

www.melodic.cloud

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

\ Title:

Metadata Schema

Abstract:

This document introduces the initial definition of a
vocabulary entitled Melodic Metadata Schema. This Schema
aggregates a number of classes and properties that
correspond to concepts used for describing requirements,
constraints and offerings’ characteristics in multi-cloud
placement decisions. The description of such characteristics
will constitute the background of the Melodic mechanisms for
properly managing big data, optimising the placement of
processing jobs and controlling access requests in multi-
cloud environments. The Metadata Schema comprises the
Application Placement, Big Data and Context Aware Security
models that group a number of classes and properties to be
used for defining where a certain big data application should
be placed; what are the unique characteristics of the data
artefacts that needs to be processed; and what are the
contextual aspects that may be used for restricting the access
to the sensitive data.

This deliverable also discusses the envisioned ways that the
Metadata Schema can be used for extending the CAMEL
language. Concepts from this Schema potentially affect the
Requirement, Metric, Scalability, Location, Provider and
Security sub-models of CAMEL.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication
Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D2.4

Date:

02 November 2017

Responsible partner:

Institute of Communications
and Computer Systems

Editor(s):

Yiannis Verginadis

Author(s):

Yiannis Verginadis,
Ioannis Patiniotakis,
Christos Halaris,
Gregoris Mentzas,
Kyriakos Kritikos,
Keith Jeffery

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/d
eliverables/D2.4 Metadata
Schema.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

Ref. Ares(2017)6178881 - 18/12/2017

http://www.melodic.cloud/
http://www.melodic.cloud
http://www.melodic.cloud/deliverables/D2.4%20Metadata%20Schema.pdf
http://www.melodic.cloud/deliverables/D2.4%20Metadata%20Schema.pdf
http://www.melodic.cloud/deliverables/D2.4%20Metadata%20Schema.pdf

www.melodic.cloud 2

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Document

Period Covered M1-10

Deliverable No. D2.4

Deliverable Title Metadata Schema

Editor(s) Yiannis Verginadis

Author(s) Yiannis Verginadis, Ioannis Patiniotakis, Christos Halaris,
Gregoris Mentzas, Kyriakos Kritikos, Keith Jeffery

Reviewer(s) Pawel Gora, Keith Jeffery

Work Package No. 2

Work Package Title Architecture and Data Management

Lead Beneficiary ICCS

Distribution PU

Version 14.6

Draft/Final Final

Total No. of Pages 101 + One Appendix

http://www.melodic.cloud/

www.melodic.cloud 3

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table of Contents

Metadata Schema .. 1

1 Introduction ... 6

1.1 Scope of the Document ... 6

1.2 Structure of the Document ... 9

2 Summary of Vocabularies and Ontologies Related to Data-aware Multi-cloud Computing
 ………..10

3 Metadata Schema for Data-aware Multi-cloud Computing .. 16

3.1 Overview ... 16

3.2 Application Placement Model .. 18

 Application Placement Model Overview .. 18

 Application Placement Model Details ... 19

3.3 Big Data Model ..42

 Big Data Model Overview ..42

 Big Data Model Details .. 44

3.4 Context Aware Security model .. 83

 Context Aware Security model Overview .. 83

 Context Aware Security model Details ...84

4 CAMEL Updates based on Metadata Schema ..90

5 Conclusions.. 96

References ... 98

Appendix – Metadata Schema Serialization ... 102

http://www.melodic.cloud/

www.melodic.cloud 4

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

List of Figures

Figure 1: The class diagram of the CAMEL metamodel denoting the sub-models that may be
extended using the Metadata Schema ... 8

Figure 2: Part of the class diagram of the requirement package related to hardware, OS, image,
and provider requirements (Rossini et al., 2015) ... 10

Figure 3: Saloon Ontology (Quinton et al., 2012; Quinton et al., 2013) ... 11

Figure 4: DICE Metamodel for big data intensive applications ... 13

Figure 5: Data Domains from the CSA Big Data Taxonomy (Murthy et al., 2014) 14

Figure 6. PaaSword Context Aware Security Model Overview (Verginadis et al., 2016) 15

Figure 7: Melodic’s Metadata Schema Overview .. 16

Figure 8: Application Placement Model Overview ... 19

Figure 9: Application Placement Model’s UML Class Diagram (1/2) .. 40

Figure 10: Application Placement Model’s UML Class Diagram (2/2) ... 41

Figure 11: Big Data Model’s Overview Diagram (1/3) ..42

Figure 12: Big Data Model’s Overview Diagram (2/3) ... 43

Figure 13. Big Data Model’s Overview Diagram (3/3) .. 44

Figure 14: Big Data Model’s UML Class Diagram (1/5) ... 78

Figure 15: Big Data Model’s UML Class Diagram (2/5) ... 79

Figure 16: Big Data Model’s UML Class Diagram (3/5) ... 80

Figure 17: Big Data Model’s UML Class Diagram (4/5) ... 81

Figure 18: Big Data Model’s UML Class Diagram (5/5) ... 82

Figure 19: Security Context Element -Melodic Extensions .. 83

Figure 20: Permission - Melodic Extensions ..84

Figure 21: A snapshot of CAMEL focusing on its new concepts and extensions 92

Figure 22: CAMEL snippet showing how GPU capabilities and requirements can be specified 93

Figure 23: The transformation from Metadata Schema to CAMEL for Amazon AWS cloud
locations... 94

Figure 24: The bidirectional templating for metrics ... 95

http://www.melodic.cloud/

www.melodic.cloud 5

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

List of Tables

Table 1: Legend of the Overview and UML diagrams .. 18

Table 2: IaaS, PaaS, Provider Details .. 20

Table 3: Security Controls Details ... 34

Table 4: Big Data Aspects Details .. 45

Table 5: Data Location Details .. 52

Table 6: Data Management Details ... 55

Table 7: Data Domains Details .. 73

Table 8: Context Aware Security model Details .. 85

http://www.melodic.cloud/

www.melodic.cloud 6

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

1 Introduction

This document reports on the initial design of Melodic’s Metadata Schema for data-aware multi-
cloud computing. Its objective is to aid the data management, access control, and data-aware
application design for distributed and loosely-coupled multi-cloud applications. This objective is
addressed by introducing terminology and vocabulary aspects of metadata that will be mainly
used for extending the domain specific language (DSL), i.e. the Cloud Application Modelling and
Execution Language (CAMEL) (Kritikos et al., 2014; Rossini et al., 2015), that Melodic will use for
describing big-data applications, their requirements and the available offerings. We note that the
Melodic’s Metadata Schema provides a thesaurus structure that describes entities and their
interrelations. Specifically, the schema hierarchically structures, into a vocabulary, all the
concepts (represented as lexical terms) that are relevant for describing cloud application
requirements, big data aspects and characteristics (with respect to the input and output of these
applications) and the offered cloud infrastructure capabilities for discovering optimised multi-
clouds placement opportunities. Moreover, this Metadata Schema will encapsulate all the
necessary concepts for enabling the context-aware authorization functions that the Melodic
platform envisions to support.

1.1 Scope of the Document

One of the first decisions of the Melodic consortium was to use this vocabulary in order to extend
the Cloud Application Modelling and Execution Language (CAMEL) (Kritikos et al., 2014; Rossini et
al., 2015), developed in the frame of the PaaSage1 project. CAMEL enables the specification of
multiple aspects of multi-cloud applications (i.e., applications deployed across multiple private,
public, or hybrid cloud infrastructures), facilitating the optimised application placement and
adaptation over multiple cloud infrastructures. This approach follows the model-driven
engineering (MDE) paradigm (Frankel, 2003) that enables the modelling abstraction from the
implementation details of heterogeneous cloud services. This also enables the development of
appropriate mechanisms that allow both direct and programmatic manipulation of design and
runtime models in order to facilitate the efficient matchmaking between cloud applications’
requirements and the available multi-cloud offerings. Among others, CAMEL introduces or builds
on top of various sub-models in order to support the specification of cloud application
requirements (e.g. Hardware, OS & Image and Provider Requirements, Location requirements,
Security requirements, Scalability requirements/rules, Service Level Objectives (SLOs)). Based on
these sub-models an application developer is able to describe its application requirements that

1 https://paasage.ercim.eu/

http://www.melodic.cloud/
https://paasage.ercim.eu/

www.melodic.cloud 7

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

will drive the multi-cloud placement process (see for example List 1 that captures a part of a cloud
application specification in CAMEL that requires that the certain application should be placed
only on VMs located in Germany and with a number of cores between 8 and 32 and RAM between
4 and 8 MB). The main issue with the current status of CAMEL is that any concept (e.g. number of
cores, RAM, location etc.) that can be used in a requirement specification has been statically
predefined, while the process for extending such a vocabulary can be proven cumbersome. This
is an issue especially for the Melodic platform where the use of CAMEL should be accompanied
by the capability to provide data-awareness in the cloud application specifications. For example,
the optimal placement of a cloud application that performs batch processing over petabytes of
data, is likely to be different from the optimal placement of an application that conducts real-time
processing over data streams with a velocity of several gigabytes per second). Thus, big data
related requirements need to be supported by an extended CAMEL by incorporating a number of
additional vocabulary terms representing concepts according to the Melodic adopter’s needs (e.g.
VM requirements based on GPU offerings). Melodic’s Metadata Schema will constitute the
medium for modelling any concept necessary for expanding the CAMEL’s expressivity with
respect to cloud application requirements specifications and offerings descriptions, respectively
(i.e. CAMEL’s requirement and provider sub-models).

requirement model ScalarmRequirement {

 quantitative hardware CoreIntensive {

 core: 8..32

 ram: 4096..8192

 }

 os Ubuntu {os: 'Ubuntu' 64os}

 location requirement GermanyReq {

 locations [ScalarmLocation.DE]

 }

List 1: Requirement Model Example in
CAMEL

location model ScalarmLocation {

 region EU {

 name: 'Europe'

 }

 country DE {

 name: 'Germany'

 parent regions [ScalarmLocation.EU]

 }

 }

List 2: Location Model Example in CAMEL

Furthermore, this Metadata Schema will affect and extend the available concepts representing
raw metrics (i.e. attributes measurable whose values can be obtained from system sensors; e.g.
current CPU usage), along with the variables (i.e. attributes for which any of the solver
mechanisms (Zahid et al., 2017) are the sensors that assign possible values) used for describing a
utility function (capturing preferences) or declaring constraints, thus bounding the application
placement problem. In Figure 1, we denote with red circles the classes of the CAMEL metamodel

http://www.melodic.cloud/

www.melodic.cloud 8

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

that may be extended using the Metadata Schema vocabulary. Based on this, important
mechanisms of the Melodic Upperware, as they were mentioned in the initial system
specification of the Melodic multi-cloud middleware platform mechanisms (Zahid et al., 2017), will
be affected by the concepts modelled in the Metadata Schema. Specifically, the Solvers may use
several of the classes of the Metadata Schema as these will be introduced in the utility function
to be resolved, while the Metasolver or some other software components can use them as criteria
for comparing local optimal solutions coming from the solvers. In addition, these classes can be
used by the adapter as criteria for evaluating a new deployment plan that adapts a current
topology. Thus the Schema should be amendable in order to allow for future incorporation of
needs of Melodic adopters. For this purpose, we note that the Metadata Schema reported in this
document constitutes only a first iteration and will be adjusted according to the needs of each of
the Melodic pilot partners using a dedicated editor developed by the Melodic project.

Figure 1: The class diagram of the CAMEL metamodel denoting the sub-models that may be
extended using the Metadata Schema

Summarizing the introduction of Melodic’s Metadata Schema brings the following advantages:

 Formally and graphically declare, in a vocabulary, all the necessary terms that describe
concepts to be used for comparing deployment alternatives

 Add data aspects in CAMEL without hard coding any concepts

http://www.melodic.cloud/

www.melodic.cloud 9

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Provide a unified way for stating the vocabulary terms’ importance per each case (e.g.
Meta-Solver or adapter)

 Add concepts to be used by the Melodic’s authorization engine
 Support model extensibility by easily incorporating other vocabularies
 Support model reusability

o e.g. the same location model should be used for any application modelled in the
same organization (e.g. see List 2)

1.2 Structure of the Document

This deliverable begins with an introductory chapter (Chapter 1) that discusses the main idea
around the Metadata Schema along with its role in the Melodic platform. Chapter 2 aggregates
and discusses all the relevant vocabularies or ontologies that mention concepts related to data-
aware multi-cloud computing and notes which aspects of them are re-used or extended in terms
of the Melodic Metadata Schema. In Chapter 3, we present the main aspects and details of the first
iteration of the Melodic Metadata Schema that includes the Application Placement, Big Data-
Aware and Context-Aware Security models. In Chapter 4, we sketch the anticipated CAMEL
updates based on this Metadata Schema. Last, in Chapter 5, we conclude the discussion on this
Schema. We note that an example of the XMI serialization of the current version of the Schema is
provided in Appendix I.

http://www.melodic.cloud/

www.melodic.cloud 10

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

2 Summary of Vocabularies and Ontologies Related to Data-
aware Multi-cloud Computing

In this chapter, we discuss relevant vocabularies and ontologies already used in CAMEL or in
other big data related projects. We focus only on efforts that introduce relevant concepts or
hierarchies, valuable for constructing a generic schema that may serve as a background
vocabulary to be used for defining the critical concepts that will drive the placement and
reconfiguration of big data applications over multi-cloud resources.

Figure 2: Part of the class diagram of the requirement package related to hardware, OS, image,
and provider requirements (Rossini et al., 2015)

From a focused state of the art analysis, we have detected a number of efforts that introduce
definitions and taxonomies of relevant concepts. For example, the work of Ranjan et al. (2015)
presents an overview of cloud resource orchestration programming issues, where several IaaS
and PaaS concepts, but also data persistence and distributed ML appliances, have been defined.
In another interesting work (Höfer & Karagiannis, 2011) that analyses the available cloud
computing services and identifies some of their main characteristics, the authors propose a tree-
structured taxonomy. Its purpose is to enable quick classifications and comparisons among
different cloud computing services by starting from and elaborating on the IaaS/PaaS/SaaS
classification. Youseff et al. (2008) proposed a unified ontology of cloud computing, defining
concepts distinguished in five layers, with three constituents to the cloud infrastructure layer.
This work mainly discusses the inter-dependency and composability between the different layers
in the cloud (i.e. SaaS, PaaS, IaaS, Data-Storage as a Service (DaaS), and Communication as a

http://www.melodic.cloud/

www.melodic.cloud 11

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Service (CaaS)). A similar approach is also introduced (Kang & Sim, 2011) that presents a search
engine for cloud computing system and introduces the CO-1 and CO-2 ontologies to semantically
define the relationship among cloud services. It is used for determining the similarity among
cloud services using three types of reasoning (i.e. concept similarity reasoning, object property
similarity reasoning, and datatype property similarity reasoning). Based on these works we re-
use and extend some of the definitions provided, as detailed in Chapter 3.

Figure 3: Saloon Ontology (Quinton et al., 2012; Quinton et al., 2013)

In the rest of this chapter, we focus on research efforts that have a bigger impact on the Metadata
Schema. We start with CAMEL that, as already mentioned, will be reused and extended for the

http://www.melodic.cloud/

www.melodic.cloud 12

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Melodic purposes. Nevertheless, CAMEL already includes a number of concepts (through re-used
domain specific languages (DSLs) or new sub-models) that should constitute the starting point for
designing the Metadata Schema. CAMEL is a core modelling and execution language that enables
the specification of multiple aspects of cross-cloud applications. One of the most relevant sub-
models of CAMEL refers to the requirement package of the CAMEL metamodel, which has been
developed to enable the specification of requirements for cross-cloud applications (Rossini et al.,
2015). As can be seen in Figure 2, a number of concepts are introduced as hardware, OS, provider
or location requirements. These concepts are also introduced in the Application Placement model
of the Metadata Schema.

A second part of CAMEL that fused the Metadata Schema initial iteration with important concepts,
is the provider package. This package is based on the Saloon ontology (Quinton et al., 2012;
Quinton et al., 2013). Saloon (Figure 3) is a tool-supported DSL for specifying the features of cloud
providers and matching them with requirements by leveraging feature models (Benavides et al.,
2010) and ontologies (Gruber, 1993).

Besides the CAMEL’s Requirement and Provider model, from where the Metadata Schema re-uses
(and enriches) concepts, the following parts of CAMEL will be fused with concepts from the
Metadata Schema:

 the scalability and metric packages, which are based on the Scalability Rule Language
(SRL) (Kritikos et al., 2014) where for example instances of the class Metric will be based on
the Metadata concepts

 the location package, which is not based on existing DSLs and has been developed to
enable the specification of locations where the hierarchy of physical, network and cloud
locations from the Metadata Schema can be used for extending it (Rossini et al., 2015)

 the security package, which is also not based on existing DSLs and has been developed to
enable the specification of security aspects of cross-cloud applications. (Kritikos &
Massonet, 2016)

Another relevant effort is the DICE2 project that focuses on quality-driven development of big data
applications. DICE offers a UML profile and tools that assist software designers reasoning about
reliability, safety and efficiency of data-intensive applications. The DICE methodology covers
quality assessment, architecture enhancement, continuous testing and agile delivery, relying on
principles of the emerging DevOps paradigm (Gómez et al., 2016). Specifically, it has introduced a
Metamodel (Figure 4) for describing aspects of big data intensive applications that was built on
top of:

2 http://www.dice-h2020.eu/

http://www.melodic.cloud/
http://www.dice-h2020.eu/

www.melodic.cloud 13

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 MARTE (Modelling and Analysis of Real-Time and Embedded systems) model,
which provides support for the specification, design, quantitative evaluation, and
verification and validation of software systems (OMG, 2011).

 DAM (Dependability Analysis and Modelling Profile) model, which provides support
for the dependability modelling and analysis of software systems (Bernardi et al.,
2013).

Figure 4: DICE Metamodel for big data intensive applications

With respect to reusing concepts introduced by DICE in the Melodic Metadata Schema, several
classes and properties are considered relevant (e.g. computation and storage nodes, computation
and processing types etc.). Nevertheless, there is no direct support for expressing data location
and big data related properties such as volume, transfer rates or even aspects of the operations
that transfer data between cloud resources. Such concepts are covered in the Melodic metadata
Schema (discussed in Chapter 3).

An additional relevant work (Kleppmann, 2017) tried to aggregate the “Big ideas behind reliable,
scalable, and maintainable systems” focusing on data-intensive applications with the aim to
enhance the understanding of the diverse and fast-changing landscape of technologies for
processing and storing big data. Several details on map-reduce (Chu et. Al, 2007) and graph-like

http://www.melodic.cloud/

www.melodic.cloud 14

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

data models aspects, the distribution and replication of data techniques (for high availability,
scalability, latency) and specifics on data partitioning, were identified as relevant and reusable
for the Metadata Schema. Moreover, the relevant attributes and characteristics (e.g. throughput)
depending on the data processing type (e.g. batch processing) were also considered. Although this
work did not introduce any distinct taxonomies, the definitions and analyses of the major
characteristics and challenges concerning the data-intensive applications were very beneficial
with respect to a number of definitions used for the Melodic vocabulary.

The work on the Metadata Schema considered or directly reused concepts and hierarchies
introduced by the Cloud Security Alliance (CSA) with respect to a big data taxonomy (Murthy et
al., 2014). That specific work, proposed a six-dimensional taxonomy with the aim of assisting
decision makers to navigate through the plethora of choices in compute and storage
infrastructures as well as data analytics methods, and security and privacy frameworks (Murthy
et al., 2014). For example, in the Metadata Schema we reused and slightly extended the data
domains taxonomy introduced by CSA which can be found in Figure 5. In addition, we considered
latency requirements (e.g. (near) real-time, batch), compute (e.g. batch, streaming) and storage
infrastructures (e.g. SQL, NoSQL, NewSQL) along with processing complexity aspects.

Figure 5: Data Domains from the CSA Big Data Taxonomy (Murthy et al., 2014)

Another important ontology that we have considered for the Metadata Schema is the Context
Aware Security Model of the PaaSword project (Verginadis et al., 2016; Veloudis et al., 2016). In
Figure 6, the reader may find an overview of the Context Aware Security model as it has been

http://www.melodic.cloud/

www.melodic.cloud 15

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

described in the Paasword project (Verginadis et al., 2016). This semantic model is reused in terms
of a hierarchical structure of classes and properties that provides a complete set of concepts
introduced into the Melodic vocabulary in order to address the description of context associated
to processing or access control decisions.

Figure 6. PaaSword Context Aware Security Model Overview (Verginadis et al., 2016)

http://www.melodic.cloud/

www.melodic.cloud 16

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

3 Metadata Schema for Data-aware Multi-cloud Computing

3.1 Overview

In this chapter we introduce the Melodic Metadata Schema that comprises the following model
facets:

 Application Placement Model
 Big Data Model
 Context Aware Security model

The several different facets of the Melodic Metadata Schema are analysed below, while a bird’s
eye view of the schema can be found in Figure 7. For each of the facets their main top-level
concepts are also depicted while explained in the sections below. For the representation of a
comprehensible overview of the Melodic Metadata Schema, we used a free, HTML5-compliant
mind mapping webapp with cloud support. We note that the detailed mind map for an easier
walkthrough of the Schema’s main aspects can be found here:
http://melodic.cloud/assets/images/MELODIC_Model_vFinal.png

Figure 7: Melodic’s Metadata Schema Overview

The first model facet of the Schema is the Application Placement Model, which provides a
hierarchical structure over a number of concepts and properties that can be used either for
describing cloud application placement requirements, constraints and preferences, or for

http://www.melodic.cloud/
http://melodic.cloud/assets/images/MELODIC_Model_vFinal.png

www.melodic.cloud 17

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

describing the available cloud offerings, mainly at the IaaS and PaaS levels. This includes
concepts that reveal processing (e.g. CPU), storage (e.g. Capacity), network (e.g. Bandwidth) as well
as hypervisor characteristics or capabilities at IaaS level. At a PaaS level, we include concepts that
characterise the available or required platform type, environment (e.g. OS) as well as the security
controls (e.g. Data Sanitization) that it currently supports. As mentioned in the previous chapter,
for deriving this set of classes and properties of this facet, the main vocabularies and/or
ontologies that we reused and extended were the Saloon ontology (Quinton et al., 2012; Quinton et
al., 2013), and CAMEL (Rossini et al., 2015).

The second model facet of the Schema is the Big Data Model for multi-cloud management. This
model provides a hierarchical structure over a number of concepts and properties that can be
used for describing characteristics of data to be processed, that should be considered during
application placement or cloud reconfiguration decisions. As mentioned in Chapter 2, for deriving
this model facet we mainly built on and extended several vocabularies like: DICE (Gómez et al.,
2016), the work of (Kleppmann, 2017) and the CSA Big Data Taxonomy (Murthy et al., 2014).
Nevertheless, to the best of our knowledge, this is the first systematic effort that tries to capture
all the different data-related aspects that are important for data intensive applications. Thus, this
model facet reveals big data aspects (e.g. Volume, Velocity, Quality etc.), data management details
(e.g. Acquisition, Data Storage, Processing etc.), data location and timestamp along with the
relevant data domains (e.g. Finance, Social Networking etc.), that characterize the big data to be
processed in multi-cloud environments.

The last model facet of the Schema is the Context Aware Security model. This model aggregates
a number of concepts and properties for describing and enforcing context-aware access control
policies. This part corresponds to the Context-aware model developed by ICCS in terms of the
PaaSword project (Verginadis et al., 2016; Veloudis et al., 2016), extending it with a number of
concepts that consider the infrastructural requirements and available offerings in the Melodic
application scenarios. Based on the security context elements or the context patterns described,
the Melodic consortium will implement an authorization engine that will enhance the access
control to sensitive big data, managed by Melodic-enabled multi-cloud applications.

We note that the Melodic’s Metadata Schema provides a thesaurus structure that describes
entities and their interrelations. As the work with the Melodic Upperware progresses, a need
might be identified to specifically define a set of valid values (terms) per each concept introduced,
to be injected in the CAMEL sub-models. In this case, these allowed values will be included in the
Metadata Schema as some class instances (to be introduced by a dedicated editor). These
instances may bound the CAMEL web-editor to the valid values that the Melodic adopter would
wish to restrict. It is also important to mention that this document reports on the first iteration of
the Melodic’s Metadata Schema, for which a dedicated editor will be developed as part of the
Melodic project so the Schema can be easily updated by any of the Melodic adopters.

http://www.melodic.cloud/

www.melodic.cloud 18

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

In Table 1, we provide the legend for the Overview and the UML Class diagrams that are used in
the following sub-sections.

Table 1: Legend of the Overview and UML diagrams

 Class denoting a concept defined in the Melodic Metadata
Schema. It might be a subclass of another Class. (Appears in
Overview diagrams)

 Captures a subClassOf relation. The arrowhead indicates the
parent class. (Appears in Overview & UML diagrams)

Class defined in the Melodic Metadata Schema. It might be a
subclass of another class and it may include two types of
properties: i) data properties that have as range a datatype
and ii) object properties that have as range another class of
the Melodic Metadata. (Appears in UML class diagrams)

Property

Captures an object property relation between two classes
(domain and range classes). The arrowhead indicates the
range class. (Appears in Overview & UML diagrams)

3.2 Application Placement Model

 Application Placement Model Overview

In Figure 8, an overview of the core classes and sub-classes of the Application Placement Model
is provided.

http://www.melodic.cloud/

www.melodic.cloud 19

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 8: Application Placement Model Overview

 Application Placement Model Details

The Application Placement model refers to the following top-level concepts:

 IaaS

• Processing

• Storage

• Network

• Cloud

• Hypervisor

 Provider

 PaaS

• Platform

• Application Server

http://www.melodic.cloud/

www.melodic.cloud 20

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

• Environment

• PaaS Configuration

• Security Controls

For each of these top-level core classes, we provide their respective subclasses, their main
properties along with their descriptions. This includes the following details table where each
concept is explained. In Table 2 and Table 3 the details of the Application Placement model are
presented. We used two separate tables for improving the involved concepts readability.

Table 2: IaaS, PaaS, Provider Details

Class Taxonomy Levels Properties Description

IaaS This class encapsulates all the
attributes related to cloud
infrastructural resources that
are required and offered for
deploying Melodic-enabled
applications. It reuses and
extends the requirement model
of CAMEL (Rossini et al., 2015).

 refersToVM This property clarifies that a
certain IaaS resource (required
or offered) is a virtual machine.

 refersToRack This property clarifies that a
certain IaaS resource (required
or offered) corresponds to a
specific rack of a datacentre.

 Supports
RequestsPer
Second

This property may associate an
IaaS resource with an integer
that expresses the volume of
requests that it can support.

 hasVMCost This property associates the
IaaS class with a value
expressed in floating-point
format (float) denoting the
usage cost of a certain
virtualised resource.

 hasBare
MetalCost

This property associates the
IaaS class with a value
expressed in floating-point
format (float) denoting the

http://www.melodic.cloud/

www.melodic.cloud 21

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

usage cost of a certain bare
metal resource.

 has
Availability

This property may associate an
IaaS resource with a float that
expresses the expected uptime
of the resource.

 hasCloud
Location

This object property associates
the IaaS class with the Cloud
Location Class (of the Big Data
Model) for expressing the
network or physical location of
the virtualised resource.

 hasCloud
Provider

This object property associates
the IaaS class with the Provider
Class (of the Application
Placement Model) for
expressing characteristics and
identity of the resource
provider.

 Processing This class involves any
infrastructural feature bound to
the processing capability of
virtualised resources.

 RAM This class corresponds to the
memory capabilities of a
virtualised resource.

 hasFree
Memory

This property associates the
RAM class with a value
expressed in double-precision
floating-point format (double)
that denotes the amount of
unused memory currently
available by the virtualised
resource.

 hasUsed
Memory

This property associates the
RAM class with a value
expressed in double format that
denotes the amount of used
memory in the virtualised
resource.

http://www.melodic.cloud/

www.melodic.cloud 22

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 has
Manufacturer

This property associates the
RAM class with a string that
denotes the producer of the
hardware.

 Total
Memory

 This subclass captures the
desired or offered value of the
virtualised storage dedicated
for frequent program
instructions.

 hasMin This property associates the
Total Memory class with an
integer that represents the least
amount of memory capacity
required or offered.

 hasMax This property associates the
Total Memory class with an
integer that represents the
largest amount of memory
capacity required or offered.

 hasUnit This property associates the
Total Memory class with a
string that represents the
measurement module of the
memory capacity.

 GPU This class refers to IaaS
resources that use graphics
processing units (GPUs), i.e.
specialized electronic circuits
initially designed to rapidly
manipulate and alter memory
to accelerate the creation of
images in a frame buffer.

 hasStart
UsageDate

This property denotes the date
when a certain GPU began to
operate. It can be used as an
attribute that reveals how new
the processing units used by a
certain IaaS resource are.

http://www.melodic.cloud/

www.melodic.cloud 23

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 has
Manufacturer

This property expresses as a
string the manufacturer of the
processing unit.

 hasGPU
Utilization

This property associates the
GPU class with a double that
represents the current
percentage of use for a certain
processing unit.

 hasMFLOPs This property associates the
GPU class with an integer that
represents the capability for
mega floating-point operations
per second, which is a common
measure of processing speed.

 hasPEperCUs This property expresses with
an integer the number of
processing elements per
compute units that a certain
GPU offers.

 hasWarpSize This property expresses as an
integer the number of threads
supported to coalesce memory
access and instruction
dispatch.

 hasMax
Concurrent
Workgroups

This property denotes an
integer that represents the
maximum work-groups that
may be simultaneously
executed on compute units
supported by a certain GPU.

 hasMin
Numberof
Cores

This property denotes an
integer that captures the
minimum number of GPU cores
available or requested.

 hasMax
Numberof
Cores

This property denotes an
integer that captures the
maximum number of GPU
cores available or requested.

 hasClock
Speed

This property captures the GPU
operating speed expressed in

http://www.melodic.cloud/

www.melodic.cloud 24

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

cycles per second. It associates
the GPU class with an integer
value.

 CPU This class refers to IaaS
resources that use Central
Processing Units (CPUs) for
carrying out software
instructions that specify the
basic arithmetic, logical,
control and input/output (I/O)
operations.

 hasCPU
Utilization

This property associates the
CPU class with a double that
represents the current
percentage of use for a certain
processing unit.

 hasMIPs This property associates the
CPU class with an integer that
expresses million instructions
per second as a measure of
processing speed supported by
a certain IaaS resource.

 hasMFLOPs This property associates the
CPU class with an integer that
represents the capability for
mega floating-point operations
per second.

 has
Manufacturer

This property expresses as a
string the manufacturer of the
certain processing unit.

 hasMin
Numberof
Cores

This property denotes an
integer that captures the
minimum number of CPU cores
available or requested.

 hasMax
Numberof
Cores

This property denotes an
integer that captures the
maximum number of CPU
cores available or requested.

 hasFrequency This property captures the CPU
performance as it specifies the

http://www.melodic.cloud/

www.melodic.cloud 25

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

operating frequency of the CPU
cores, expressed in cycles per
second. It associates the CPU
class with an integer value.

 Storage This class describes the
ephemeral or persistent storing
capabilities that are required or
offered by a certain IaaS
resource.

 hasWriteCost This property associates the
Storage class with a float that
represents the cost for
accumulating data artefacts in
a certain IaaS resource.

 hasReadCost This property associates the
Storage class with a float that
represents the cost for
retrieving data artefacts from a
certain IaaS resource.

 hasDiskUsage This property denotes a float
that represents the percentage
of storing space used for
persisting data artefacts.

 hasWrite
Throughput

This property associates the
Storage class with a float that
represents the volume of data
artefacts that can be stored in a
certain IaaS resource.

 hasRead
Throughput

This property associates the
Storage class with a float that
represents the volume of data
artefacts that can be retrieved a
certain IaaS resource.

 hasStorage
Location

This object property associates
the Storage class with the Cloud
Location class of the Big Data
Model for registering the
location of an IaaS resource
with storing capabilities.

http://www.melodic.cloud/

www.melodic.cloud 26

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasStorage
CostFunction

This property associates the
Storage class with a string that
refers to a function that
provides an accurate
calculation of the expected cost
for storing data artefacts.

 isEnergy
Efficient

This property associates the
Storage class with a boolean
value that reveals the level of
efficacy with respect to how
much energy is needed for
exploiting the storage
capabilities of a resource.

 hasSolid
StateDrive

This property associates the
Storage class with a boolean
value that denotes whether or
not a certain resource that
provides storage capabilities, is
using a type of non-volatile
storage that is able to store and
retrieve data artefacts using
only electronic circuits
(without any involvement of
moving mechanical parts).
Based on this property a system
may infer the energy efficiency
and throughputs supported by a
certain resource.

 isPersistent This property associates the
Storage class with a boolean
value that states the ephemeral
or persistent nature of storing
capabilities offered by a certain
IaaS resource.

 Capacity This subclass is used for stating
the size of storage space
requested or offered by a
certain IaaS resource.

 hasMin This property denotes an
integer that captures the

http://www.melodic.cloud/

www.melodic.cloud 27

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

minimum size of storage
available or requested.

 hasMax This property denotes an
integer that captures the
maximum size of storage
available or requested.

 hasUnit This property refers to a string
that states the measurement
unit used for declaring the
storage capacity of a certain
resource (e.g. GBs).

 On-Instance
Storage

 This subclass refers to
ephemeral storage capabilities
requested or offered by a
virtualised resource.
Essentially the storage
capabilities described with this
class last until the certain
resource is decommissioned.

 Off-Instance
Storage

 This subclass refers to
persistent storage capabilities
requested or offered by a
virtualised resource.

 Object
Storage

 This subclass refers to a type of
persistent storage where data
are stored as objects
encapsulating the data
artefacts, their metadata and a
globally unique identifier.

 Block
Storage

 This subclass refers to a type of
persistent storage where data
are stored into evenly sized
blocks, each with its own
unique address.

 Network This class refers to the network
related aspects that bound the
operation of an offered or a
requested IaaS resource.

 has
Bandwidth

This property associates the
Network class with a float value

http://www.melodic.cloud/

www.melodic.cloud 28

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

that states the maximum
throughput of a logical or
physical communication path.
It corresponds to the number of
bits that can be conveyed per
unit of time.

 hasSubnet This property corresponds to a
string value that represent the
subnet of an IaaS resource.

 has
Availability
Zone

This object property associates
the Network class to the
Availability Zone class of the
Big Data Model for denoting
isolated locations used to make
network resources available.

 hasNetwork
Cost

This property denotes a float
value that expresses the cost
for exploiting the network
resources.

 hasIPType This property is used to express
the required or offered type of
internet protocol with respect
to its access availability. It
associates the Network class
with a string.

 hasPublicIP This property corresponds to a
string value that represents the
public IP of an IaaS resource.

 hasPrivateIP This property corresponds to a
string value that represents the
private IP of an IaaS resource.

 hasVersion This property is used to express
the required or offered IP
version (e.g. IPv4, IPv6). It
associates the Network class
with a string.

 Cloud This class groups the
characteristics of virtualised
resources for easier reference
and use.

http://www.melodic.cloud/

www.melodic.cloud 29

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasName This property corresponds to a
string value that denotes the
name of a cloud offering for
easy referencing.

 hasID This property corresponds to an
integer that denotes the
identifier of a cloud offering for
easy referencing.

 isDedicated This property associates the
Cloud class with a boolean
value that denotes whether or
not the host of the offered
resource is dedicated to only
one user or more.

 isPublic This property associates the
Cloud class with a boolean
value that denotes whether or
not the offered or requested
cloud resource is public.

 VM Flavour This subclass denotes virtual
hardware templates required or
offered. This indirectly defines
important IaaS level values (e.g.
RAM, disk, number of cores etc.)
of the offered or required IaaS
resources.

 hasName This property corresponds to a
string value that denotes the
name of a VM flavour for easy
referencing.

 hasCPU This object property associates
the Cloud class to the CPU class
of the Application Placement
model for denoting the CPU
power of the IaaS resource.

 hasGPU This object property associates
the Cloud class to the GPU class
of the Application Placement
model for denoting the GPU
power of the IaaS resource.

http://www.melodic.cloud/

www.melodic.cloud 30

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasRAM This object property associates
the Cloud class to the RAM
class of the Application
Placement model for denoting
the available RAM of the IaaS
resource.

 hasStorage This object property associates
the Cloud class to the CPU class
of the Application Placement
model for denoting the storage
capability of the IaaS resource.

 Hypervisor This class is used to express the
characteristics of the used
hypervisor software, firmware
or hardware for creating and
commissioning virtual
machines.

 Supports
Virtualization
Format

This property associates the
Hypervisor class with a string
that denotes the format used
for describing a virtual
machine (e.g. Open
Virtualization Format).

 Bare-Metal This subclass captures the
characteristics of hypervisors
that operate directly on the
hardware for hosting guest
operating systems.

 Hosted This subclass captures the
characteristics of hypervisors
that operate within a host OS
for hosting guest operating
systems inside of it.

Provider This class captures the
characteristics of IaaS or PaaS
providers and extends the
hierarchy and concepts used in
the Saloon ontology (Quinton et
al., 2012; Quinton et al., 2013)

 offersIaaS This object property associates
the Provider class with the IaaS

http://www.melodic.cloud/

www.melodic.cloud 31

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

class of the Application
Placement model for
describing its infrastructural
offerings.

 offersPaaS This object property associates
the Provider class with the
PaaS class of the Application
Placement model for
describing its platform level
offerings.

 hasProvider
Reputation

This property refers to a string
that denotes how appreciated is
a certain provider based on its
customers satisfaction.

 hasGreen
Footprint

This property refers to a
boolean value that denotes
whether or not the provider’s
offerings have the minimum
possible impact on the
environment.

PaaS This class encapsulates all the
attributes related to platform
level cloud resources that are
required and offered for
deploying Melodic-enabled
applications.

 isOferedby
Provider

This object property associates
the PaaS class with the
Provider Class (of the
Application Placement Model)
for expressing characteristics
and identity of the resource
provider.

 usesCloud This object property associates
the PaaS class with the Cloud
Class (of the Application
Placement Model) for denoting
with one reference the
characteristics of the
underlying IaaS level resources
used for offering PaaS services.

http://www.melodic.cloud/

www.melodic.cloud 32

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasCloud
Location

This object property associates
the PaaS class with the Cloud
Location Class (of the Big Data
Model) for expressing the
network or physical location of
the virtualised resource.

 hasCost
Function

This property associates the
PaaS class with a string that
refers to a function that
provides an accurate
calculation of the expected cost
for using platform level
services.

 has
Availability

This property may associate a
PaaS resource with a float that
expresses the expected uptime
of the platform level resource.

 hasPricing
Type

This Property refers to the
different pricing per use
schemes that each provider
may offer regarding platform
level cloud resources.

 Platform This subclass is used to register
and select any one of the
different available PaaS
offerings depending on the
scope of their offered services
(e.g. OpenShift, CloudFoundry
etc.).

 Environment This subclass encapsulates all
the aspects that identify the
platform level cloud
environment (Höfer &
Karagiannis , 2011).

 hasOS This property describes the
offered or requested operating
system (e.g. UbuntuServer,
CentOs). It associates the
Environment class with a
string.

http://www.melodic.cloud/

www.melodic.cloud 33

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Framework This subclass describes the
offered or requested web
framework for rapid
development (e.g. PLAY,
DJANGO)

 Image This subclass describes any
pre-installed cloud image
available for initializing an IaaS
resource.

 hasImageId This property refers to an
integer for referencing
available cloud images.

 hasLanguage
Support

This property refers to the
offered or requested
development language support
which implies certain related
middleware (e.g. Java runtime,
.NET runtime etc.). It associates
the Environment class with a
string.

 Application
Server

 This subclass accumulates all
the necessary application
server that might be requested
(e.g. Apache Tomcat 9.0.x, Jetty
9.3.3 etc.).

 PaaS
Configuration

 This subclass is used in order to
register all the configuration
details needed for using
platform level cloud services.

 hasVersion This property refers to a string
for denoting the version of a
certain configuration.

 hasAPI This property refers to a string
for denoting the API that can be
used for performing application
management (e.g. upload
applications to the cloud,
start/stop, monitor application
etc.)

http://www.melodic.cloud/

www.melodic.cloud 34

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasDownload This property refers to a string
for denoting services needed to
be downloaded and installed
before hosting a cloud
application.

Table 3 is used for describing further details of the Application Placement model with respect to
security controls offered or required as a service. This separate table is used for better readability
since the Security Control class involves a bigger number of subclass levels than the rest of the
top-level concepts of the Application Placement model.

Table 3: Security Controls Details

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

Security
Controls

 This is a subclass of the PaaS
class and refers to all the
possible security enforcement
mechanisms that may be
offered or required as a service
for protecting the operation of
hosted cloud applications. All
its subclasses refer to specific
security controls that have
been classified based on the
latest version of the Cloud
Controls Matrix (CSA, 2016)
introduced by the Cloud
Security Alliance.

 guarantees
Non
Repudiation

This property refers to a
boolean value that states
whether or not the offered PaaS
services can provide proof of
the integrity and origin of data
with high assurance.

 CSA-
IAM-02

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Identity &

http://www.melodic.cloud/

www.melodic.cloud 35

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Access Management -
Credential Lifecycle / Provision
Management.

 Identity
Management

 This subclass is used to denote
the offering or required
functionalities for registering
and updating the identity of
entities that may request
access to cloud resources or
sensitive data along with their
access requests and actions
logging.

 Authentication This is a subclass that
encapsulates offered or
required capabilities for
attesting the identity of entities
that may request access to
cloud resources or sensitive
data.

 Access Logging This subclass refers to
mechanisms and their
characteristics offered or
required for registering and
persisting all kind of access
actions performed.

 Credential
Lifecycle
Management

 This subclass refers to end-
user’s credential creation,
update, deletion or revocation
that may be offered or required
in certain access control
paradigms (e.g. Role-based
access control (RBAC)).

 CSA-
IAM-09

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Identity &
Access Management - User
Access Authorization.

 Authorization This subclass is used to denote
the offering or required

http://www.melodic.cloud/

www.melodic.cloud 36

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

functionalities for controlling
the way access is permitted to
cloud resources or persisted
sensitive data (e.g. RBAC,
Attribute-based access control).

 CSA-
IVS-01

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as:
Infrastructure & Virtualization
Security - Audit Logging /
Intrusion Detection.

 IDS This subclass is used to provide
information about the
characteristics of intrusion
detection systems (IDS) offered
or required for monitoring the
virtual resource for malicious
activities or any policy
violations.

 CSA-
IVS-06

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as:
Infrastructure & Virtualization
Security - Network Security.

 IPS This subclass is used to provide
information about the
characteristics of intrusion
prevention systems (IPS) for
examining network traffic
flows and patterns in order to
detect and prevent
vulnerability exploits.

 CSA-
IVS-13

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as:
Infrastructure & Virtualization

http://www.melodic.cloud/

www.melodic.cloud 37

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Security - Network
Architecture.

 DDoS
Mitigation

 This subclass is used to provide
details on the distributed
denial-of-service (DDoS)
prevention capabilities offered
or required for alleviating
cyber-attacks that aim to
constitute a cloud resource
temporarily or indefinitely
unavailable by flooding it with
superfluous requests.

 CSA-
GRM-10

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Governance
and Risk Management - Risk
Assessments.

 Security Risk
Assessment

 This subclass lists the
requested or offered tools for
determining the security risks
related to the virtualised
resources use.

 CSA-IVS-05 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as:
Infrastructure & Virtualization
Security - Vulnerability
Management

 Vulnerability
Assessment

 This subclass of CSA-IVS-05
class is used to mention
security vulnerability
assessment tools offered or
requested that accommodate
the virtualization technologies
used (i.e., virtualization aware)
(CSA, 2016)

http://www.melodic.cloud/

www.melodic.cloud 38

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 CSA-
EKM-02

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Encryption
& Key Management - Key
Generation

 Key
Management

 This subclass is used to
mention required or offered
mechanisms necessary for
creating, revoking and relaying
cryptographic keys (to be used
for encrypting/decrypting
sensitive data) and also
ensuring that these keys will
not revealed to any
unauthorized or malicious
users (Verginadis et al., 2015)

 CSA-
EKM-03

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Encryption
& Key Management - Sensitive
Data Protection

 Encryption This subclass denotes the
capability of offering
encryption and decryption as a
service from a certain
virtualised resource.

 CSA-
DSI-07

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Data
Security & Information
Lifecycle Management - Secure
Disposal

 Data
Sanitization

 This subclass denotes the
capability of offering deliberate,
permanent, and irreversible

http://www.melodic.cloud/

www.melodic.cloud 39

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

removal of data stored on a
virtualised resource.

 has
Notification
Method

This property associates the
Data Sanitization class with a
string for requesting or stating
the method used for informing
the cloud resource’s client
about the successful
sanitization of data.

 CSA-
BCR-02

 This class refers to all the
relevant security controls
offered as a PaaS service that
belong to the CSA control
domain entitled as: Business
Continuity Management &
Operational Resilience -
Business Continuity Testing

 Security
Testing

 This subclass is used to
mention any required or offered
testing techniques and tools
that verify the appropriate
support of a certain virtualized
resource for Confidentiality,
Integrity, Authentication,
Authorization, Availability and
Non-repudiation. Example
instances: FxCop3, FindBugs4,
Appscan5

The details of the Application placement model are formally captured in the following UML Class
diagrams where some of the most important data and object properties are revealed. For these
diagrams, the Eclipse-based Papyrus6 tool was used. Specifically, Figure 9 presents the details of
IaaS and Provider classes, while Figure 10 presents the details of the PaaS classes (it is provided
in two separate figures for better readability).

3 https://www.owasp.org/index.php/FxCop
4 http://findbugs.sourceforge.net/
5 http://www-03.ibm.com/software/products/en/appscan-source
6 https://www.eclipse.org/papyrus/

http://www.melodic.cloud/
https://www.owasp.org/index.php/FxCop
http://findbugs.sourceforge.net/
http://www-03.ibm.com/software/products/en/appscan-source
https://www.eclipse.org/papyrus/

www.melodic.cloud

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

Figure 9: Application Placement Model’s UML Class Diagram (1/2)

http://www.melodic.cloud/

www.melodic.cloud 41

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 10: Application Placement Model’s UML Class Diagram (2/2)

http://www.melodic.cloud/

www.melodic.cloud

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

3.3 Big Data Model

 Big Data Model Overview

In the following Figure 11, Figure 12, and Figure 13, an overview of the core classes and sub-classes
of the Big Data Model is provided. The overview diagram is provided in three separate figures in
order to ensure its readability. Specifically, Figure 11 provides an overview of the Big Data Model
depicting the details of its top level concepts in a two-level hierarchical tree. Figure 12 delves into
further details (i.e. all the tree levels are revealed) for all the top-level concepts except from the
Data Management class which is detailed in Figure 13.

Figure 11: Big Data Model’s Overview Diagram (1/3)

http://www.melodic.cloud/

www.melodic.cloud 43

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 12: Big Data Model’s Overview Diagram (2/3)

http://www.melodic.cloud/

www.melodic.cloud 44

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 13. Big Data Model’s Overview Diagram (3/3)

 Big Data Model Details

The Big Data Model refers to the following top-level concepts.

 Big Data Aspects

 Data Location

 Data Timestamp

 Data Management

 Data Domains

For each of these top-level core classes, we provide their respective subclasses, their main
properties along with their descriptions. This includes a detailed table where each concept is
explained. Specifically, in Table 4, the details of the Big Data Aspects are presented while in Table
5, the Data Location and Timestamp concepts are discussed. In Table 6, we present Data

http://www.melodic.cloud/

www.melodic.cloud 45

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Management and in Table 7 the Data Domains details. We have used separate tables for discussing
the Big Data Model in order to improve the tables’ readability.

Table 4: Big Data Aspects Details

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

Big
Data
Aspects

 This class encapsulates all the
attributes that can be used in
order to describe the main
characteristics of big data to be
processed by Melodic-enabled
cloud applications hosted on
multi-clouds. Based on such
attributes, preferences on
quantitative and qualitative
dimensions of virtualized
resources can be expressed.

 hasData
Owner

This property associates the Big
Data Aspects class with the
Subject class of the Context
Aware Security model in order to
express the owner of the data to
be handled by a Melodic-enabled
application.

 hasData
Location

This property associates the Big
Data Aspects class with the Data
Location class of the Big Data
Model in order to denote where
certain data artefacts may be
found.

 Data
Density

 This subclass reveals details on
big data observed or expected
velocity and volume.

 Volume This subclass reveals details on
the expected amount of data
artefacts to be processed by the
Melodic-enabled cloud
application.

 canBe
Partitioned

This property associates the
Volume class with a boolean
value in order to clarify whether

http://www.melodic.cloud/

www.melodic.cloud 46

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

or not the data artefact can be
physically fragmented into
segments that are more easily
maintained or accessed.

 hasSize This property associates the
Volume class with a float that
describes the size of the data to
be processed by the Melodic-
enabled cloud applications
(usually measured in gigabytes
(GBs), terabytes (TBs), petabytes
(PBs) etc.).

 hasNumberof
Records

This property associates the
Volume class with an integer
that describes the size of the data
expressed as the amount of
records that it may involve.

 fitsTo
Memory

This property associates the
Volume class with a boolean
value in order to clarify whether
or not the data artefact can fit in
memory. We note here that we
have included this property
although by definition big data
cannot fit in memory, in order to
cover cases where there need to
be a consideration of smaller
amounts of data partitions in an
overall big data intensive
application.

 Partitions This subclass is used to describe
any details required for the data
partitions to be used by Melodic-
enabled cloud application.

 Velocity This subclass reveals details on
the anticipated speed of data to
be processed by the Melodic-
enabled cloud application along
with the types of feeds that may
be encountered (e.g. Real-time,

http://www.melodic.cloud/

www.melodic.cloud 47

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

On demand, Time-series,
Continuous).

 hasRate This property is used in order to
provide a measurement of how
fast the data is produced, usually
measure in megabits per second
(Mbps) or gigabits per second
(Gbps).

 isInput
Velocity

This property is used in order to
measure the speed of data
coming in to a Melodic-enabled
application for processing (float
value).

 isOutput
Velocity

This property is used in order to
measure the speed of data
produced by a Melodic-enabled
application (float value).

 is Continuous This property refers to a boolean
value that denotes whether data
is produced and received in a
continuous or in an intermittent
way.

 Real-time
Feed

 This subclass implies aspects of
the data velocity since it
describes the access to or
processing of data at the same
time as it is produced. Such an
access to data streams is
possible in the order of
milliseconds, and sometimes
microseconds.

 Near Real-
time Feed

 This subclass describes that the
access to or processing of data
can be performed almost at the
same time as it is produced. This
implies a time delay introduced,
by automated data processing or
network transmission, between
the occurrence of an event and
the use of the data.

http://www.melodic.cloud/

www.melodic.cloud 48

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 On Demand
Feed

 This subclass describes that the
access to or processing of data
can be performed upon request.
This implies that the data is
produced either at the moment of
the access request (e.g. get a
sensor measurement) or it is first
stored in order to be retrieved
later on upon request.

 Time-Series This subclass refers to data
streams that can be
characterized as series of data
points indexed in time order.

 Data
Variety

 This class refers to the different
types of data that should be
processed by a Melodic-enabled
cloud application, stating an
increased diversity of data that
should be stored, processed or
combined.

 Format This subclass refers to the
structural variety that big data
may involve which is expressed
using certain schemes and
models (e.g. binary large object
(BLOB), JSON, XML etc.).

 Type This subclass refers to the media
variety that big data may involve
with respect to the medium in
which data get delivered (e.g.
audio, image, video, text).

 Data
Value

 This class refers to big data
aspects that reveal the business
importance of data which is
bound to the potential of
improving a business entity’s
decision making capabilities.

 Uniqueness This subclass refers to the
amount of singular data sources
involved and the level of their
irreplaceability for defining

http://www.melodic.cloud/

www.melodic.cloud 49

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

aspects of the true value of the
acquired data for a business
entity.

 Usability This subclass captures aspects of
big data with respect to how
relevant and useful is the data for
a certain entity’s business goals
and decisions.

 Comprehensi
veness

 This subclass captures aspects of
big data that are related to the
semantic clarity, interpretability
and thus usefulness of data
acquired.

 Data
Quality

 This class encapsulates another
group of important big data
concepts that reveal aspects
about how accessible, secure,
compact, volatile or uncertain
the data is.

 Accessibility This subclass refers to the level
of convenience offered when
attempting to access certain data
artefacts. For example, accessing
encrypted data might deteriorate
the accessibility with the benefit
of securing sensitive data.

 Volatility This subclass refers to the degree
of variation of data values over a
period of time. The higher the
volatility is the shorter the stored
data can be considered valid.

 Compression This class refers to if and how
data has been encoded in order
to use fewer bits than its original
representation (i.e. as it was
captured from the relevant data
sources). This can be succeeded
by identifying and eliminating
statistical redundancy (lossless
compression) or by removing

http://www.melodic.cloud/

www.melodic.cloud 50

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

unnecessary or less important
information (lossy compression).

 has
Compression
Algorithm

This property associates the
Compression class with string
that mentions the compression
algorithm used (e.g. Lempel–Ziv
(1978))

 hasBitRate
Reduction

This property associates the
Compression class with string
that denotes the compression
ratio (e.g. 3,56 : 1 is the bit rate
reduction when compressing 32
bytes to 9 bytes).

 Encryption This subclass pertains to the
details of the cryptographic
paradigm used for protecting
sensitive data by transforming a
plaintext to ciphertext based on a
cryptographic key.

 has
Encryption
Type

This property associates the
Encryption class to a string that
states the cryptographic
algorithm used for performing
the data encryption (e.g. Advance
Encryption Standard (AES)
(Daemen & Rijmen, 2003), RSA
(Rivest et al., 1978)).

 usesMessage
Verification

This property associates the
Encryption class to a string that
denotes the technique used for
protecting the integrity and
authenticity of a data artefact
transmission. This may involve
the use of a digital signature that
is a mathematical scheme for
verifying the real data source
produced it (authentication),
guarantee non-repudiation and
certify that data was not altered
in transit (integrity).

http://www.melodic.cloud/

www.melodic.cloud 51

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 usesKeySize This property associates the
Encryption class to an integer
that corresponds to the length (in
bits) of the cryptographic key
used for encrypting or
decrypting sensitive data.

 usesBlock
Size

This property associates the
Encryption class to an integer
that corresponds to a fixed
length string of bits upon which
the cipher operates.

 Veracity This subclass pertains to
uncertainty due to data
inconsistency, incompleteness
and approximations that lead to
reduced accuracy.

 Credibility This subclass is used to describe
the integrity of data acquired,
which is bound to the credibility
of the data sources and network
communication used.

 Accuracy This subclass is used to describe
the exactness of data acquired,
which implies lack of
approximations and/ or lack of
detailed measurements.

 Completeness This subclass is used to describe
the plenitude of data acquired,
which implies the appropriate
acquisition of all the relevant
data needed at any given time.

 Consistency This subclass is used to describe
the lack of any corrupted or
conflicting data that could
appear due to error-prone
backup processes or unreliable
transfer mediums.

 Correctness This subclass is used to describe
the level of faultlessness of data
acquired which implies that both
the data sources and the network

http://www.melodic.cloud/

www.melodic.cloud 52

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

communication used were
validated as trustworthy.

Table 5: Data Location Details

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

Data
Location

 This class encapsulates all the concepts
that can be used for describing the origin
of data or the current or required
physical/ network location where the
data can be stored or processed by a
Melodic-enabled application.

 isStorage
Location

This data property associates the Data
Location class with a boolean value that
specifies whether or not the data
location mentioned is where the data
will be stored or processed.

 sameAs This object property associates the Data
location class to another Data location
recursively in order to facilitate the
expression of requirements that dictate
the use of the same location(s) as the
ones previously selected for other data
artefacts.

 notSameAs This object property associates the Data
location class to another Data location
recursively in order to facilitate the
expression of requirements that forbid
the use of the same location(s) as the
ones previously selected for other data
artefacts.

 hasSparsity This data property associates the Data
location class to a string that denotes
how distributed (e.g. Low, Medium, High)
are the data sources or data locations
exploited for producing a dataset to be
processed by a Melodic-enabled
application.

http://www.melodic.cloud/

www.melodic.cloud 53

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasPreferred
Location

This object property associates the Data
location class to the Location class of the
Context Aware Security Model in order
to facilitate the expression of
preferences for using certain network,
physical and/or cloud location(s) in
order to store or process data artefacts.

 has Allowed
Location

This object property associates the Data
location class to the Location class of the
Context Aware Security Model in order
to facilitate the expression of permitted
network, physical and/or cloud
location(s) for storing or processing data
artefacts.

 has
Unacceptable
Location

This object property associates the Data
location class to the Location class of the
Context Aware Security Model in order
to facilitate the expression of forbidden
network, physical and/or cloud
location(s) for storing or processing data
artefacts.

 hasPhysical
Location

This object property associates the Data
Location class to the Physical Location
from the Context Aware Security model
in order to define the concrete physical
region where data may be stored or
processed.

 hasNetwork
Location

This object property associates the Data
Location class to the Network Location
from the Context Aware Security model
in order to define the network region
where data may be stored or processed.

 hasCloud
Location

This object property associates the Data
Location class to the Cloud Location
from the Context Aware Security model
in order to define the relevant concepts
with respect to the worldwide
positioning of cloud offerings hosts.

 Origin This subclass involves all the relevant
concepts for defining the source location

http://www.melodic.cloud/

www.melodic.cloud 54

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

of the data artefacts to be processed by a
Melodic-enabled application.

 Batch
Origin

 This subclass defines the source location
of data artefacts to be stored and
processed in batch mode by a Melodic-
enabled application.

 Stream
Origin

 This subclass defines the source location
of data artefacts to be stream processed
by a Melodic-enabled application.

Data
Timestamp

 This class includes all the necessary
concepts for describing the temporal
characteristics of data artefacts to be
processed by a Melodic-enabled
application.

 hasTimePoint This property associates the Data
Timestamp class with the Instant class
of the Context Aware Security model for
referring to the precise point in time at
which data was created, deleted,
acquired, processed or transferred.

 hasTime
Interval

This property associates the Data
Timestamp class with the
DateTimeInterval class of the Context
Aware Security model for referring to a
period of time bounded by two time
points, during which data was created,
deleted, acquired, processed or
transferred.

 Creation
Date

 This subclass is used for defining when
a certain data element was created.

 Deletion
Date

 This subclass is used for defining when
a certain data element was deleted.

 Acquisition
Date

 This subclass is used for defining when
a certain data element was received by
the Melodic-enabled application.

 Processing
Date

 This subclass is used for defining when
a certain data element was processed.

http://www.melodic.cloud/

www.melodic.cloud 55

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Transfer
Date

 This subclass is used for defining when
a certain data element was transmitted
from a data source.

Table 6: Data Management Details

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

Data
Mana-
gement

 This class encapsulates all the
relevant concepts that can be
used in order to describe major
technological choices with
respect to how big data is
acquired, stored, processed,
transferred or replicated for
redundancy reasons.

 hasData
Timestamp

This object property associates
the Data Management class
with the Data Timestamp class
of the Big Data model in order to
express the time when certain
data artefacts where acquired,
processed or transferred.

 hasAgent This object property associates
the Data Management class
with the Subject class of the
Context Aware Security model
in order to express the
responsible entity for
performing data acquisition,
processing transferring and
storage.

 Acqui-
sition

 This subclass is used in order to
describe the required or offered
types of big data acquisition in
the frame of a Melodic-enabled
cloud application devised to
process it.

 isReliable This data property associates
the Acquisition class with a
boolean value that captures

http://www.melodic.cloud/

www.melodic.cloud 56

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

whether or not the means of
data acquisition required or
offered guarantee the accuracy
of the data received.

 buffers
Messages

This data property associates
the Acquisition class with a
boolean value that expresses
the capability of a Melodic-
enabled application to resolve
any bottlenecks by buffering
the surplus data, in cases that
the data acquisition rates are
larger than the processing
rates.

 applies
Backpressure

This property associates the
Acquisition class with a
boolean value that denotes the
capability of interrupting the
data source transmission in
cases that the receiver and its
buffers are not able to receive
additional data for a short
period of time.

 drops
Messages

This property associates the
Acquisition class with a
boolean value that refers to
bottleneck situations being
resolved by dropping any
surplus data.

 hasSource This property associates the
Acquisition class with the Data
Location class of the Big Data
Model in order to describe the
location of the data source to be
used by a Melodic-enabled
application.

 Pull-based This subclass aims to capture
concepts related to the pull-
based paradigm for acquiring
data, where there is a request
for triggering the transmission
of data which is initiated by the

http://www.melodic.cloud/

www.melodic.cloud 57

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Melodic-enabled application,
i.e. the receiver entity (Yang et
al. 2017) and the receipt takes
place in a synchronous
manner.

 Push-based This subclass aims to capture
concepts related to the push-
based paradigm for acquiring
data asynchronously, where
the request for a given
transaction is initiated by the
publisher (Yang et al. 2017).

 isOrdered This property associates the
Push-based class with a
boolean value that states
whether or not the certain
push-based technique used for
relaying big data, guarantees
the time ordering of the
received data before their
processing takes place.

 uses
Acknowledg
ments

This property associates the
Push-based class with a
boolean value that defines
whether or not the data source
will repeatedly attempt to re-
send the data to the Melodic-
enabled application until a
receipt confirmation message
is sent.

 Message
Brokering

 This subclass refers to a certain
type of push-based acquisition
of data where an intermediary
software component
undertakes the task of
translating and rooting data
transparently to any given
number of subscribed receivers
(Melodic-enabled applications)
that expect the acquisition of
certain data in a pre-defined
format (Hohpe & Woolf, 2004).

http://www.melodic.cloud/

www.melodic.cloud 58

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Centralized This is a subclass of the
Message Brokering class where
the push-based paradigm, for
communicating data between
producers and subscribers, is
implemented with a central
broker application, usually
called enterprise service bus –
ESB (Chappell, 2004). Examples
include: WSO2 ESB7, jBoss ESB8,
Mule ESB9

 Distributed This is a subclass of the
Message Brokering class where
the push-based paradigm for
communicating data uses
several dispersed, but
integrated software
applications (also called
distributed ESB) with message
brokering capabilities, instead
of just one centralised broker
entity in order to avoid any
performance bottlenecks (e.g.
Apache Kafka10).

 Brokerless
Messaging

 This subclass refers to a certain
type of push-based acquisition
of data where there are not
intermediaries in the middle
for translating and rooting data,
instead direct peer-to-peer
communication between the
data sources and the receivers
(i.e. Melodic-enabled
application) is considered for
low latency and/or high
transaction rate applications
(ZeroMQ, 2008).

7 http://wso2.com/products/enterprise-service-bus/
8 http://jbossesb.jboss.org/
9 https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
10 https://kafka.apache.org/

http://www.melodic.cloud/
http://wso2.com/products/enterprise-service-bus/
http://jbossesb.jboss.org/
https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
https://kafka.apache.org/

www.melodic.cloud 59

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 UDP Multicast This is a subclass of the
Brokerless Messaging class and
refers to the simultaneous
group communication
(multicast) using the User
Datagram Protocol –UDP
(Kurose & Ross, 2010). Examples
include: StatsD11, Brubeck12.

 TCP/IP
Multicast

 This is a subclass of the
Brokerless Messaging class and
refers to the technique for one-
to-many communication over
an IP infrastructure in a
network. (Kurose & Ross, 2010).
Examples include: ZeroMQ13,
MQTT14.

 Data
Storage

 This subclass encapsulates all
the concepts that can be used
for characterising the way that
input or output data should be
stored. The hierarchy involved
updates the storage
infrastructure taxonomy that
(Murthy et al., 2014) presented.

 Relational This subclass refers to
databases used for persisting
data that are structured in a
way that capture and present
relations between stored data
artefacts (Codd, 1970).
Examples include: MySQL15,
PostgreSQL16.

 Non-
Relational

 This subclass refers to
databases (also called NoSQL)
used for persisting data that are
not modelled using tabular

11 https://github.com/etsy/statsd
12 https://githubengineering.com/brubeck/
13 http://zeromq.org/
14 http://mqtt.org/
15 https://www.mysql.com/
16 https://www.postgresql.org/

http://www.melodic.cloud/
https://github.com/etsy/statsd
https://githubengineering.com/brubeck/
http://zeromq.org/
http://mqtt.org/
https://www.mysql.com/
https://www.postgresql.org/

www.melodic.cloud 60

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

relations and present certain
advantages over the relational
databases, especially for big
data since they offer design
simplicity and more efficient
horizontal scaling.

 Key-Value
Store

 This subclass refers to a non-
relational data storage
paradigm designed for storing,
retrieving, and managing
associative arrays based on
keys. These associative arrays
contain a collection of objects
with many different fields
within them (Tweed & James,
2010).

 Dynamo-
Inspired

 This is a subclass of the Key-
Value store class that
represents database systems
that adopt a set of techniques
that make extensive use of
object versioning and
application-assisted conflict
resolution in order to form a
highly available key-value
storage system (DeCandia et
al., 2007). In order to achieve
this level of availability,
Dynamo-inspired systems
sacrifice consistency under
certain failure scenarios.
Examples include: Riak17,
Voldermort18.

 In-Memory This is a subclass of the Key-
value Store class and refers to
databases that rely on cloud
resource’s main memory for

17 https://github.com/basho/riak
18 http://www.project-voldemort.com/voldemort/

http://www.melodic.cloud/
https://github.com/basho/riak
http://www.project-voldemort.com/voldemort/

www.melodic.cloud 61

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

persisting. Examples include:
Memcached19, Aerospike20.

 Document
Oriented
Store

 This is a subclass of the Key-
value Store class that refers to a
software application designed
for performing CRUD
operations over semi-
structured data called
document-oriented
information. Examples include:
MongoDB21, NosDB22.

 Big Table-
inspired Store

 This subclass involves
compressed, high performance
databases inspired by the
Bigtable proprietary solution
built by Google that devises a
sparse, distributed multi-
dimensional sorted map
(Chang et al. 2008). Examples
include: HDFS23, Cassandra24.

 NewSQL This subclass refers to a type of
parallel database management
systems that provides the same
scalable performance of non-
relational systems while still
maintaining the same level of
transactional support (i.e.
support the properties of
Atomicity, Consistency,
Isolation, and Durability –
ACID) as the traditional
relational databases (Murthy et
al., 2014).

19 https://memcached.org/
20 http://www.aerospike.com/
21 https://www.mongodb.com/
22 https://www.npmjs.com/package/nosdb
23 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
24 http://cassandra.apache.org/

http://www.melodic.cloud/
https://memcached.org/
http://www.aerospike.com/
https://www.mongodb.com/
https://www.npmjs.com/package/nosdb
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://cassandra.apache.org/

www.melodic.cloud 62

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 New-In-
Memory

 This subclass refers to NewSQL
databases that primarily rely on
cloud resource’s main memory
for persisting data instead of
employing a disk storage
mechanism. Examples include:
VoltDB25, H-Store26.

 GraphDB This subclass refers to
databases that use graph
structures (with nodes, edges
and properties) for storing and
retrieving data. Some are
implemented adopting the
relational paradigm by storing
the graph data in a table while
others use a key-value store or
document-oriented database
for storage (Angles & Gutierrez,
2008). Examples include:
Neo4j27, OnyxDB28.

 Multimodel
DB

 This subclass refers to database
management systems that
support multiple data models
(e.g. document, graph,
relational, and key-value
models) in one integrated
backend (Lu & Holubová, 2017).
Examples include: ArangoDB29,
OrientDB30.

 Proces-
sing

 This subclass encapsulates all
the concepts that can be used
for describing and classifying
the various types of big data
processing that can be
conducted by a Melodic-
enabled cloud application. The

25 https://www.voltdb.com/
26 http://hstore.cs.brown.edu/
27 https://neo4j.com/
28 https://www.onyxdevtools.com/
29 https://www.arangodb.com/
30 http://orientdb.com/orientdb/

http://www.melodic.cloud/
https://www.voltdb.com/
http://hstore.cs.brown.edu/
https://neo4j.com/
https://www.onyxdevtools.com/
https://www.arangodb.com/
http://orientdb.com/orientdb/

www.melodic.cloud 63

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

hierarchy introduced updates
both the DICE model for big data
intensive application (Gómez et
al., 2016) and the computer
infrastructure taxonomy
presented by CSA Big Data
Taxonomy (Murthy et al., 2014).

 hasRaw
Metric

This property associates the
Processing class with a string
value that refers to a core
conceptualisation of the
CAMEL language (i.e. Raw
Metric), which encapsulates
raw measurements of specific
non-functional attributes,
produced by sensors. Several
interesting raw metrics that
could be used are: Latency,
Service Time, Response Time,
Hit Rate on Cache – number of
times that data were retrieved
from the cache.

 hasComplex
Metric

This property associates the
Processing class with a string
value that refers to another core
conceptualisation of the
CAMEL language (i.e.
Composite Metric), which
encapsulates composite
measurements of specific non-
functional attributes, derived
via mathematical formulas
over other metrics (e.g. average
CPU usage, mean response
time, Ratio Reads to Writes).

 isLongLived This property associates the
Processing class with a boolean
that expresses whether or not a
certain processing job is
chronic.

http://www.melodic.cloud/

www.melodic.cloud 64

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 hasData
Processing
Cost

This property associates the
Processing class with a float
that expresses the cost for
retrieving data to be processed
by the Melodic-enabled cloud
application.

 has
Processing
Cost

This property associates the
Processing class with a float
that expresses the cost for
processing according to the
designed functionalities of the
Melodic-enabled cloud
application.

 hasApp
Processing
Location

This property associates the
Processing class with the Cloud
Location Class (of the Big Data
Model) for expressing the
network or physical location
where the application is or will
be hosted.

 has
Constraints

This property associates the
Processing class with a string
that denotes expressions over
raw and complex metrics that
bound the way processing will
be performed.

 hasPriority This property associates the
Processing class with a string
that denotes how urgently a
certain processing job should
be executed.

 forProduction
Usage

This property associates the
Processing class with a boolean
that denotes whether or not the
discussed processing refers to a
production system.

 isRealTime This property associates the
Processing class with a boolean
that denotes whether or not the
processing takes place at the

http://www.melodic.cloud/

www.melodic.cloud 65

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

same time as input data is
produced.

 isNearReal
Time

This property associates the
Processing class with a boolean
that denotes whether or not the
processing takes place almost
at the same time as input data
is produced. This property
implies a time delay introduced
due to network lag, between the
data source and the processing
location.

 Stream
Processing

 This subclass refers to a
processing paradigm also
known as event stream
processing that transforms, in
real or near-real time, an
incoming stream of unbounded
data records/events that are
small, self-contained,
immutable objects containing
the details of somethings
happened at some point in time
(Kleppmann, 2017).

 CEP This subclass refers to one type
of stream processing that aims
to identify patterns and analyse
cause-and-effect relationships
among streams of information
(data) in real time, allowing for
proactive or reactive effective
actions in response to specific
situations (Luckham, 2002). It
usually involves digestion of
data from multiple and
heterogeneous data. Examples
include: Esper31, SQLstream32.

31 http://www.espertech.com/esper/
32 http://sqlstream.com/

http://www.melodic.cloud/
http://www.espertech.com/esper/
http://sqlstream.com/

www.melodic.cloud 66

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Stream
Transforming

 This subclass refers to a second
type of stream processing that
(instead of detecting
occurrence patterns) focuses
on incrementally converting
(e.g. sorting, grouping,
aggregating) streams to an
analysis-friendly schema
based on a number of devised
jobs. Examples include: Apache
STORM33, Apache Flink34.

 Stream Joins This subclass involves
information about different
pre-processing techniques for
enhancing the input of a stream
processing application
(Kleppmann, 2017). Examples
include: Stream-stream joins –
combining two or more distinct
streams, Stream-table joins –
combining streams with data
stored, Table-table joins –
combining different types of
stored data into a single stream.

 Batch
Processing

 This subclass refers to a
processing paradigm also
known as offline system that
involves a series of jobs on a
bounded bundle of inputs (fixed
set of data) that produces a
certain output (Kleppmann,
2017). Batch jobs are often
scheduled to run periodically
(e.g. once a day).

 hasTotalTime
PerJob

This property associates the
Batch Processing with a float
that denotes the total time it
lasts to execute a job on a

33 http://storm.apache.org/
34 https://flink.apache.org/

http://www.melodic.cloud/
http://storm.apache.org/
https://flink.apache.org/

www.melodic.cloud 67

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

dataset of a certain size
(Kleppmann, 2017).

 has
Throughput

This property associates the
Batch Processing with an
integer that states the number
of data records that an
application can process per
second, or the total time it takes
to run a job on a dataset of a
certain size (Kleppmann, 2017).

 MapReduce This is a subclass that refers to
one of the most representative
batch processing techniques
for distributed computing; it
takes a set of data and converts
it into a new set of data (Map
method – e.g. filtering, sorting)
that it is then processed
(Reduce method – e.g.
summary operation), resulting
in the braking down of
individual elements into tuples
(key/value pairs). Examples
include: Hadoop MapReduce35,
Apache S436.

 Bulk
Synchronous
Parallel

 This subclass refers to a
bridging model for designing
parallel algorithms which fits
the needs of distributed
computation (Valiant, 2011).
Examples include: Apache
Hama37, Apache Giraph38.

 Hybrid
Processing

 This is a subclass that involves
processing techniques that can
be classified in the space
between stream and batch
processing. These are also

35 https://hadoop.apache.org/
36 https://github.com/apache/incubator-s4
37 http://hama.apache.org/
38 http://giraph.apache.org/

http://www.melodic.cloud/
https://hadoop.apache.org/
https://github.com/apache/incubator-s4
http://hama.apache.org/
http://giraph.apache.org/

www.melodic.cloud 68

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

called micro-batching
techniques and treat streams
as a sequence of small batches
or chunks of data that are
processed in near real-time
(e.g. Apache Spark39).

 Distributed
ML

 This subclass refers to big data
processing techniques that are
focused on implementing
efficient machine learning
algorithms in a distributed and
scalable manner (Ranjan et al.,
2015). Examples include:
Apache Mahout40, MLBase41.

 Computa-
tional
Comple-xity

 This subclass is used in order to
provide concepts that classify
processing techniques and
systems based on the
computation complexity that
they introduce when
processing big data. Example
instances may include the use
of linguistic terms like High,
Medium, Low or property
values that imply the expected
complexity (e.g. job length).

 hasJobLength This property associates the
Complexity class with an
integer that denotes the size of
each program used as a big data
processing job.

 hasRequired
Processing
Power

This property associates the
Complexity class with the CPU
class of the Application
Placement model in order to
indirectly indicate the involved
complexity of a certain
Melodic-enabled application.

39 https://spark.apache.org/
40 http://mahout.apache.org/
41 http://www.mlbase.org/

http://www.melodic.cloud/
https://spark.apache.org/
http://mahout.apache.org/
http://www.mlbase.org/

www.melodic.cloud 69

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Methodo-
logy

 This subclass is used for
characterising big data
processing applications based
on their scope and the kind of
algorithmic approach used.

 Outlier
Detection

 This subclass refers to the use
of anomaly detection
algorithms for identifying
items, events or observations
which do not conform to an
expected pattern or other items
in a dataset (Chandola et al.,
2009).

 Probabilistic
Analysis

 This subclass refers to the use
of certain algorithms that based
on big data processing may
infer with a certain degree of
certainty, facts about the
current situation.

 Confirmatory
Analysis

 This subclass refers to the
algorithms (often used in social
research) corresponding to a
special form of factor analysis
that focus on testing and
verifying hypothesized models
(based on theory and/or
previous analytic research) (Li,
2015).

 Predictive
Analysis

 This subclass refers to a
number of techniques from
data mining, statistics,
predictive modelling, machine
learning, and artificial
intelligence employed to
analyse big data in order to
make predictions about future
events (Nyce, 2007).

 Correlation
Analysis

 This subclass refers to
statistical evaluation
techniques used on big data
processing to study the
strength of a relationship

http://www.melodic.cloud/

www.melodic.cloud 70

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

between two, numerically
measured, continuous
variables (Rodgers &
Nicewander, 1988).

 Causal
Analysis

 This subclass refers to
techniques that introduce
counterfactual reasoning and
causal assumptions in addition
to observations and statistical
assumptions in order to
estimate the effect of
intervention between two
variables (Pearl, 2003).

 Analytical This subclass refers to the kind
of big data processing that
considers qualitative or
quantitative information to
discern patterns within the
information, usually involving
deductive reasoning. Examples
include: Social Network
Analysis, Text Analysis.

 Query &
Reporting

 This subclass refers to
techniques and tools that
perform simple or complex
inquiries over a set of data and
provide consolidated
summaries of the results.

 Miscel-
laneous

 This subclass refers to any
other methodology used for big
data processing that can be
perceived as part of the above
mentioned techniques.
Examples include: 3D
Reconstruction, Translation

 Transfer This subclass of Data
Management class refers to
any concept that can be used
for describing aspects related to
communicating data artefacts
between their data sources and

http://www.melodic.cloud/

www.melodic.cloud 71

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

the processing or storing
locations.

 hasData
TransferCost

This property associates the
Transfer class with a float that
denotes the actual or expected
cost for transferring data.

 hasData
Transfer
Duration

This property associates the
Transfer class with a float that
denotes the time needed for
transferring data between
different locations.

 hasTransfer
Origin

This property associates the
Transfer class with the Data
Location class of the Big Data
Model in order to identify the
source location of a data-
transferring task.

 hasTransfer
Target

This property associates the
Transfer class with the Data
Location class of the Big Data
Model in order to identify the
sink location of a data-
transferring task.

 hasData
Transfer
DesiredStart
Time

This property associates the
Transfer class with a date
datatype in order to define the
desired start time of a data-
transferring task.

 hasData
Transfer
Desired
Completion
Time

This property associates the
Transfer class with a date
datatype in order to define the
desired end time of a data-
transferring task.

 Redun-
dancy

 This subclass encapsulates any
approach used for persisting
the same data artefacts in
several separate places, either
in a single database, or in
remote databases for detecting
and reconstructing lost or

http://www.melodic.cloud/

www.melodic.cloud 72

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

damaged data (Doorn & River,
2002).

 refersToVM
Replication

This property associates the
Redundancy class with a
boolean that mentions whether
or not, for data redundancy
reasons, an approach is used for
taking a snapshot of a certain
VM and copying it to another
VM, situated either on the same
or different physical hosts.

 refersToPM
Replication

This property associates the
Redundancy class with a
boolean that mentions whether
or not, a data redundancy
approach is used for taking
snapshots of a certain physical
machine and copying it to
another infrastructural
resource.

 has
Synchronous
Replication

This property associates the
Redundancy class with a
boolean that defines whether or
not data is written both to
primary storage and the replica
simultaneously, in order to
accomplish a constant
synchronization between data
redundancy entities.

 has
Asynchronou
s Replication

This property associates the
Redundancy class with a
boolean that defines whether or
not data is written to the replica
after it has been persisted to the
primary storage.

 hasCircular
Replication
Topology

This property associates the
Redundancy class with a
boolean that defines whether or
not a master slave topology is
used for replicating data where
each master (where new data
initially is stored) is also the

http://www.melodic.cloud/

www.melodic.cloud 73

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

slave (that receives copies of
the initial data) of another
master, in a circular fashion.

 hasStar
Replication
Topology

This property associates the
Redundancy class with a
boolean that defines whether or
not a central master node is
used (where new data initially
is stored) and a number of
peripheral nodes are directly
connected to the master node
for replicating data.

 Affinity
Replication

 This subclass refers to
replication techniques that
consider or define resources to
be used for replicating data.

 Anti-
Affinity
Replication

 This subclass refers to
replication techniques that
consider or define resources to
be excluded from replicating
data.

 Locally
Redundant
Storage

 This subclass refers to data
redundancy that considers
hosts for data replication
situated on the same host.

 Physically
Redundant
Storage

 This subclass refers to data
redundancy that considers
hosts for data replication
situated in different physical
locations.

 Read Access-
Physically
Redundant
Storage

 This refers to a kind of
physically-redundant storage
that is optimised only for data
retrieval.

Table 7: Data Domains Details

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

http://www.melodic.cloud/

www.melodic.cloud 74

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Data
Domains

 This class encapsulates all the
relevant concepts that characterize
data based on the industries that
produce it or need to extract
information from it (Murthy et al.,
2014). Specifically, we reuse and
extend the big data taxonomy
introduced by the Cloud Security
Alliance (Murthy et al., 2014).

 Sensor
Data

 This subclass refers to semi-
structured data produced from
hardware or software sensors in
various volumes, velocity and
veracity that may be used for
predicting or reacting to situations.

 Weather
Forecasting

 This is a subclass of Sensor Data that
refers to data carrying valuable
meteorological measurement that
can be used for predicting weather
information in the future.

 Anomaly
Detection

 This is a subclass of Sensor Data that
refers to data carrying valuable
information for detecting
irregularities on recognised long term
trends and patterns (e.g. unexpected
traffic congestion).

 Network
Security

 This subclass refers to unstructured
or semi-structured data produced
from hardware or software sensors in
various volumes, velocity and
veracity that may be used for
recognising network security threats.

 Intrusion
Detection

 This is a subclass of the Network
Security class that refers to data
coming from sensors that may reveal
unauthorised access to computer
systems.

 APTs This subclass stands for Advanced
Persisted Threat (APT) and refers to
data that can be used to detect
continuous cyber-threats, in

http://www.melodic.cloud/

www.melodic.cloud 75

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

particular that of Internet-enabled
espionage, using a variety of
intelligence gathering techniques to
access sensitive information (Dell
SecureWorks, 2012).

 Social
Networ-
king

 This subclass refers to structured or
semi-structured data produced from
software sensors in various volumes,
velocity and veracity that may be
used for providing meaningful
insights on the status and important
aspects of a social network (e.g. user
acquisition data).

 Social
Graphs

 This subclass refers to data that
reveal all the interconnections and
relationships between the members
of an online social network.

 Finance This subclass refers to structured
data produced from software sensors
coming from different financial
sectors that usually have significant
velocity and may be used for
imprinting and analysing real-time
financial transactions.

 High
Frequency
Trading

 This subclass of the Finance class
involves data that imprint, represent
and can be used to analyse financial
trading actions of high velocity.

 Fraud
Detection

 This subclass refers to data relevant
for exposing fraudulent financial
activities.

 Retail This subclass encapsulates aspects of
structured data analysed usually in
near real-time that focus on all the
relevant aspects of retail-related
transactions or facts that may affect
them (e.g. tweets used for sentiment
analysis).

 Behavioural
Analysis

 This subclass refers to data that may
reveal patterns of selling or buying

http://www.melodic.cloud/

www.melodic.cloud 76

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

conducts that can be exploited in
different retail sectors.

 Location-
based
Targeting

 This subclass refers to location and
preferences related data that can be
used for targeted advertising actions.

 Large
Scale
Science

 This subclass addresses all the
different data artefacts that may be
used or produced in large scale
science experiments and activities.
Such structured data are usually
exploited through batch processing.

 Bio-
informatics

 This is a subclass of the Large Scale
Science class that focuses on data
related to bioinformatics.

 High Energy
Physics

 This is a subclass of the Large Scale
Science class that focuses on data
related to high energy physics.

 Visual
Media

 This subclass encapsulates aspects
of unstructured data that are related
to video analysis and may be
processed in batch, near real-time or
even real-time.

 Image
Understan-
ding

 This is a subclass of the Visual Media
class that addresses data related to
detecting and comprehending
images.

 Scene
Analysis

 This is a subclass of the Visual Media
class that addresses data and video
applications for analysing video
scenes.

 Audio
Media

 This is an additional subclass with
respect to the big data taxonomy
introduced by CSA (Murthy et al.,
2014) and refers to data related to
audio applications (e.g. gun fire
detection).

 Audio
Understan-
ding

 This is a subclass of the Audio Media
class that refers to analysis of data for
speech recognition and interaction.

http://www.melodic.cloud/

www.melodic.cloud 77

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The details of the Big Data Model are formally captured in the following five UML Class diagrams
where some of the most important data and object properties are revealed (diagram provided in
separate figures for better readability). Specifically, Figure 14 presents the most important
properties of the top-level concepts of the Big Data Model. Figure 15 delves into the details of big
data Aspects, Figure 16 analyses the Data Location and Data Timestamp classes, while Figure 17
and Figure 18 provide insights on Data Management and Data Domains respectively.

http://www.melodic.cloud/

www.melodic.cloud

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

Figure 14: Big Data Model’s UML Class Diagram (1/5)

http://www.melodic.cloud/

www.melodic.cloud 79

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 15: Big Data Model’s UML Class Diagram (2/5)

http://www.melodic.cloud/

www.melodic.cloud

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

Figure 16: Big Data Model’s UML Class Diagram (3/5)

http://www.melodic.cloud/

www.melodic.cloud 81

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 17: Big Data Model’s UML Class Diagram (4/5)

http://www.melodic.cloud/

www.melodic.cloud 82

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 18: Big Data Model’s UML Class Diagram (5/5)

http://www.melodic.cloud/

www.melodic.cloud

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

3.4 Context Aware Security model

 Context Aware Security model Overview

As mentioned in Chapter 2, the third part of the Metadata Schema comes from the Context Aware
Security Model that was developed in terms of the PaaSword project (Verginadis et al., 2016;
Veloudis et al., 2016). The overview of this model has already been presented in Figure 6. For the
purposes of Melodic, we reuse this model and slightly extend it in order for it to serve as the
background vocabulary of a PaaSword-inspired context-aware access control engine. This engine
will enhance with context-aware attribute-based access control capabilities (ABAC) certain
Melodic components in order to protect the access, retrieval, storage or processing of any
sensitive data artefacts. In Figure 6, the reader may find an overview of the Context Aware
Security model as it has been described in PaaSword project (Verginadis et al., 2016). We note that
this slightly extended model will be incorporated as the third part of the Melodic Metadata
Schema completing the Melodic vocabulary, while its semantic aspects will be exploited as part
of the work on implementation, integration, and securing of Melodic components.

Figure 19: Security Context Element -Melodic Extensions

http://www.melodic.cloud/

www.melodic.cloud 84

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

The following classes are included in the Context Aware Security Model that are briefly explained
in Section 3.4.2:

 Security Context Element

 Permission

 Subject

 Object

 Context Patterns

 Handlers

Figure 19 and Figure 20 provide overview diagrams of the Security Context Element and
Permission sub-models in order to highlight the basic extensions (depicted in grey colour) to this
model from the Melodic perspective. These extensions are presented in detail in the following
section 3.4.2.

Figure 20: Permission - Melodic Extensions

 Context Aware Security model Details

This section includes a table that briefly explains the main classes of this model and provide
details on the extensions proposed for Melodic purposes. Further details on the complete
PaaSword Context Aware Security model along with its formal description in UML class diagrams
can be found in (Verginadis et al., 2016).

http://www.melodic.cloud/

www.melodic.cloud 85

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Table 8: Context Aware Security model Details

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

Subject An instance of this class represents
the agent seeking access to a
particular data artefact. This can be
an organization, a person, a group or a
service (Verginadis et al., 2016)

 Software This class represents software that
attempts to access sensitive data
(Verginadis et al., 2016)

 Melodic
Component

 (new class) This is a subclass that
refers to any Melodic software
mechanism that manages or decides
where the data will reside, be
transferred or be processed. This
highlights that the Melodic
authorization engine will mainly
focus on access requests to sensitive
data driven by Melodic components.

Object This class refers to any kind of
artefacts that should be protected
based on their sensitivity levels.
These artefacts may refer to
relational and non-relational data,
files, software artefacts that manage
sensitive data, or even infrastructure
artefacts used (Verginadis et al., 2016).
Its subclasses include the Data
Artefact, Software Artefact and
Infrastructure Artefact.

Permis-
sion

 (extended) This class refers to the
actions that a Subject is allowed to
perform upon an Object (Verginadis et
al., 2016). Its subclasses as they were
designed in PaaSword project are:

- Data Permission; This class refers to
any action allowed by a Subject upon
a data entity (e.g. datastore, file, web
endpoint, volume access).

http://www.melodic.cloud/

www.melodic.cloud 86

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

- DDL Permission; This class reveals
the data definition language (DDL)
related actions on a specific Object
(e.g. create/alter/drop datastore,
Create/Delete/ChOwner a directory or
file).

 Job
Permis-
sion

 (new class) This subclass refers to
permissions related to the
management of parallel computation
tasks that get spawned into a number
of resources, in response to a big data
framework action (e.g. Spark).

 Add New
Job

 (new class) This subclass refers to
permission concerning the
introduction of a new big data
processing job that should be
implemented in terms of a big data
framework.

 Update Job (new class) This subclass refers to
permission concerning the revision
or enhancement of a big data
processing job that has been
implemented in terms of a big data
framework.

 Delete Job (new class) This subclass refers to
permission concerning the exclusion
of a big data processing job that has
been implemented in terms of a big
data framework.

Security
Context
Element

 (extended) The security context
element class refers to all the relevant
classes and properties that capture
Location, DateTime and Connectivity
aspects, and characterize subjects,
objects, requests and the
environment related to an interaction
(Verginadis et al., 2016). Below we
provide details only for the Location
and Connectivity classes that are
extended.

http://www.melodic.cloud/

www.melodic.cloud 87

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Location This class describes a physical, a
network and/or a cloud location
where data are stored or from which a
particular entity is requesting to
access data (Verginadis et al., 2016).

 Is
Processing
Location

(new property) This property
associates the Location class with a
boolean value that denotes whether
or not that certain location is referred
as a position where data processing
can/will take place (i.e. value equals
to true) or as an area where data may
reside (i.e. value equals to false).

 Network
Location

 An identifier for a node or network
telecommunication interface from
which a particular subject is
requesting to access data or where
the data resides (Verginadis et al.,
2016).

 Physical
Location

 A physical location is a point or area
of interest where data is stored,
processed or from which a particular
entity is requesting to access data.
Physical locations might involve an
address, a geographical position, an
area, an abstract location and/or a
Point of Interest [(Verginadis et al.,
2016).

 Cloud
Location

 (new class) This subclass involves all
the relevant concepts for positioning
worldwide the hosts of cloud provider
offerings. A cloud location is
composed of Cloud Regions and
Availability zones.

 Cloud
region

 (new class) This subclass of Cloud
Location refers to separate
geographical areas defined, where
cloud provider datacentres may host
virtualised infrastructure for storing
or processing data (e.g. AWS – eu-
west-1 located in Ireland).

http://www.melodic.cloud/

www.melodic.cloud 88

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Availa-
bility Zone

 (new class) This subclass of Cloud
Location refers to an isolated location
out of multiple available ones per
cloud region that defines an area
where several cloud offerings may or
should originate from (e.g. aws eu-
west-1a, eu-west-1b, eu-west-1c).
Usually, availability zones are
interconnected with fast, private
fibre-optic networking facilities.

 Con-
nectivity

 This class captures the information
related to the connection used by the
subject for accessing sensitive data
(Verginadis et al., 2016). The following
subclasses are included: Connection
Type, Connection Metrics,
Connection Security and Device Type

 Device Type (extended) This class describes a
device used when requesting access
to sensitive data. Its subclasses
include Mobile (i.e. portable device
used when requesting access to
sensitive data), Stationary (i.e.
immobile devices used) and Software.

 Software (new class) This third subclass of the
Device Type refers to the use of
middleware components for
brokering the management of the
access to sensitive data artefacts (e.g.
Melodic’s adapter that instructs the
placement/storage of sensitive data
on a certain virtualised resource).

 isAuthen-
ticated

(new property) This property
associates the Software class with a
boolean value that denotes the digital
sign of a certain software that may be
allowed to manage the access to
sensitive data. This indicates the
adoption of a code-signing
technology for guarantying the
trustworthiness and authenticity of
application used.

http://www.melodic.cloud/

www.melodic.cloud 89

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Request This class captures the
characteristics that should be
considered for evaluating an
intercepted request (Veloudis et al.,
2017)

Context
Pattern

 Context patterns are recurring
motives of object accesses that are
recognised in repeating context
element instances. Future access
requests on sensitive data can be
decided also considering such
information (Verginadis et al., 2016).
Its subclasses are: Location pattern,
DateTime pattern, Connectivity
pattern, Object pattern, Permission
pattern, Access Sequence Pattern.

Handler This class refers to the characteristics
of dedicated software components
that are used for federating and
processing raw data relevant to an
access control decision and
semantically uplifting them as
instances of the Context Model (e.g.
authentication, request, location, IP-
address-to-city handlers etc.
(Veloudis et al., 2017)

http://www.melodic.cloud/

www.melodic.cloud 90

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4 CAMEL Updates based on Metadata Schema

CAMEL is a multi-DSL that covers multiple aspects in the description of multi-cloud applications.
CAMEL is exploited in Melodic in order to provide support to all the phases of the multi-cloud
application management. The current aspects covered include application structuring,
requirements modelling, SLO & optimisation objective specification, security modelling,
organisation modelling and execution history specification.

CAMEL is specified as an Eclipse Modeling Framework (EMF)42 model based on the Eclipse43
technology. Via such a model, concepts, their attributes and relationships between concepts can
be specified. There is also a nice validation mechanism to further impose the semantics of the
domain via the introduction of Object Constraint Language (OCL)44 rules to complement existing
restrictions on the meta-model level concerning, e.g., the specification of cardinality constraints
on concept attributes or properties.

While CAMEL is quite rich and covers, as stated, multiple aspects, it still needs to go under a
revision and further development process to cater the specific needs of Melodic. Each release
cycle (e.g., 4-6 months) will end with a new CAMEL release. This release cycle has been set in
order to enable a suitable amount of time to perform the respective code modifications or
extensions in the platform in order to comply with new features or extensions of existing ones in
CAMEL.

While the pursue of continuously improving CAMEL can enable it to become richer and more
usable, it also comes with the cost of imposing additional effort requiring not only the update of
the CAMEL meta-model, but also the retrieval of feedback which can support this enhancement.
Such cost and effort is sometimes significant and further requires communicating and raising
the level of understanding of the CAMEL evaluators so that the suitable feedback for change is
received. This is due to the fact that the higher the level of understanding of the CAMEL meta-
model is, the better and more suitable that feedback will be.

In order to reduce the updating effort, there is a need for a generic mechanism which allows
CAMEL to evolve without actually affecting the meta-model level, which can become more or less
stable over time. Such an evolution could be realised via the use of extensions at the model level,
which are properly and sufficiently specified such that they can be processed by the Melodic
platform in order to support the respective tasks (e.g., provider filtering) related to these
extensions. The semantics of these extensions, however, would need to be made explicit such
that the Melodic platform would be capable of properly interpreting them.

42 https://www.eclipse.org/modeling/emf/
43 https://www.eclipse.org/
44 https://wiki.eclipse.org/OCL

http://www.melodic.cloud/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/
https://wiki.eclipse.org/OCL

www.melodic.cloud 91

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

In this respect, the Metadata Schema seems to be the most appropriate medium to realise this
generic mechanism. First, it supplies a taxonomy of concepts which can be exploited for properly
extending CAMEL with clear semantics, focusing mainly on specific aspects that can be extended
(e.g., requirements, data aspect to be newly introduced). Second, it is editable and can be
customised by the user according to his/her needs. In this respect, the user does not need to
comply to a certain meta-model, but possibly make it closer to his/her requirements by providing
the respective changes or extensions needed at a more abstract and independent (with respect to
CAMEL or any other language) level. Third, it allows for introducing nice mechanisms for
templating and instantiation. In particular, concrete instances of a certain concept can be
immediately specified at the Metadata Schema level and then reused in the context of CAMEL
specifications. For instance, specific data storage types could be specified and could be
immediately used in the specification of data elements/objects in CAMEL. Last, it constitutes a
nice playground for experimenting with possible changes and extensions of CAMEL which once
being widely adopted can be exploited for further adapting CAMEL, if needed. For instance, the
whole data aspect could be covered by the Metadata Schema; then through its usage in CAMEL
based on the current mechanism, we could discern which are those elements that are widely used
such that these are then incorporated into CAMEL.

While such a generic mechanism could seem easy to adopt, based on its initial conceptualisation,
this is not the actual case in practice. It required a certain effort in order to modify CAMEL to make
it suitable for incorporating this mechanism. In particular, different ways have been explored via
which CAMEL could be extended using the Metadata Schema. The respective requirements,
though, based on the current representation capabilities of the Metadata Schema, were quite clear:
(a) enable the specification of new attributes in CAMEL for existing concepts; (b) enable the
specification of new concepts at the model level as well as sub-concepts or attributes in them.
Such capabilities lie on the fact that in the Metadata Schema, there are certainly all kinds of
elements that can be found in a normal meta-model, like concepts, attributes and properties.

In the end, the integration realisation relied on the reuse of an existing internal DSL of CAMEL
which is generic enough to specify any kind of concept or, better stated, feature. In particular, the
provider meta-model of CAMEL was exploited based on its capability to specify tree-based
structures of features along with the constraints that can be imposed on them. The metaphor to
the meta-model level is obvious: features map to concepts, like GPU, while attributes map mainly
to concept attributes, like coreNumber. Features can also internally include other sub-features,
something that can simulate the properties/associations in a meta-model.

In this respect, the CAMEL extension follows a three-step approach. Initially, we desired to create
a new, generic concept which could be used for connecting any element of CAMEL to a respective
annotation in the Metadata Schema. To this end, the initial approach step involved the creation
of the NamedElement concept, which represents a generic CAMEL element, including in its
definition the following: (a) the name of the element; (b) the annotation of that element from the
Metadata Schema (or any other semantic model that could be used to replace it); (c) a human-

http://www.melodic.cloud/

www.melodic.cloud 92

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

understandable description of this element. As a second step, we have in parallel made Feature
as a sub-concept of NamedElement, as well as most of the concepts in CAMEL as sub-concepts of
Feature. In this way, a feature can really reference a Metadata Schema element while it can also
comprise other sub-feature elements also mapping to this schema, thus enabling representation
of feature trees. Moreover, as most CAMEL concepts are sub-concepts of Feature, they inherit the
aforementioned characteristics and thus each one can be considered on its own as a feature tree.
The final, third step involved the sub-classing of Attribute to NamedElement. Via this step, the
following can be achieved: (a) we correlate an attribute with a respective element/attribute in the
Metadata Schema; (b) we enable all kinds of features, thus almost all CAMEL elements, to include
arbitrary attributes which do correlate with the attributes of the Metadata Schema. As a final
result of this three-step extension approach, almost all CAMEL elements can be arbitrary enriched
with whole feature models which can be associated with external ontologies or Metadata
Schemata. The corresponding extension of CAMEL is depicted in Figure 21.

Figure 21: A snapshot of CAMEL focusing on its new concepts and extensions

In order to better explain this mechanism, we provide an example of how a CAMEL model can be
enriched with additional content that is drawn from the Metadata Schema. Suppose that we need
to additionally specify for a certain VM (type) that it needs to include a GPU for which the number
of cores should be greater or equal to 2. In this respect, as a VM is now a Feature, we can create a
new sub-feature for it, which is named as GPU and maps to the respective (equivalently named)
concept in the Metadata Schema. For this sub-feature, we will create an attribute which will be
named as coreNumber and which will be also associated with the ΝumberοfCores attribute in the
Metadata Schema. Such an attribute will then have a certain value type which would map to the
required range of values (i.e., the integer set [2, +∞)). A similar modelling is symmetrically
performed at the provider model side. In particular, a cloud provider model would, naturally in our

http://www.melodic.cloud/

www.melodic.cloud 93

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

case as we are using the provider/feature meta-model, specify a VM feature which would then
include a GPU feature. It would also include an inter-feature constraint which will indicate which
VM flavour (enumerated value of the vmType attribute of the VM feature) maps to which number
of cores for its internal GPU via an inter-attribute constraint (involving the vmType and
coreNumber attributes). Suppose that there is a VM flavour named "Medium" for which the
number of cores of its GPU unit is 3. Then, the Profiler in the Melodic platform, would take both
the CAMEL model and the provider one, and perform the matchmaking by relying on the fact that
it needs to take into consideration the annotation of attributes and their type. In this way, if we
are dealing with an attribute that maps to the same annotation from the Metadata Schema which
is numeric in nature, then the matchmaking would succeed if the constraint over the required
attribute capability should be less restrictive than the one of the provided attribute capability. In
our case, this actually holds (as the value of 3 is included in [2, +∞)) which would then lead to a
potential match between the VM requirement and respective VM capability/flavour offered.
Figure 22 depicts a combined CAMEL model which includes the specification of this VM
requirement and capability.

Figure 22: CAMEL snippet showing how GPU capabilities and requirements can be specified

http://www.melodic.cloud/

www.melodic.cloud 94

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

We will now attempt to explain the templating capabilities that are additionally enabled via the
integration of the metadata schema with CAMEL. This will be performed via two main
examples/cases. The first example explains the forward direction in templating. In particular,
suppose that in the Metadata Schema we have specified specific locations of a certain cloud
which are specified in the form of a hierarchy. Such a specification, which could be done via the
Metadata Schema editor, could then be easily transformed into a CAMEL location model. Such a
location model would then be used for expressing location requirements in CAMEL application
models, thus providing a very good medium of reuse of specific CAMEL elements. A depiction of
how this could be performed from the Metadata Schema to CAMEL is supplied in Figure 23.

Figure 23: The transformation from Metadata Schema to CAMEL for Amazon AWS cloud
locations

The second example concerns the templating of metrics. In this case, the templating capability is
bi-directional. In particular, the user can start with a metric hierarchy specified in the Metadata
Schema. Such a hierarchy could then be browsed by the CAMEL modeller in order to produce the
respective full specification of some selected metrics in CAMEL, resulting in a template metric
model which can be reused for the specification of SLOs or optimisation requirements in CAMEL
requirement models. Then the concretisation of some metrics in the hierarchy could be forwarded
at the Metadata Schema level, which could then depict via the editor which metrics have been
already realised in CAMEL and which are not. This enables the user to have an account over which
metrics can be used immediately and which ones need first to be specified in CAMEL before they
can be exploited. Such a bi-directional mechanism also indicates a cooperation between the

http://www.melodic.cloud/

www.melodic.cloud 95

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

meta-schema and CAMEL editors towards the specification of concrete CAMEL models from
concepts of the Metadata Schema, which will offer a unification point towards the production of
a uniform UI component in the Melodic platform. Such a cooperation could really provide good
support to the user towards transforming his/her initial ideas/conceptualisations into concrete
or template models in CAMEL for further reuse.

The concept of bi-directional templating is graphically depicted in Figure 24 where we can see an
indication in a hierarchy of metrics about which metrics have been mapped to CAMEL
realisations, and then we depict a CAMEL excerpt in which such a realisation is shown.

Figure 24: The bidirectional templating for metrics

http://www.melodic.cloud/

www.melodic.cloud 96

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

5 Conclusions

In this deliverable, we introduced and discussed the details of the initial design of Melodic’s
Metadata Schema for data-aware multi-cloud computing. It corresponds to a vocabulary based on
which the Melodic components are able to interpret requirements, constraints and offerings’
characteristics in order to properly manage big data, optimise the placement of their processing
jobs and control all accessing requests in multi-cloud environments. The Schema comprises the
Application Placement, Big Data and Context Aware Security models that include classes and
properties for defining where a certain big data application should be placed, what are the unique
characteristics of the data artefacts that it needs to process, and what are the contextual aspects
that may be used for bounding the access to the sensitive data.

Furthermore, we discussed the envisioned approach for extending critical aspects of the CAMEL
language based on this Melodic vocabulary. We expect that these extensions or additions will
seamlessly affect the Requirement, Metric, Scalability, Location, Provider and Security sub-
models of CAMEL. Certain aspects of the Metadata Schema will be automatically weaved in
CAMEL language based on work conducted with regards to the Melodic Upperware, that among
others, involves an extended CAMEL and a Metadata Schema editor. Specifically, the Schema is
extensible, and any Melodic adopter will be allowed to amend it according to their organisation’s
needs. We are currently developing a dedicated editor that on one side will enable CRUD
operations over this Schema, and on the other side, will provide the necessary functionalities for
retrieving cloud application developers’ or DevOps’ preferences over a number of qualitative
criteria based on the Metadata Schema.

Concluding this report, we note that the data structures, of which instances describe particular
cloud platforms, users, organisations, applications and applications’ reconfigurations, may be
relevant to be represented in a catalogue available to the Melodic Upperware and Executionware.
We will examine the value of such a catalogue that may exploit the vocabulary defined in this
work and that will be able to store the results of deployment and execution actions to provide the
factual basis for improvement of the deployment choices. Thus, we may consider a single
conceptual catalogue, utilising the conceptual level structures described in this deliverable. Such
catalogue will have to represent the WoI (World of Interest) of Melodic so that the processing in
the Upperware and Executionware achieves the real-world (business) objectives. To represent
accurately the ontological structures the catalogue has to be encoded with formal syntax (for
reliable processing) and declared semantics (to ensure the meaning of terms is understood).
Furthermore, since legacy information sources of relevance may utilise a variety of metadata
formats, there will be a need for conversion between them. If there are n such metadata schemes
and we interconvert everyone to every other, we have a ‘n-squared’ (formally n*(n-1)) problem. If
we convert all to a single canonical model the problem reduces to a scale of n. Increasingly, EC-
funded ESFRI (Research Infrastructure) projects are utilising CERIF (Common European Research

http://www.melodic.cloud/

www.melodic.cloud 97

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Information Format – itself an EU Recommendation to Member States)45 as the canonical model.
It has conversion to/from DC (Dublin Core) and DCAT (Data Catalogue Vocabulary) both of which
are W3C (World Wide Consortium) recommendations; CKAN (Comprehensive Knowledge Access
Network used widely in open government data), ISO19115/INSPIRE (the latter an EU directive for
geolocation metadata) and the ISO19139 XML representation and native RDF (Resource
Description Framework, another W3C Recommendation). In Melodic, we will consider the use of
CERIF for the Melodic catalogue.

45 http://www.eurocris.org/cerif/main-features-cerif

http://www.melodic.cloud/
http://www.eurocris.org/cerif/main-features-cerif

www.melodic.cloud 98

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

References

Angles, R. Gutierrez, C., (2008). Survey of graph database models. ACM Computing Surveys.
Association for Computing Machinery, 40 (1).

Aslett, M., (2011). How Will The Database Incumbents Respond To NoSQL And NewSQL?. 451 Group.
Available online at: http://cs.brown.edu/courses/cs227/archives/2012/papers/newsql/aslett-
newsql.pdf

Benavides, D., Segura, S., Cortés, A., R., (2010). Automated analysis of feature models 20 years later:
A literature review. In: Inf. Syst. 35.6 (2010), pp. 615–636. doi: 10.1016/j.is.2010.01.001.

Bernardi, S., Merseguer, J., Petriu, D., (2013). Model-driven Dependability Assessment of Software
Systems. Springer.

Chandola, V., Banerjee, A., Kumar, V., (2009). Anomaly detection: A survey. ACM Computing
Surveys. 41 (3): 1–58. doi:10.1145/1541880.1541882.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R. E., (2008). Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2), 4.

Chappell, D., 2004. Enterprise Service Bus. O’Reilly, ISBN 0-596-00675-6.

Chu, C. T., Kim, S. K., Lin, Y. A., Yu, Y., Bradski, G., Olukotun, K., & Ng, A. Y. (2007). Map-reduce for
machine learning on multicore. In Advances in neural information processing systems (pp. 281-
288).

Codd, E.F., (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the
ACM. 13 (6): 377–387. doi:10.1145/362384.362685.

CSA, (2016). Cloud Controls Matrix. Available online at:
https://cloudsecurityalliance.org/group/cloud-controls-matrix/#_overview

Daemen, J., Rijmen, V., (2003). AES Proposal: Rijndael. National Institute of Standards and
Technology. Available online at: https://csrc.nist.gov/csrc/media/projects/cryptographic-
standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf#page=1

DeCandia, G., Hastorun, D. Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., Vogels, W., (2007). Dynamo: Amazon’s Highly Available Key-value Store. In
Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP '07).
Stevenson, Washington, USA: ACM. pp. 205–220. ISBN 978-1-59593-591-5.

Dell SecureWorks, (2012). Anatomy of an Advanced Persistent Threat (APT). Available online at:
https://www.secureworks.com/resources/sb-advanced-threat-protection

Doorn, J. H., Rivero, L., C., (2002). Database integrity: challenges and solutions. Idea Group Inc (IGI).
pp. 4–5. ISBN 978-1-930708-38-9.

http://www.melodic.cloud/

www.melodic.cloud 99

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Frankel, D., S., (2003). Model Driven Architecture: Applying MDA to Enterprise Computing, John
Wiley & Sons, ISBN 0-471-31920-1

Gómez, A., Merseguer, J., Di Nitto, E., Tamburri, D., A., (2016). Towards a uml profile for data
intensive applications. In Proceedings of QUDOS’16, pages 18–23, New York, NY, USA, 2016. ACM.

Gruber, T., R., (1993). A translation approach to portable ontology specifications. In: Knowledge
Acquisition 5.2, pp. 199–220. issn: 1042-8143. doi: 10.1006/knac.1993.1008.

Höfer, C., N., Karagiannis, G., (2011). Cloud computing services: taxonomy and comparison. J
Internet Serv Appl, 2:81–94, DOI 10.1007/s13174-011-0027-x

Hohpe, G., Woolf, B., (2004). Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions . Addison-Wesley, ISBN 0321200683.

Kang J., Sim, K., M., (2011). Ontology and search engine for cloud computing system. International
Conference on System Science and Engineering (ICSSE), pp. 276-281.

Kleppmann M., (2017). Designing Data-Intensive Applications: The Big Ideas Behind Reliable,
Scalable, and Maintainable Systems. O'Reilly Media, ISBN:978-1-4919-0308-7

Kritikos K., Massonet, P., (2016). An Integrated Meta-Model for Cloud Application Security
Modelling. In Cloud Forward, 97 (2016) 84 – 93

Kritikos, K., Domaschka, J., Rossini, A., (2014). SRL: A scalability rule language for multi-cloud
environments. In IEEE International Conference on Cloud Computing Technology and Science,
Singapore.

Kurose, J. F., Ross, K. W., (2010). Computer Networking: A Top-Down Approach (5th ed.). Boston,
MA: Pearson Education. ISBN 978-0-13-136548-3.

Li, C.-H. (2015). Confirmatory factor analysis with ordinal data: Comparing robust maximum
likelihood and diagonally weighted least squares. Behavior Research Methods. 48 (3): 936–949.,
doi:10.3758/s13428-015-0619-7.

Lu, J., Holubová, I., (2017). Multi-model Data Management: What's New and What's Next?. EDBT:
602–605.

Luckham, D. (2002). The power of events (Vol. 204). Reading: Addison-Wesley.

Murthy, P., Bharadwaj, A., Subrahmanyam, P., A., Roy, A., RajanCloud, S., (2014). Big Data
Taxonomy. Cloud Security Alliance’s big data Working Group

Nyce, C., (2007). Predictive Analytics White Paper. American Institute for Chartered Property
Casualty Underwriters/Insurance Institute of America, p. 1. Available online at:
http://www.hedgechatter.com/wp-content/uploads/2014/09/predictivemodelingwhitepaper.pdf

OMG, (2011). UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded Systems,
June 2011. Version 1.1, OMG document: formal/2011-06-02

http://www.melodic.cloud/

www.melodic.cloud 100

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Pearl, J. (2003). Causality: models, reasoning and inference. Econometric Theory, 19(675-685), 46.

Quinton, C., Romero, D., Duchien, L., (2013). Cardinalitybased feature models with constraints: a
pragmatic approach. In: SPLC 2013: 17th International Software Product Line Conference. Ed. by
Tomoji Kishi, Stan Jarzabek and Stefania Gnesi. ACM, 2013, pp. 162–166. isbn: 978-1-4503-1968-3.
doi: 10.1145/2491627.2491638.

Quinton, C., Rouvoy, R., Duchien, L., (2012). Leveraging Feature Models to Configure Virtual
Appliances. In: CloudCP 2012: 2nd International Workshop on Cloud Computing Platforms. ACM,
2012, pp. 21–26. isbn: 978-1-4503-1161-8. doi: 10.1145/2168697.2168699.

Ranjan, R., Benatallah, B., Dustdar, S., Papazoglou, M.P., (2015). Cloud resource orchestration
programming: overview, issues, and directions. IEEE Internet Comput. 19, 46–56

Rivest, R., Shamir, A., Adleman, L., (1978). A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communications of the ACM. 21 (2): 120–126. doi:10.1145/359340.359342.

Rodgers, J. L., Nicewander, W. A., (1988). Thirteen ways to look at the correlation coefficient. The
American Statistician. 42 (1): 59–66. doi:10.1080/00031305.1988.10475524.

Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D., Romero, D., (2015).
D2.1.3 CAMEL Documentation. Available online at:
https://paasage.ercim.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf

Tweed, R., James, G., (2010). A Universal NoSQL Engine, Using a Tried and Tested Technology. p.1
– 25, Available online at: http://www.mgateway.com/docs/universalNoSQL.pdf

Valiant, L. G. (2011). A bridging model for multi-core computing. Journal of Computer and System
Sciences, 77(1), 154-166.

Veloudis, S., Verginadis, V., Patiniotakis, I., Paraskakis, I., Mentzas, G., (2016). Context-aware
Security Models for PaaS-enabled Access Control. 6th International Conference on Cloud
Computing and Services Science (CLOSER 2016), Rome, Italy, April 23-25, 2016.

Veloudis, S., Paraskakis, I., Petsos, C., Verginadis, Y., Patiniotakis, I., Mentzas, G., (2017). An
Ontological Template for Context Expressions in Attribute-Based Access Control Policies. 7th
International Conference on Cloud Computing and Services Science (CLOSER 2017), Porto,
Portugal, April 24-26, ,2017.

Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G., Hübsch, G., Paraskakis, I., (2015). PaaSword: A
Holistic Data Privacy and Security by Design Framework for Cloud Services. 5th International
Conference on Cloud Computing and Services Science (CLOSER 2015), 20-22 May, Lisbon, Portugal,
DOI 10.5220/0005489302060213

Verginadis, V., Patiniotakis, I., Mentzas, G., (2016). D2.1 - Context-aware Security Model. PaaSword
deliverable available online at: https://www.paasword.eu/wp-content/uploads/2016/09/D2-
1_Context-awareSecurityModel.pdf

http://www.melodic.cloud/

www.melodic.cloud 101

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Yang, F., Huang, Y., Zhao, Y., Li, J., Jiang, G., & Cheng, J. (2017). The Best of Both Worlds: big data
Programming with Both Productivity and Performance. In Proceedings of the 2017 ACM
International Conference on Management of Data (pp. 1619-1622). ACM.

Youseff, L., Butrico, M., Da Silva, D., (2008). Toward a Unified Ontology of Cloud Computing, Grid
Computing Environments Workshop (GCE08), held in conjunction with SC08.

Zahid, F., Verginadis, Y., Zolnieroiwcz, W., Skrzypek, P., Seybold, D., Kritikos, K., Mazumdar, S.,
Schwichtenberg, A., Domaschka, J., Horn, G., Gran, E., G., Baur, D., Masata, H., Gora, P., (2017). D2.1
System Specification. Melodic deliverable.

ZeroMQ, (2008). Broker vs. Brokerless. Whitepaper available online at:
http://zeromq.org/whitepapers:brokerless

Ziv, J., Lempel, A., (1978). Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory. 24 (5): 530. doi:10.1109/TIT.1978.1055934.

http://www.melodic.cloud/

www.melodic.cloud 102

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Appendix – Metadata Schema Serialization

We provide below an excerpt of the Metadata Schema serialized in XMI46 that concerns the classes
Big-Data Aspects, Data Density, Volume, Partitions, Velocity, Near Real-time Feed, Real-time Feed,
On Demand Feed, Time-Series and their respective properties from the Big-Data model part of the
Metadata Schema. The serialization used was decided based on the need for storing this
vocabulary and any updates on it, in a Connected Data Objects (CDO47) server in the most
appropriate way for seamlessly weaving new concepts in the CAMEL model. We note that the
reader may find the serialization of the complete model here:
https://bitbucket.7bulls.eu/projects/MEL/repos/metadata-schema/browse/

<?xml version="1.0" encoding="UTF-8"?>

<mms:MmsConcept xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:mms="http://www.melodic.eu/metadata"

 name="Melodic Model" id="a2a76c78-c50f-4c96-b6e2-c60a33e13dfa"

 uri="mms:a2a76c78-c50f-4c96-b6e2-c60a33e13dfa"

 description="Melodic Metadatata Model"

 topLevel="true">

 <concept id="3f4853ea-0bbf-43cc-9a40-7cbb1494489c"

 uri="mms:3f4853ea-0bbf-43cc-9a40-7cbb1494489c"

 name="Big-Data Model" description="Big-Data Model">

 <concept id="210facdb-6c28-4993-bdbb-4b24f01e499c"

 uri="mms:210facdb-6c28-4993-bdbb-4b24f01e499c"

 name="Big-Data Aspects" description="Big-Data Aspects">

 <concept id="7e039d69-1fbb-4237-874c-5215c72198be"

 uri="mms:7e039d69-1fbb-4237-874c-5215c72198be"

 name="Data Density" description="Data Density">

 <concept id="ff5ebaa1-79ac-4151-86ef-8a768aa3d3bb"

 uri="mms:ff5ebaa1-79ac-4151-86ef-8a768aa3d3bb"

 name="Volume" description="Volume">

 <properties id="9ab918a7-6e8f-4d03-b5f5-6abc116108d2"

 uri="mms:9ab918a7-6e8f-4d03-b5f5-6abc116108d2"

 name="hasSize" description="hasSize"

 rangeUri="xsd:double"/>

 <properties id="cbff4ab8-038a-4f08-b7dd-accfdde8bdb5"

 uri="mms:cbff4ab8-038a-4f08-b7dd-accfdde8bdb5"

 name="fitsToMemory" description="fitsToMemory"

 rangeUri="xsd:boolean"/>

 <properties id="567c372b-4bd8-4277-87aa-f1731946a026"

 uri="mms:567c372b-4bd8-4277-87aa-f1731946a026"

 name="canBePartitioned" description="canBePartitioned"

 rangeUri="xsd:boolean"/>

 <concept id="e0acfb29-9ebc-44b9-934b-f7efae48806a"

 uri="mms:e0acfb29-9ebc-44b9-934b-f7efae48806a"

 name="Partitions" description="Partitions" />

 </ concept>
 <concept id="c1e7ea6d-c892-42f1-a146-8c7497fd4bb6"

 uri="mms:c1e7ea6d-c892-42f1-a146-8c7497fd4bb6"

 name="Velocity" description="Velocity">

46 http://www.omg.org/spec/XMI/
47 https://www.eclipse.org/cdo/

http://www.melodic.cloud/
https://bitbucket.7bulls.eu/projects/MEL/repos/metadata-schema/browse/
http://www.omg.org/spec/XMI/
https://www.eclipse.org/cdo/

www.melodic.cloud 103

Editor(s):
Yiannis Verginadis

Deliverable reference:
D2.4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 <properties id="d2d6d093-e906-4c3e-8a26-f3af588e78fc"

 uri="mms:d2d6d093-e906-4c3e-8a26-f3af588e78fc"

 name="isContinuous" description="isContinuous"

 rangeUri="xsd:boolean"/>

 <concept id="63477aec-6f48-402f-b1b5-de4526ecb66f"

 uri="mms:63477aec-6f48-402f-b1b5-de4526ecb66f"

 name="Near Real-time Feed"

 description="Near Real-time Feed" />

 <concept id="17b7a83f-e46b-45c4-b849-4a9a03c6e19d"

 uri="mms:17b7a83f-e46b-45c4-b849-4a9a03c6e19d"

 name="Time-Series" description="Time-Series" />

 <properties id="5749b271-e4d3-48a3-9167-dcbf38856ac7"

 uri="mms:5749b271-e4d3-48a3-9167-dcbf38856ac7"

 name="isOutputVelocity" description="isOutputVelocity" />

 <properties id="5eed7811-520d-42cb-ad0b-dcd1c4e781cf"

 uri="mms:5eed7811-520d-42cb-ad0b-dcd1c4e781cf"

 name="isInputVelocity" description="isInputVelocity" />

 <properties id="61127bd0-3ff1-4963-832f-5000cc3a3372"

 uri="mms:61127bd0-3ff1-4963-832f-5000cc3a3372"

 name="hasRate" description="hasRate" />

 <concept id="6e12d39b-a606-429b-9f23-7facb6a49776"

 uri="mms:6e12d39b-a606-429b-9f23-7facb6a49776"

 name="Real-time Feed" description="Real-time Feed" />

 <concept id="3152b991-722b-4b80-9fd8-8690dbf29a0e"

 uri="mms:3152b991-722b-4b80-9fd8-8690dbf29a0e"

 name="On Demand Feed" description="On Demand Feed" />

 </concept>

 </concept>

 ……………………………

 </concept>

 ……………………………

 </concept>

 ……………………………

</mms:MmsConcept>

http://www.melodic.cloud/

