed solution it is closest to, and based on
the similarity and the total utility value associated with that solution, we assign a value in the

http://www.melodic.cloud/

www.melodic.cloud 52

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

range [0 , 1], where 1 indicate a solution that yielded the best application utility among the deployed
solutions.

Graph similarity has been well studied topic in the literature and different techniques have been
proposed. Most graph similarity solutions can be classified into three types, the algorithms based
on graph isomorphism [63][64], feature extraction [65], and iterative methods [66] [67] [68] [69] [70].
The key idea behind these methods is that similar graphs share certain properties, such as degree
distribution, node sub-graphs, that can be used to assign a similarity value to two graphs.

In our implementation based on [67], we use the original Belief propagation algorithm, which is
an iterative algorithm, to find the similarity between the graphs created from the deployment
solutions.

Figure 12: Graph from an example deployment solution

Figure 13: Example candidate deployment solutions for graph similarity

http://www.melodic.cloud/

www.melodic.cloud 53

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

9 Conclusions and Future Work

In this deliverable, we presented a state-of-the-art analysis of existing data placement and
migration methodologies, relevant for the Cross-Cloud data-intensive computing. Based on our
analysis, we deduced that the existing data placement techniques are not sufficient for the Cross-
Cloud application deployments in the context of Melodic. We then proceed to report on the
research and design of a dedicated Upperware component, DLMS, targeted to complement
Melodic with the data-aware application deployments. The DLMS component, manages data
sources on behalf of the user and, thus, keeps track of current data location, historical data access
patterns by different application components, and Cloud- and datacentre-dependent network
performance and data transfer and access costs. The DLMS then assigns a utility value to each
proposed solution, which is used by Utility Generator in the utility function for the selection of the
optimal deployment solution among proposed candidate solutions.

Future work includes designing more advanced cost assignment algorithms for the DLMS
utilising recent advances in machine learning. Further, the DLMS component needs to be
integrated with the Upperware workflow in the Release 2.0 of the Melodic platform. In addition, a
comprehensive analysis of the proposed solutions in the real-world settings is necessary to
warrant desired functionality and adjustments in the proposed algorithms.

http://www.melodic.cloud/

www.melodic.cloud 54

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

References

[1] T. McGuire, J. Manyika, and M. Chui, “Why big data is the new competitive advantage,” Ivey
Bus. J., vol. 76, no. 4, pp. 1–4, 2012.

[2] “What is Data Gravity? - Definition from Techopedia.” [Online]. Available:
https://www.techopedia.com/definition/28768/data-gravity. [Accessed: 14-Jun-2018].

[3] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted Cloud Computing,” in
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, Berkeley, CA, USA,
2009.

[4] R. K. L. Ko et al., “TrustCloud: A Framework for Accountability and Trust in Cloud
Computing,” in 2011 IEEE World Congress on Services, 2011, pp. 584–588.

[5] J. O. Kephart and R. Das, “Achieving self-management via utility functions,” IEEE Internet
Comput., vol. 11, no. 1, 2007.

[6] Y. Verginadis et al., “D2.2 Architecture and Initial Feature Definitions.” 2018.
[7] Y. Verginadis et al., “D2.1 System Specification.” The Melodic H2020 Project Deliverable D2.1,

2017.
[8] F. Zahid, “D3.2 Business logic for supporting the complete data and data-intensive

application life-cycle management.” 2018.
[9] V. Turner, J. F. Gantz, D. Reinsel, and S. Minton, “The digital universe of opportunities: Rich

data and the increasing value of the internet of things,” IDC Anal. Future, 2014.
[10] D. Laney, “3D data management: Controlling data volume, velocity and variety,” META

Group Res. Note, vol. 6, p. 70, 2001.
[11] T. Lukoianova and V. L. Rubin, “Veracity roadmap: Is big data objective, truthful and

credible?,” 2014.
[12] I. D. Constantiou and J. Kallinikos, “New games, new rules: big data and the changing

context of strategy,” J. Inf. Technol., vol. 30, no. 1, pp. 44–57, 2015.
[13] F. Zahid, “Network Optimization for High Performance Cloud Computing,” PhD Thesis,

Faculty of Mathematics and Natural Sciences, University of Oslo, 2017.
[14] N. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What It Is, and What It

Is Not,” 2013. .
[15] D. Agrawal, A. E. Abbadi, S. Das, and A. J. Elmore, “Database Scalability, Elasticity, and

Autonomy in the Cloud,” in Database Systems for Advanced Applications, Springer, Berlin,
Heidelberg, 2011, pp. 2–15.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud
serving systems with YCSB,” in Proceedings of the 1st ACM symposium on Cloud
computing, 2010, pp. 143–154.

[17] B. Depardon, G. L. Mahec, and C. Séguin, “Analysis of Six Distributed File Systems,” report,
Feb. 2013.

[18] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale data management
approaches in cloud environments,” IEEE Commun. Surv. Tutor., vol. 13, no. 3, pp. 311–336,
2011.

http://www.melodic.cloud/

www.melodic.cloud 55

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

[19] D. J. Abadi, “Data management in the cloud: Limitations and opportunities,” IEEE Data Eng
Bull, vol. 32, no. 1, pp. 3–12, 2009.

[20] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services,” ACM Sigact News, vol. 33, no. 2, pp. 51–59, 2002.

[21] D. Pritchett, “BASE: An ACID alternative,” Queue, vol. 6, no. 3, pp. 48–55, 2008.
[22] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, “Data management in cloud

environments: NoSQL and NewSQL data stores,” J. Cloud Comput. Adv. Syst. Appl., vol. 2, no.
1, p. 22, 2013.

[23] L. Wu, L. Yuan, and J. You, “Survey of large-scale data management systems for big data
applications,” J. Comput. Sci. Technol., vol. 30, no. 1, pp. 163–183, 2015.

[24] S. Sakr, “Cloud-hosted databases: technologies, challenges and opportunities,” Clust.
Comput., vol. 17, no. 2, pp. 487–502, 2014.

[25] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services,” Acm Sigact News, vol. 33, no. 2, pp. 51–59, 2002.

[26] D. Pritchett, “Base: An acid alternative,” Queue, vol. 6, no. 3, pp. 48–55, 2008.
[27] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter, “NoSQL database systems: a survey and

decision guidance,” Comput. Sci.-Res. Dev., vol. 32, no. 3–4, pp. 353–365, 2017.
[28] A. Pavlo and M. Aslett, “What’s really new with NewSQL?,” ACM Sigmod Rec., vol. 45, no. 2,

pp. 45–55, 2016.
[29] J. C. Corbett et al., “Spanner: Google’s globally distributed database,” ACM Trans. Comput.

Syst. TOCS, vol. 31, no. 3, p. 8, 2013.
[30] “The design philosophy of the G-EXEC system - ScienceDirect.” [Online]. Available:

https://www.sciencedirect.com/science/article/pii/0098300476900649. [Accessed: 14-Jun-
2018].

[31] G. DeCandia et al., “Dynamo: amazon’s highly available key-value store,” in ACM SIGOPS
operating systems review, 2007, vol. 41, pp. 205–220.

[32] F. Chang et al., “Bigtable: A distributed storage system for structured data,” ACM Trans.
Comput. Syst. TOCS, vol. 26, no. 2, p. 4, 2008.

[33] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM
SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, 2010.

[34] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time Series Management Systems: A Survey,”
IEEE Trans. Knowl. Data Eng., vol. 29, no. 11, pp. 2581–2600, 2017.

[35] E. Levy and A. Silberschatz, “Distributed File Systems: Concepts and Examples,” ACM
Comput Surv, vol. 22, no. 4, pp. 321–374, Dec. 1990.

[36] S. Androutsellis-theotokis, A Survey of Peer-to-Peer File Sharing Technologies. 2002.
[37] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A survey of peer-to-peer

storage techniques for distributed file systems,” in International Conference on Information
Technology: Coding and Computing (ITCC’05) - Volume II, 2005, vol. 2, pp. 205-213 Vol. 2.

[38] R. B. Ross, R. Thakur, and others, “PVFS: A parallel file system for Linux clusters,” in
Proceedings of the 4th annual Linux showcase and conference, 2000, pp. 391–430.

[39] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A read/write peer-to-peer file
system,” ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 31–44, 2002.

http://www.melodic.cloud/

www.melodic.cloud 56

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

[40] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in scientific cloud
workflows,” Future Gener. Comp Syst, vol. 26, no. 8, pp. 1200–1214, 2010.

[41] M. Ebrahimi, A. Mohan, A. Kashlev, and S. Lu, “BDAP: A Big Data Placement Strategy for
Cloud-Based Scientific Workflows,” in BigDataService, 2015, pp. 105–114.

[42] Q. Xu, Z. Xu, and T. Wang, “A Data-Placement Strategy Based on Genetic Algorithm in Cloud
Computing,” Int. J. Intell. Sci., vol. 5, no. 3, 2015.

[43] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John, “Data Partitioning Strategies for
Graph Workloads on Heterogeneous Clusters,” in SC, Austin, Texas, 2015, pp. 1–12.

[44] U. V. Catalyurek, K. Kaya, and B. Uçar, “Integrated data placement and task assignment for
scientific workflows in clouds,” in Proceedings of the Fourth International Workshop on
Data-intensive Distributed Computing, New York, NY, USA, 2011, pp. 45–54.

[45] Ü. Çatalyürek and C. Aykanat, “PaToH (partitioning tool for hypergraphs),” in Encyclopedia
of Parallel Computing, Springer, 2011, pp. 1479–1487.

[46] B. Yu and J. Pan, “Location-aware associated data placement for geo-distributed data-
intensive applications,” in 2015 IEEE Conference on Computer Communications (INFOCOM),
2015, pp. 603–611.

[47] J. Zhang, J. Chen, J. Luo, and A. Song, “Efficient Location-Aware Data Placement for Data-
Intensive Applications in Geo-distributed Scientific Data Centers,” Tsinghua Sci. Technol.,
vol. 21, no. 5, pp. 471–481, 2016.

[48] K. Lan, S. Fong, W. Song, A. V. Vasilakos, and R. C. Millham, “Self-Adaptive Pre-Processing
Methodology for Big Data Stream Mining in Internet of Things Environmental Sensor
Monitoring,” Symmetry, vol. 9, no. 10, p. 244, Oct. 2017.

[49] K. A. Kumar, A. Deshpande, and S. Khuller, “Data Placement and Replica Selection for
Improving Co-location in Distributed Environments,” CoRR, vol. abs/1302.4168, 2013.

[50] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan, “Volley: Automated
Data Placement for Geo-Distributed Cloud Services,” Microsoft Res., Apr. 2010.

[51] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An adaptive scheme for efficient multi-
cloud storage,” in High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, 2012, pp. 1–10.

[52] C.-H. Hsu, K. D. Slagter, and Y.-C. Chung, “Locality and loading aware virtual machine
mapping techniques for optimizing communications in MapReduce applications,” Future
Gener. Comput. Syst., vol. 53, pp. 43–54, Dec. 2015.

[53] J. Wang, Q. Xiao, J. Yin, and P. Shang, “DRAW: A New Data-gRouping-AWare Data Placement
Scheme for Data Intensive Applications With Interest Locality,” IEEE Trans. Magn., vol. 49,
no. 6, pp. 2514–2520, Jun. 2013.

[54] A. Quamar, K. A. Kumar, and A. Deshpande, “SWORD: Scalable Workload-aware Data
Placement for Transactional Workloads,” in Proceedings of the 16th International
Conference on Extending Database Technology, New York, NY, USA, 2013, pp. 430–441.

[55] A. Rafique, D. V. Landuyt, B. Lagaisse, and W. Joosen, “Policy-Driven Data Management
Middleware for Multi-cloud Storage in Multi-tenant SaaS,” in 2015 IEEE/ACM 2nd
International Symposium on Big Data Computing (BDC), 2015, pp. 78–84.

[56] Y. Verginadis, I. Patiniotakis, C. Halaris, G. Mentzas, K. Kritikos, and K. Jeffery, “D2.4
Metadata Schema.” The Melodic H2020 Project Deliverable D2.4, 2017.

http://www.melodic.cloud/

www.melodic.cloud 57

Editor(s):
Feroz Zahid

Deliverable reference:
D2.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

[57] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming. Elsevier, 2006.
[58] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[59] C. L. Philip Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and

technologies: A survey on Big Data,” Inf. Sci., vol. 275, no. Supplement C, pp. 314–347, Aug.
2014.

[60] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reliable, Memory Speed
Storage for Cluster Computing Frameworks,” in Proceedings of the ACM Symposium on
Cloud Computing, New York, NY, USA, 2014, pp. 6:1–6:15.

[61] T. Dreibholz, “NetPerfMeter: A Network Performance Metering Tool,” Multipath TCP Blog,
Sep. 2015.

[62] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “Evaluation of A New Multipath
Congestion Control Scheme using the NetPerfMeter Tool-Chain,” in Proceedings of the 19th
IEEE International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Hvar, Dalmacija/Croatia, 2011, pp. 1–6.

[63] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J ACM, vol. 23, no. 1, pp. 31–42,
Jan. 1976.

[64] “A graph distance metric combining maximum common subgraph and minimum common
supergraph - ScienceDirect.” [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167865501000174. [Accessed: 18-Jun-
2018].

[65] M. Pelillo, “Matching free trees, maximal cliques, and monotone game dynamics,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 11, pp. 1535–1541, Nov. 2002.

[66] D. Koutra, A. Parikh, A. Ramdas, and J. Xiang, “Algorithms for Graph Similarity and
Subgraph Matching,” p. 50.

[67] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief propagation and its
generalizations,” Explor. Artif. Intell. New Millenn., vol. 8, pp. 236–239, 2003.

[68] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: a versatile graph matching
algorithm and its application to schema matching,” in Proceedings 18th International
Conference on Data Engineering, 2002, pp. 117–128.

[69] G. Jeh and J. Widom, “SimRank: A Measure of Structural-context Similarity,” in Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 2002, pp. 538–543.

[70] L. A. Zager and G. C. Verghese, “Graph similarity scoring and matching,” Appl. Math. Lett.,
vol. 21, no. 1, pp. 86–94, Jan. 2008.

http://www.melodic.cloud/

