

www.melodic.cloud 1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

 Title:

D2.2 Architecture and Initial Feature
Definitions

Abstract:

This document presents the final Melodic architecture and its
initial feature definitions. We detail key Melodic components,
describe their internal architecture and interfaces, and present
how these components work and interact together to realise an
efficient middleware platform enabling optimised deployment of
data-intensive applications in Cross-Cloud environments.

The Melodic platform is conceptually divided into three main
component groups: the Upperware, the Executionware, and the
tools and interfaces for data modelling, application modelling,
and user-platform interactions. At the heart of the platform lies a
feedback-driven adaptation loop where the current application
deployments are continuously monitored, analysed, and
reconfigured, if needed, to ensure that the user-defined
constraints and requirements are optimally satisfied for a given
application. The user requirements and constraints, related to
both applications and data, are captured using a domain-specific
language, CAMEL, which encapsulates all relevant aspects
required for modelling data-intensive applications and their
configurations in heterogeneous Cross-Cloud environments.
The job of the Upperware is to calculate the optimal data
placements and application deployments on aggregated Cross-
Cloud resources in accordance with the specified application
and data models in CAMEL as well as in consideration of the
current workload situation and involved costs. The actual Cloud
deployments are carried out through the Executionware, which
is capable of managing and orchestrating diverse Cloud
resources. The Executionware also enables support of cross-
cloud monitoring of the deployed data-intensive applications.

Expanding on the generic and use-case specific requirements
gathered in the deliverable D2.1 System Specification Document,
we also enlist key Melodic capabilities and features in this
document. In addition, a brief description of the timeline of
planned Melodic releases and the corresponding features is also
supplied.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016 -
30 November 2019

www.melodic.cloud

Deliverable reference:

D2.2

Date:

15 May 2018

Responsible partner:

Simula Research Laboratory

Editor(s):

Feroz Zahid

Author(s):

Yiannis Verginadis, Geir Horn,
Kyriakos Kritikos, Feroz Zahid,
Daniel Baur, Paweł Skrzypek,
Daniel Seybold, Marcin
Prusiński, Somnath Mazumdar

Approved by:

Jörg Domaschka

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/
deliverables/D2.2
Architecture and Initial
Feature Definiton.pdf

Ref. Ares(2018)2616724 - 21/05/2018

http://www.melodic.cloud/
http://www.melodic.cloud
http://www.melodic.cloud/deliverables/D2.2%20Architecture
http://www.melodic.cloud/deliverables/D2.2%20Architecture
http://www.melodic.cloud/deliverables/D2.2%20Architecture

www.melodic.cloud 2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Document

Period Covered M1-14

Deliverable No. D2.2

Deliverable Title
Architecture and Initial Feature
Definitions

Editor(s) Feroz Zahid

Author(s)

Yiannis Verginadis, Geir Horn,
Kyriakos Kritikos, Feroz Zahid,
Daniel Baur, Paweł Skrzypek,
Daniel Seybold, Marcin Prusiński,
Somnath Mazumdar

Reviewer(s) Antonia Schwichtenberg, Daniel Baur,
Amir Taherkordi

Work Package No. 2

Work Package Title Architecture and Data Management

Lead Beneficiary Simula Research Laboratory

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 78

http://www.melodic.cloud/

www.melodic.cloud 3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Table of Contents

1 Introduction .. 6

1.1 Scope of the Document .. 8

1.2 Structure of the Document ... 9

2 Architecture Overview ... 10

2.1 Component Integration .. 11

2.2 Application and Data Modelling ... 11

 Application Modelling .. 13

 Data Modelling .. 14

 Models Repository ... 15

2.3 Melodic Interfaces to the End-Users .. 16

3 Upperware ... 20

3.1 Upperware Components ... 21

 CP Generator .. 21

 Utility Generator ... 21

 Metasolver .. 23

 CP Solver .. 25

 LA Solver .. 26

 Solver-To-Deployment ... 28

 Adapter ... 28

 Event Processing Management ... 29

 Event Probes Manager ... 31

3.2 Data Lifecycle Management System (DLMS) .. 31

3.3 Upperware Interfaces & Workflows .. 34

4 Executionware .. 52

4.1 Cloud Orchestration .. 53

4.2 Resource Management .. 54

4.3 Data Processing Layer .. 56

5 Auxiliary Services .. 58

http://www.melodic.cloud/

www.melodic.cloud 4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

5.1 Security Services .. 58

5.2 Status and Event Service .. 59

6 Initial Feature Definitions... 60

6.1 Planned Software Releases .. 60

6.2 High-Level Melodic Capabilities and Salient Features ... 62

6.3 Features corresponding to the use-case requirements ... 64

6.4 Features corresponding to the non-functional requirements ... 72

7 Conclusions .. 75

References ... 76

http://www.melodic.cloud/

www.melodic.cloud 5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

List of Figures

Figure 1: Melodic enables an automatic DevOps system for Cross-Cloud application deployment
and adaptation ... 7

Figure 2: Overview of the Melodic architecture .. 10

Figure 3: An Overview of the CAMEL modelling and the models@runtime approach taken by the
Melodic platform ... 12

Figure 4: A snapshot of the CAMEL deployment meta-model focusing on the data-intensive
application modelling extension .. 14

Figure 5: The data meta-model in CAMEL .. 15

Figure 6: A screenshot of the textual CAMEL editor ... 17

Figure 7: A screenshot of web-based CAMEL editor ... 18

Figure 8: A screenshot of the web-based Melodic metadata schema editor ... 19

Figure 9: Overview of the Upperware Components ... 20

Figure 10: An overview of the data life-cycle management system ... 33

Figure 11: Upperware BPMN diagram (initial placement) – outline (enlarged by Figure 12 to Figure
15) ... 35

Figure 12: Upperware BPMN diagram (initial placement) – enlarged, part I of IV 36

Figure 13: Upperware BPMN diagram (initial placement) – enlarged, part II of IV 37

Figure 14: Upperware BPMN diagram (initial placement) – enlarged, part III of IV 38

Figure 15: Upperware BPMN diagram (initial placement) – enlarged, part IV of IV 39

Figure 16: Upperware BPMN diagram (reconfiguration) – outline (enlarged by Figure 17 to Figure
20) .. 41

Figure 17: Upperware BPMN diagram (reconfiguration) – enlarged, part I of IV42

Figure 18: Upperware BPMN diagram (reconfiguration) – enlarged, part II of IV 43

Figure 19: Upperware BPMN diagram (reconfiguration) – enlarged, part III of IV 44

Figure 20: Upperware BPMN diagram (reconfiguration) – enlarged, part IV of IV 45

Figure 21: Upperware UML Component Diagram .. 46

Figure 22: Upperware UML Sequence Diagram .. 48

Figure 23: Upperware UML Sequence Diagram in parts (1/3) ... 49

Figure 24: Upperware UML Sequence Diagram in parts (2/3) .. 50

Figure 25: Upperware UML Sequence Diagram in parts (3/3) .. 51

Figure 26: High-level Executionware Architecture ... 52

Figure 27: Cloudiator Executable Entity Terminology ... 53

Figure 28: Executionware Deployment BPMN ... 54

Figure 29: Cloudiator Architecture ... 55

Figure 30: Executionware deployment sequence diagram .. 57

Figure 31: Updated release timeline for the Melodic middleware platform .. 61

http://www.melodic.cloud/

www.melodic.cloud 6

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

1 Introduction

Modern enterprises increasingly rely on hybrid Cloud solutions to meet their computational
demands by acquiring additional resources from public Clouds dynamically as per their needs.
International Data Corporation (IDC), which is a leading market-research firm, in its CloudView
Survey 20171, reported that 87% of Cloud users have adapted a hybrid cloud strategy and 56% of
the users use more than one type of Cloud deployment. In general, Cloud federation [1] enables
end users to integrate segregated resources from different Cloud systems. Federated Clouds
offer more freedom to the Cloud users and increase the granularity of choices in the application
deployment. The key objective of the Melodic project is to provide a middleware platform that
enables data-aware application deployment on geographically distributed and federated Cloud
infrastructures. The lack of data-awareness in Cross-Cloud deployments, in particular, leads to
non-optimal application performance as well as hinders the full potential utilisation of the
acquired resources from the Cloud infrastructures [2]. The Melodic middleware platform aims to
act as an automatic DevOps solution for data-intensive Cloud applications covering modelling,
deployment, configuration, and autonomic adaptation of such applications in distributed,
heterogeneous, and dynamic Cross-Cloud environments.

In this document, we present the architecture of the Melodic middleware software platform and
its key components. As also described in the Melodic System Specification Document [3] , the
Melodic project reuses technology, components, and research results from selected open-source
projects. The components of the selected open-source projects were evaluated carefully to
assess their integrability in the Melodic, and the evaluation results are summarised in the
System Specification Document. In particular, the architecture of the Melodic platform is greatly
influenced by that of the PaaSage project [4] to ensure that the available components from
PaaSage are utilised to the extent possible, and the target of the new developments in the
Melodic project remains the unique requirements arising from the needs of data-intensive
applications in Cross-Cloud environments. The PaaSage project lacked Cross-Cloud data
management and data-aware application deployments limiting its use for the data-intensive
applications in the Cloud, and data-aware deployments and processing in general. The Melodic
project adds new components needed for satisfying requirements of data-aware Cross-Cloud
deployments, introduces consistent and modular component integration, and rectifies design
issues based on the lessons learned from the PaaSage project.

1 https://www.idc.com/getdoc.jsp?containerId=prUS42878417

http://www.melodic.cloud/
https://www.idc.com/getdoc.jsp?containerId=prUS42878417

www.melodic.cloud 7

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 1: Melodic enables an automatic DevOps system for Cross-Cloud application deployment
and adaptation

Cross-Cloud2 application deployments comprise of resources acquired from multiple
administrative domains, ranging from locally deployed private Cloud infrastructures to
externally managed public Cloud offerings [5]. A data-intensive application, like any other Cloud
application, corresponds to a specific component deployment topology, and has certain
application- and user-specific deployment requirements, such as hardware/OS requirements,
security and Quality-of-Service (QoS) constraints, allocated Cloud budget, and scalability policies
and rules. The same goes for the data sources. The user data, for instance, may need to adhere to
specific location constraints and confidentiality policies in place. Following a Model-driven
Engineering (MDE) approach [6], before a given data-intensive application and corresponding
data sources are ready to be deployed by the Melodic middleware platform onto dynamically
acquired Cross-Cloud resources, they are modelled so that the aforementioned requirements
and constraints can be formally specified, and hence utilised by the deployment reasoning
process. As depicted in Figure 1, modelling of an application is the first step of the automated
DevOps system offered by the Melodic middleware platform for data-intensive applications.

After applications has been modelled, the reasoning part of the Melodic middleware finds out
most effective placement of the applications onto Cross-Cloud resources. Furthermore, to cater
for performance unpredictability and dynamicity challenges in the Cloud, applications deployed
through Melodic are continuously monitored and adapted, to make sure that the current
deployment corresponds to the best possible configuration according to the current Cloud

2 We use the term Cross-Cloud to refer to application deployments where multiple Cloud platforms are
simultaneously used to deploy application components. The term Multi-Cloud is also popular, though. We
differentiate Multi-Cloud scenarios from Cross-Clouds – in Multi-Clouds, applications are capable of being
deployed on different Cloud platforms, but one at a time, contrary to the Cross-Cloud deployments of application
components on segregated Cloud platforms at the same time.

http://www.melodic.cloud/

www.melodic.cloud 8

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

resource availability, reliability, and performance, user requirements, constraints, and the
execution context. The Melodic middleware platform implements a self-adaptive3 deployment
and reconfiguration system through a feedback-driven control loop. As shown in Figure 1, the
feedback loop in Melodic is implemented through a Monitor-Analyse-Plan-Execute (MAPE4) [8]
based adaptation loop. Application deployments are continuously monitored and analysed, and
if the current deployment is no longer optimal, a new deployment solution is calculated, and the
adaptation is planned and enforced. Thanks to the adaptation mechanism implemented by
Melodic, data-intensive applications are both optimally deployed over Cross-Cloud resources
and are also kept optimised when the application or Cloud context changes. In addition to
applications deployment, data management is also performed in an intelligent way to cater for
the unique Cross-Cloud needs. For large-scale distributed applications, optimisation of the
complete data lifecycle, comprising of distinct phases including data acquisition, preparation,
analysis, integration, aggregation, and its final representation, becomes complex and multi-
dimensional [9]. Solutions targeting individual phases often yield contradictory management
decisions. Moreover, as application deployment decisions are affected by data placement and
migration methodologies in effect, and vice versa, it is important to couple data and
computation modelling together. The Melodic platform enables the holistic management of
complete data life-cycle by complementing the middleware platform with the holistic Cross-
Cloud data life-cycle management solution.

1.1 Scope of the Document

This document presents the final Melodic architecture and its initial feature definitions. The
document details key Melodic components, their internal architecture, key functionalities, and
inter-component interactions and corresponding interfaces. A list of features targeted by
Melodic, at different releases during the project tenure, are also provided. This document is
intended for the general audience interested in learning about the architecture of the Melodic
platform and its salient features. Parts of the document requires basic understanding of how
Cloud computing systems and distributed applications work. The document, at places, refer to
the System Specification Document, the Melodic project deliverable D2.1, System Specification
Document [3], however, such references are clearly identified wherever possible.

3 Self-adaptivity is defined as the property of a system to autonomously evaluate and change its behaviour in
response to a changing environment [7].
4 MAPE is also more precisely referred to as MAPE-K loop, with K representing the shared knowledge-based
required to implement all stages of the monitor, plan, and execute sequence.

http://www.melodic.cloud/

www.melodic.cloud 9

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

1.2 Structure of the Document

The rest of this document is structured as follows. In chapter 2, an overview of the Melodic
architecture and its main components is provided together with an overview of the application
and data modelling interfaces. The detailed architecture of the two core component groups of
Melodic, the Upperware and the Executionware, is provided in chapter 3 and chapter 4,
respectively. In chapter 5, we briefly analyse auxiliary services used by the Melodic components.
In chapter 6, we list the main Melodic capabilities and provide its salient features together with
a summary of the roadmap for the Melodic software releases. We conclude in chapter 7.

http://www.melodic.cloud/

www.melodic.cloud 10

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

2 Architecture Overview

Figure 2: Overview of the Melodic architecture

The Melodic platform is conceptually divided into three main component groups, the Melodic
interfaces to the end users, the Upperware, and the Executionware. The Melodic interfaces to the
end users include tools and interfaces used by the Melodic users to model their applications and
datasets and interact with the Melodic platform. The Melodic modelling interfaces, through the
CAMEL modelling language [10], provide a rich set of domain-specific languages (DSLs) which
cover different modelling aspects, spanning both the design and the runtime of a Cloud
application as well as data modelling traits. Applications and data models created through the
modelling interfaces, in the form of CAMEL, are given as input to the Melodic Upperware. The
job of the Upperware is to calculate the optimal data placements and application deployments
on dynamically acquired Cross-Cloud resources in accordance with the specified application
and data models in CAMEL as well as in consideration of the current Cloud performance,
workload situation, and costs. The actual Cloud deployments are carried out through the
Executionware. The Executionware is capable of managing and orchestrating diverse Cloud
resources, and it also enables support of cross-cloud monitoring of the deployed applications.
Besides the three main component groups, two auxiliary services, for enabling unified and
integrated event notification mechanism and to warrant secure operations with the Melodic
platform, respectively, are also designed. An overview of the Melodic architecture is given in
Figure 2.

http://www.melodic.cloud/

www.melodic.cloud 11

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

2.1 Component Integration

To realise Melodic platform, different Melodic components need to interact with each other and
exchange information in an efficient and secure manner. Moreover, as the Melodic platform will
be developed as an integration of the available open source technologies, while providing the
required extensions for efficient cross-cloud data-intensive applications, efficient integration
mechanisms are key to successful implementation.

The components in the Melodic platform are integrated through two separate integration layers,
the Control Plane and the Monitoring Plane, each bringing its own set of unique requirements. In
brief, the Control Plane is responsible for controlling actions within the process, and thus, is
reliable and transactional. The Monitoring Plane, on the other hand, deals with a large amount of
monitoring data and thus requires fast data transfers. Based on a detailed evaluation of the
integration and adaption requirements of each plane, a hybrid solution with two different
integration methods is chosen to ensure that the requirements of the two different planes are
fully fulfilled.

The Control Plane implementation is based on an Enterprise Service Bus (ESB) architecture [11]
with process orchestration through Business Process Management (BPM). The ESB architecture
utilises a centralised bus for message propagation between components. Components publish
messages to the ESB, which are then forwarded to all subscribing components. BPM
orchestration is used to orchestrate invocation of methods from underlying Melodic
components. ESB integration with BPM is the a flexible integration method allowing both easy
modifications to the process workflow, as well as reusability of services exposed by a given
component in various processes and features of the system [12]. For the Monitoring Plane, a
queue based message broker, is employed ensuring fast message delivery [13].

2.2 Application and Data Modelling

As discussed in chapter 1, Melodic employs an MDE approach and the applications and
corresponding data sources are first modelled before the Melodic Upperware can reason about
their optimal Cross-Cloud deployments. Application and data modelling comprises formal
specification of application components, their interactions, data sources, requirements and
constraints pertaining both applications and data, as well as user-defined deployment goals and
objectives.

http://www.melodic.cloud/

www.melodic.cloud 12

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 3: An Overview of the CAMEL modelling and the models@runtime approach taken by the
Melodic platform

The PaaSage project created CAMEL, a domain-specific language that captures a rich set of
design-time and runtime aspects like application deployment requirements, service-level
objectives, scalability rules, and security considerations in Cross-Cloud deployments. CAMEL is
similar to the Topology and Orchestration Specification for Cloud Applications (TOSCA) [14],
which allows users to specify the components comprising the topology of Cloud-based
applications along with the processes for their orchestration. However, a key difference between
TOSCA and CAMEL is that while TOSCA can only be used at design-time as it supports
specification of types of templates only, CAMEL can be used at both design-time and run-time
because of its support of the specification of instances too. In the context of the Melodic project,
CAMEL is being extended in order to support modelling of both data-intensive applications and
datasets as well as the modelling of non-functional terms (properties or metrics) for both data
and data-intensive applications. As depicted in Figure 3, CAMEL is a super-DSL which includes
multiple DSLs, each focusing on a particular aspect. CAMEL has been designed based on EMF
Ecore5 and Object Constraint Language (OCL). EMF Ecore enables the specification of UML-
based meta-models, while OCL constraints accompany such meta-model specification with the
coverage of additional domain semantics. Using the provided Melodic interfaces to the end-
users that includes a CAMEL editor, application developers create a CAMEL model which is

5 http://www.eclipse.org/modeling/emf/downloads/

http://www.melodic.cloud/
http://www.eclipse.org/modeling/emf/downloads/

www.melodic.cloud 13

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

processed by the Melodic middleware. As shown in Figure 3, Cross-Cloud application
deployments via CAMEL follow a model@run-time [15] approach that extends MDE [6] to the
runtime system. In such an approach, the abstract representation of a system and related
knowledge, in terms of models, is kept in synchrony with the running system so that when a
modification to the model is done on-demand, a corresponding change in the system is
automatically reflected. The modification to the model is a result from the reasoning system
which, based on a MAPE loop as described in chapter 1, keeps the target model updated
according to the monitoring data obtained from the running system and the specifications
described in CAMEL. By exploiting models at both design- and run-time, and by allowing both
direct and programmatic manipulation of models, CAMEL enable self-adaptive Cross-Cloud
applications which automatically adapt to the changes in their operating environment.

We now briefly describe extensions to the application and data modelling in CAMEL to cover
modelling needs of Melodic. An overview of the CAMEL modelling language is provided in [3],
while the detailed specification is kept updated at the CAMEL website6.

 Application Modelling

The focus of the application modelling extensions in CAMEL is to capture a rich set of
information about the data-intensive applications for allowing both current and future feature
implementations in the Melodic platform. The Melodic component implementations, however,
may ignore certain modelling aspects and focus on others according to the description of work.
Nevertheless, the modelling vocabulary can also be extended by Metadata schema, as presented
in deliverable D2.4 Metadata Schema [16].

The extension performed in the deployment meta-model part of CAMEL are depicted in Figure 4.
Concerning internal application components, we have decided to cover the following additional
information:

 The data which is consumed and generated by the component. A component can be a
data consumer, a data producer, or both.

 Whether a component is long-lived or not. By default, a component is long-lived as this
covers the case of ordinary and legacy application components (which live as long as the
application that contains them). On the other hand, short-lived components can only be
task-based.

6 http://camel-dsl.org/

http://www.melodic.cloud/
http://camel-dsl.org/

www.melodic.cloud 14

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 4: A snapshot of the CAMEL deployment meta-model focusing on the data-intensive
application modelling extension

Concerning the configuration of an internal application component, the changes performed are
extensive covering configurations of data-processing frameworks, such as MapReduce and
Spark.

 Data Modelling

The data modelling extensions in CAMEL enables modelling of salient aspects of the data that
characterise data-intensive applications and are manipulated by the Melodic Upperware for the
reasoning of data placement and migrations. These aspects are captured either directly by the
data meta-model (Figure 5), or indirectly by supplying the possibility to the modeller to specify

http://www.melodic.cloud/

www.melodic.cloud 15

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

features (i.e., new elements generated at the model level) or attributes (extra from those covered
by the data meta-model in CAMEL) that come from the meta-data schema [16]. The coverage of
the data aspect in CAMEL has led to the generation of a new meta-model, Data, a snapshot of
which depicted in Figure 5.

Figure 5: The data meta-model in CAMEL

 Models Repository

The Models Repository is part of the Upperware but is being presented in this section to
emphasise its connection with the modelling part of the Melodic platform. The Models
Repository stores the models manipulated by the Upperware components. The Melodic user-
interfaces, in particular the editors, exploit this repository in order to store the models
graphically generated by the users in order to enable their further processing by the core of the
Melodic platform. The Models Repository mainly relies on an internal component called
CDOServer which represents the server part in this repository enabling the storage and retrieval

http://www.melodic.cloud/

www.melodic.cloud 16

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

of models. The realisation of CDOServer is based on the Eclipse CDO technology7 which enables
the robust persistence of the manipulated models in the underlying storage which can take the
form of a relational or a hibernate database. The technology also comes with additional features
like the lazy loading of models and the support for transactionality. At the client side of this
repository, the CDOClient lies offering an interface that enables users or programs acting on
behalf of them to perform various actions over models, including in-memory loading as well as
storing in the Models Repository, in cooperation with the CDOServer. The CDOClient is currently
exploited by various components in the Upperware which require interaction with the models
repository.

2.3 Melodic Interfaces to the End-Users

The users of the Melodic interact with the Melodic platform in two ways. First, application
developers need to model their applications and data via an appropriate interface that enables
valid CAMEL formal specifications utilisable by the Upperware components for reasoning
application deployments. Second, the CAMEL language may itself need extensions based on the
requirements of the Melodic adopters, and a formal way to enable defining extensions is
required.

For modelling applications and data, two CAMEL editors are developed, a textual CAMEL editor
and a web-based CAMEL editor. The textual CAMEL editor is based on Eclipse IDE and allows
Create-Read-Update-Delete (CRUD) operations over the main CAMEL elements for describing,
among others, the decomposition of the Cloud application into its components and for defining
placement and scalability requirements that follow the required service level objectives (SLOs).
Moreover, data sets are also modelled via the same editor. A screenshot of the textual editor is
given in Figure 6.

7 https://wiki.eclipse.org/CDO

http://www.melodic.cloud/
https://wiki.eclipse.org/CDO

www.melodic.cloud 17

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 6: A screenshot of the textual CAMEL editor

The web-based CAMEL editor, as shown in Figure 7, provides a user-friendly way to edit CAMEL
models through a form-based web interface.

http://www.melodic.cloud/

www.melodic.cloud 18

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 7: A screenshot of web-based CAMEL editor

Apart from the modelling based on the default CAMEL specification, we foresee that certain
aspects of the CAMEL language may need extensions based on the requirements of the Melodic
adopters. The extensible Melodic vocabulary has been described in terms of the Metadata
Schema in deliverable D2.4 [16]. In particular, we anticipate extensions on the Requirement,
Metric, Scalability, Location, Provider and Security sub-models of CAMEL. Thus, certain aspects
of the Metadata Schema has been seamlessly introduced in the CAMEL language and are
available to the CAMEL editor. Any Melodic adopter is allowed to amend this Metadata Schema
according to their organisational needs using the Metadata Schema editor. The editor will
provide two functionalities:

 Enable CRUD operations over the Melodic vocabulary
 Provide the necessary functionalities for receiving Cloud application developers’ or

DevOps’ preferences over a number of qualitative criteria based on the Metadata Schema.

Figure 8 shows a screenshot of the web-based Metadata schema editor.

http://www.melodic.cloud/

www.melodic.cloud 19

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 8: A screenshot of the web-based Melodic metadata schema editor

http://www.melodic.cloud/

www.melodic.cloud 20

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

3 Upperware

Figure 9: Overview of the Upperware Components

In this chapter, we focus on the details of the Upperware component group by providing a
conceptual architecture and by describing its interactions with the other Melodic components.
The Upperware comprises a number of software components that encapsulate all the necessary
functionality for making timely decisions on appropriate Cross-Cloud data placements and
application deployments. Basic aspects of this part of the Melodic architecture involve the
appropriate components for finding optimal Cross-Cloud resources allocation and application
placement in each situation, and coordinating the respective deployment. The output of
Upperware will constitute the critical input for the Executionware component group (chapter 4),
by propagating the best possible (re)configuration solution (translated into a number of
deployment/configuration actions) based on the current status of the deployment topology in
order to enact it.

Upperware also includes the appropriate user interfaces (as seen in Figure 9) for extending the
critical aspects of the CAMEL language based on the extensible Melodic vocabulary (i.e.,
Metadata Schema) as discussed in chapter 2. Moreover, the Models Repository also constitutes a
part of the Upperware, as described in section 2.2.3.

http://www.melodic.cloud/

www.melodic.cloud 21

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

3.1 Upperware Components

In the following, we describe each of the Upperware component in detail along with the
implemented interfaces and interactions with other components (apart from the already
analysed Editors and Models Repository).

 CP Generator

The CP Generator component is responsible for generating constraint programming (CP) models
that are processed and solved by Melodic’s solvers. Constraint programming models are
extensively used to search feasible solutions from within large sets of candidate solutions by
modelling the search problem in terms of arbitrary constraints [17]. The CP Generator
component reads the CAMEL application model and all needed CAMEL provider models and
based on them it creates a CP model that expresses a constraint equation needed by solvers. The
CP Generator also executes preliminary filtering of the virtual machine offerings to limit the
solution space for the solvers based on the various types of requirements given by the user in
CAMEL application model. Furthermore, the CP Generator sets up and creates a Utility Generator
instance which will be used to evaluate the value of the utility function for a given problem. The
input interface of CP Generator will be exposed on ESB as a REST API interface. The interface
accepts the path to the model in CDO Server. As output the path to the generated CP Model in
CDO Server is returned.

 Utility Generator

As mentioned previously, Melodic is the application owner’s automated DevOps tool that aims to
optimise the application deployment according to the application owner’s goals and
requirements. The concept of utility has since long been used in economic theory to capture
someone’s preferences and guiding decisions [18]. In autonomic computing it has been
extensively used to express the goodness of a particular application configuration as seen and
perceived by the application owner [19]. The Utility Generator is therefore an object acting on
behalf of the application owner in the system, and it can use an arbitrary method to assign a
utility value to a given deployment configuration proposed by the solver.

Once the solver has a solution candidate configuration, i.e., a vector of values assigned to the
variables of the CP model that satisfies all the CP model constraints, it publishes this
configuration to the Utility Generator. The Data Life-cycle Management System (DLMS),

http://www.melodic.cloud/

www.melodic.cloud 22

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

discussed in detail in section 3.2, and the Adapter also see this configuration. The former
assigns a penalty for adopting this configuration based on the effect this configuration will have
on data location and use. The Adapter will assign its penalty value based on the deviation from
the currently running application to the new configuration proposed using the models at
runtime approach of dynamic software product lines [20]. The reconfiguration penalties from
the DLMS and the Adapter will then be used by the Utility Generator to assign a utility value in
the closed interval [-1, 1] to the candidate configuration. If the utility value is positive it means
that the candidate configuration is better seen from the application owner’s perspective than
the currently running baseline configuration; conversely, if it is negative, it is then worse than
the baseline configuration.

It should be noted that the solver generates a sequence of candidate configurations, and if a
certain configuration’s utility value is better than the currently running baseline configuration, it
will be compared with the candidate configuration that has currently received the highest utility
value compared with the currently running baseline configuration. If this comparison is positive
for the new candidate configuration it is taken to be the best configuration seen until now, and
retained as a deployment candidate configuration. This solution is then forwarded to the Solver-
to-Deployment component and further to the Adapter, which may decide to reconfigure the
running baseline configuration to this new deployment candidate, or reject the new deployment
candidate for some reasons. The solver could then store the deployment candidate
configuration and start its search for a better configuration based on this solution. The utility
value assigned to the deployment candidate configuration will in this case be maintained if the
Adapter rejects it because the running baseline configuration used for the utility comparison
will then stay as before, or the utility value of the deployment candidate configuration is set to
zero if the Adapter accepts this configuration so that it becomes the new baseline for comparing
other future candidate configurations.

There are several approaches the Utility Generator may take to assign a utility value to a given
candidate configuration. The application owner could, in theory, provide a mathematical
function, often called Utility Function, taking a configuration vector as argument and returning
a utility value. However, experience from several relevant major research projects clearly shows
that it is a very difficult exercise even for advanced DevOps to formulate a good and usable
utility function, and alternative configuration evaluation methods may prove equally effective
[21]. For instance, given that the application owner’s goals and preferences are often imprecise,
fuzzy logic seems as a good candidate for comparing the configurations [22]. As the fuzzy base
functions can easily be parameterised, it may be easier for the user to specify and tune a
configuration comparison to match approximately the perceived goodness of a particular
configuration. Fuzzy rules have previously been applied for autonomic computing [23], but to our

http://www.melodic.cloud/

www.melodic.cloud 23

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

knowledge fuzzy preference modelling as a way to capture the application owner’s true utility
has not been previously applied, and this approach will be further explored in Melodic.

The candidate configuration could be simulated in a Cloud platform simulator in order to
evaluate its performance on key indicators, and then assess the goodness of the candidate
configuration relative to the running baseline configuration. CloudSim8 is one of the best-known
Cloud simulators, with multiple variants and forks [24]. However, conducting an extensive
simulation for every candidate configuration proposed by the solver will make the decision
process prohibitively slow, and therefore this option remains an alternative to explore only for
specific applications beyond the scope of Melodic. Alternatively, a way to assess a candidate
configuration is of course to deploy the configuration regardless of adaptation cost, and then
actually measure if it behaves better or worse than the baseline configuration it has replaced.
This is probably as slow as conducting a full simulation of the deployment, and more intrusive
to the running application; and it will introduce additional deployment cost. One could, of
course, solicit the application owner’s opinion about a given candidate configuration, and based
on the iterative user feedback obtained learn the application owner’s preferences and goals. This
approach could certainly be used during the CAMEL model tuning phase to ensure that the
stated requirements and constraints result in a desired deployment, and therefore serve as a
starting point for the autonomic Melodic deployment. It may not be easy for the application
owner to judge the utility of a configuration, although this approach remains a possibility to
explore with the use case partners of Melodic.

 Metasolver

The Metasolver constitutes the responsible software component that orchestrates the operation
of the Solvers and ranks their outputs based on the application developer’s or DevOps’ needs. As
explained below, the Melodic platform may accommodate any number of Solvers. These Solvers
may use different methods and algorithms, such as constraint and linear programming or
reinforcement learning [25] in order to reason on the best possible use of Cross-Cloud resources
for placing data and applications. The role of Metasolver includes the following responsibilities:

1. Selection and invocation of the appropriate Solver(s) according to:
a. the (non)-linearity of the constraint problem at hand
b. time available for finding a (re)configuration solution

8 http://www.cloudbus.org/cloudsim/

http://www.melodic.cloud/
http://www.cloudbus.org/cloudsim/

www.melodic.cloud 24

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

2. Collection of Solver(s) solution(s) according to the predefined time thresholds set by the
DevOp

3. Comparison of available local optimum solutions based on the preferences defined by the
DevOps or the application developer over a number of qualitative and quantitative criteria
(e.g. amount of security services supported)

The main inputs for the Metasolver are the description of the Cloud application in CAMEL (e.g.
scalability rules described) along with the CP model defined by the CP Generator. The output of
the Metasolver is one solution produced based on one of the following two alternatives.

1. The optimum solution calculated by a certain selected solver (i.e., solution propagation)
in case the constraint problem’s size (i.e., both in terms of the number of variables used
and the multitude of the possible solutions) is small enough to allow the calculation of
the optimum solution faster than the time threshold set (I.e. the solver will have the time
to find the optimum solution)

2. The identification of the best solution based on the weights on certain predefined
qualitative and quantitative criteria (e.g. provider’s reputation, resource’s ecological
footprint) in case the time threshold set was not enough for any of the available solvers to
derive the optimum solution (e.g., on adaptation scenarios). The approach for selecting
the best solution will follow an appropriate multi-criteria decision making technique (e.g.
Analytic Hierarchy Process)

In either case the Metasolver’s output is stored on the Models Repository (realised through CDO
server) and a reference to it is relayed to the Solver-to-deployment component for constructing
the CAMEL deployment model which will drive the initial placement or reconfiguration
implementation. Based on the selected solution to be implemented the appropriate information
is sent to the Utility Generator for consideration during the future utility function evaluations.

In case where a new adaptation is triggered, due to a scalability rule that was fired (e.g., >80%
CPU usage THEN Scale-out) or a service level objective (SLO) violation (e.g., number of users
>1000) the Metasolver invokes one or more solvers, requesting the calculation of a new optimum
solution. It is important to note that in such scaling-out situation, two additional instances of a
VM offering (e.g., m1.medium) might be automatically created but then the solver may reason
about the need to change into just one VM with more VCPUs (e.g., m1.large) because it is the
optimum option from the cost point of view. As such, to appropriately address such situations, it
is advocated that the time available for finding the best reconfiguration should be much more
limited with respect to that of the initial placement.

http://www.melodic.cloud/

www.melodic.cloud 25

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 CP Solver

The CP Solver is responsible for solving a certain deployment reasoning/optimisation problem
that is encoded in the form of a CP model. Such a deployment reasoning problem is expressed in
the form of a constraint model (along with the utility function handled by the Utility Generator)
which encompasses the following information.

 A set of constraints mapping to the SLOs defined by the user in the same CAMEL model
 A set of variables which denote the number of instances that an application component

should have over a certain VM offering that satisfies the quantitative hardware
requirements posed by the user for that component

 A set of constraints denoting further baseline restrictions over the variables; for instance,
that the number of instances of an application component should not overpass the
horizontal scalability requirement posed by the user in the same CAMEL model

Before solving the CP model, the CP Solver transforms it to the form expected by the CP Engine
exploited internally by it which is the Choco solver engine9. Once the end result is produced, i.e.,
the solution, this result is then written back to the CP model processed.

The major features of this component include the following:

 Ability to also handle non-linear constraints
 Ability to incorporate in the constraints arbitrary, user-defined functions. Such functions

could, for instance, correlate different variables together or they could enable the
derivation of the non-functional capabilities at a higher-level (e.g., component level) from
those exhibited at a lower level (e.g., the infrastructure one). For example, the execution
time of a certain application component could be expressed in the form of a linear
function which encompasses the characteristics of the VM on which that component is
deployed along with the current workload.

 Ability to solve problems containing various types of variables, including integer-, and
real-based. Integer-based variables are those mapping to the main variables of the CP
model which express the number of instances of a component per matching VM offering.
A real-based variable could express a certain non-functional parameter for an application
component or the user application as a whole which might be involved in the constraints
of the CP model mapping to the SLOs posed in the user CAMEL application model as well
as on the main optimisation objectives of the CP model. As an example, the memory size
for the whole application could be expressed as a variable which is derived from the

9 http://www.choco-solver.org/

http://www.melodic.cloud/
http://www.choco-solver.org/

www.melodic.cloud 26

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

memory size of all of its components which in turn are derived via the weighted sum of
the number of instances that each component has for a certain VM offering multiplied by
the memory size of that VM offering. Then, a user might have provided a SLO which
denotes that the application memory size should be greater than, e.g., 256 GB, which
could then be expressed as a constraint in the CP model that involves the
aforementioned variable.

 Ability to set a time threshold for the solving process, especially in case that the CP
model obtained is complex and thus may take significant time to be solved

 Ability to concretise some parts of the CP model and especially the mapping between
application components and Cloud offerings via the exploitation of best deployment
knowledge that can be obtained by enforcing the execution of respective rules
incorporated in a Knowledge Base that operates over the corresponding application
history. Such partial concretisation of the CP model solution accelerates the solving of
that model.

Currently, the CP Solver takes as input the CDO path to the CP model as well as a corresponding
timestamp which denotes a certain part in the CP model where some constant values, mapping
to measurements to be assigned to metric variables, can be found. Such values vary with respect
to each solving of the CP model within the same deployment session of a user application so the
timestamp enables the CP Solver to obtain the right variation. The CP solver returns as output
the result of the solving in terms of whether a solution was found or the CP model was
infeasible. It also writes the solution back to the CP model within the dedicated path in the CDO
model repository where this model has been stored.

The solver exposes a REST interface with two methods that can be executed by issuing POST
requests. These methods are more or less similar, as they map to the same core logic of solving a
CP model and take as input similar parameters with the exception that the first obtains a path to
the CDO model repository in order to read the CP model while the second a path in the local file
system.

 LA Solver

The Learning Automata (LA) solver is based on the realisation that the constraint mapping
problem to solve is inherently stochastic [26]: Even if an application component is mapped to a
virtual machine, that virtual machine is again mapped by the Cloud infrastructure provider to a
physical server hosting multiple virtual machines such that the component performance can
vary even in the same time period. This is the well-known issue of performance variation due to
resource contention over the underlying hardware. Another example is when the application

http://www.melodic.cloud/

www.melodic.cloud 27

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

utility is based on the average response time experienced by the application users where this
measured response time is an implicit function of the unpredictable number of users and the
amount of virtual resources provided to the application, and per the first example the amount of
physical resources these virtual resources can access. The consequence of such examples is
that both the application utility, which is the application owner’s “objective function” to be
maximised, and the constraints set for this optimisation can be stochastic and context
dependent, in general.

This situation cannot be tackled by most solvers that will have to restart the search for a
solution every time a measurement or context parameter changes value, and then must find a
solution to the problem before the next change happens. Learning Automata are involved in a
game with a stochastic environment where the environment has a certain unknown probability
for rewarding a choice made by an automaton [27]. The goal of the automaton is to identify the
“action” that maximises the reward it receives through a sequence of interactions with the
environment. This theoretical framework fits well with the situation faced in Melodic, and a set
of learning automata is used, one for each discrete variable of the CP problem like location,
choice of machine type, and the number of cores, where the possible actions for each automaton
correspond to the domain of the discrete variable it tries to optimise. The consequence is that
the automaton gradually becomes more confident on its choice of action with every feedback it
gets from the environment.

The LA solver therefore needs to run in parallel with the running application. Each automaton
can be started with action probabilities selected from historical knowledge about the goodness
of a choice, and then continuously propose assignments for the variable it tries to optimise
aiming to improve the expected application utility. If no initial action probabilities are given, it
will assume that all values in the variable’s domain will be equally good initially with the same
selection probability until the game with the environment makes it possible to identify out the
better values. If the CP problem has continuous variables, these will be solved using the BOBYQA
algorithm [28] with the discrete variables fixed by the set of learning automata. An assignment
of all variables of the CP problem corresponds to a possible deployment configuration.

A configuration satisfying all the constraints of the CP-problem will be proposed to the Utility
Generator, which will assign a goodness to this configuration relative to the currently running
configuration. If the utility of the new configuration is higher than the currently running
configuration, the new configuration will be proposed as a deployment candidate, and the
stochastic search for an even better candidate will continue.

Hence, the CP-Generator will create a source file specifying the variables and their domains, the
metrics to provide context dependent values, and the constraints involving variables and metric
references. These definitions will then be compiled and linked with the LA solver code, and
when the executable starts it will load persisted action set probabilities for the given variables

http://www.melodic.cloud/

www.melodic.cloud 28

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

from the Models Repository and start the search. Once it has a deployment configuration
candidate, it will be proposed to the Utility Generator and the iterative game starts. The solver
will subscribe to a binary shut-down flag, and once this flag is set the current value of the action
probabilities for each discrete variable will be written back to the Models Repository, and the
solver executable terminates.

 Solver-To-Deployment

The Solver to deployment is a component which has the responsibility to apply a certain
solution derived from the solvers to the CAMEL model of the application to be deployed. The
main goal is to move from a provider-agnostic deployment model of the application at the type
level to a provider-specific model of that application at the instance level. The CAMEL
accommodates for the specification of both types of models. As such, the role of the Solver to
deployment component is to check how many instances of application components and VMs
are needed to be created as well as to make the respective connections between them (i.e.,
communication & hosting instances) in order to generate the provider-specific deployment
model required. As a certain major consideration, in the context of this generation, this
component also needs to map the instances of VMs modelled to the exact offerings from the
respective model of the provider that they match.

In order to achieve its goal, the Solver to deployment needs to obtain as input the paths in the
Models Repository of two models: (a) the CP model in which the solution has been imprinted; (b)
the CAMEL model of the user application. Furthermore, optionally this component might obtain
a timestamp in order to denote the part of the CP model where the latest solution resides. If this
timestamp is not given, the Solver to deployment component attempts to consult the
corresponding CP model part with the latest timestamp. As a result, the CAMEL model is
updated within the Models Repository and a notification is sent about the success or not in
updating this model.

 Adapter

The Adapter is the component responsible for analysing and validating a new CAMEL
deployment model and defining a number of reconfiguration action tasks to be executed in a
specific order, i.e. a reconfiguration action graph. The validation might involve cost and time
constraints aspects. Specifically, the adapter instructs the Executionware to execute these
action tasks in order to implement the optimised deployment configuration for the current
execution context found by the solver.

http://www.melodic.cloud/

www.melodic.cloud 29

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

To guide the solver's search for the better deployment for the current context, the adapter
assigns a reconfiguration penalty for the migration from the current deployment to a new
deployment candidate proposed by the solver by considering the complexity in time and
component placements of the difference between the current deployment and the candidate.
This penalty will be used by the Utility Generator in order to compute the final utility of a
proposed, new deployment; and thereby guide the solver to implicitly consider the
reconfiguration in its decision on the next, better deployment configuration.

The main features of the adapter component are:

 To update the CAMEL model of the running application as soon as the actual deployment
changes as a result of platform level scaling actions, or when the application execution
context changes.

 To calculate the difference between the updated model of the currently running
application and the new, optimised deployment proposed by the solver.

 To compute the sequence of reconfiguration tasks necessary to change the deployment
from the current deployment to the proposed deployment.

 To assign a reconfiguration penalty based on the complexity of these reconfiguration
tasks.

 To instruct Executionware to execute the reconfiguration tasks in the appropriate order
as a series of REST API calls once the proposed deployment has been accepted, and
monitor the outcome of these actions to ensure that the application has been properly re-
configured by the Executionware.

The Adapter will expose its interface as a REST API on the ESB. The input to the Adapter is a
reference to the proposed CAMEL model stored in the Models Repository by the Solver to
Deployment component. The output is the result of the reconfiguration as returned by the
Executionware.

 Event Processing Management

Complex event processing has evolved into a dominant method for monitoring of
reactive/adaptive applications [31]. In Melodic, the Event Processing Management, is the
component responsible for the synchronisation and orchestration of Event Processing Agents,
while it undertakes the setting up of complex event processing rules on each of these Agents.

http://www.melodic.cloud/
http://www.espertech.com/products/esper.php

www.melodic.cloud 30

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

We are considering Esper10 engines for the implementation of these Event Processing Agents on
each Virtual Machine commissioned for Melodic-enabled Cloud application deployment.
Specifically, this component is responsible to instruct where to deploy new or additional Event
Processing Agents that will undertake the task of processing hardware and application level
monitoring events (coming from Monitoring Probes) in order to detect SLOs or scalability rules
violations (i.e. complex event patterns). On a successful deployment, it also undertakes the
configuration or enhancement of all the appropriate rules used in each Event Processing Agent.
We note that the definition of these rules will be performed according to the needs expressed in
CAMEL models as scalability rules and SLOs.

One of Event Processing Management mechanism’s unique characteristics is that it
materialises (through proper instructions to Executionware) and manages a distributed network
of Event Processing Agents. This network of agents will be structured across three main
hierarchy layers: the VM instance layer, the Cloud layer and the Global layer. The first one
corresponds to the installation and configuration of Event Processing Agents on each VM
instance (where application components are placed) in order to focus on the aggregation,
filtering and propagation of application specific monitoring data and raw (hardware level) health
status events. The second layer will involve the use of one such agent per Cloud for extracting
higher level information on the placed data and Cloud application. This will allow for a valuable
consolidated view of monitoring data per Cloud based on the aggregation and processing of the
output of local Event Processing Agents that report from each VM. Consequently, the third layer
(residing on the same resources used for the Adapter) will involve the aggregation of the “second
level” Agents’ output in order to allow for a global overview of the status of the whole topology
used by the Melodic platform for monitoring and event generation (which leads to detecting the
need to scale/adapt the application). Thus, the Event Processing Management component is
responsible for setting up and maintaining a distributed Event Processing system bound to the
DevOps’ and/or application developers’ requirements.

Due to the need for dynamic and adaptive deployments of various Virtual Machines, we are
considering the use of a flexible type of messaging protocol to transfer the raw data coming
from the Monitoring Probes to the Event Processing Agents (e.g., the use of Apache ActiveMQ11
over Mule ESB). For this reason, the Event Processing Management component will use an
interface which is based on the Publish/Subscribe model. The Event Processing Management
component will mainly interact with the Adapter. Specifically, its input will involve the
triggering from the Adapter in order to consider the rules, configuration and deployment of the
Event Processing Agents based on the (new) CAMEL deployment model. Its output will firstly

10 http://www.espertech.com/products/esper.php
11 http://activemq.apache.org/

http://www.melodic.cloud/
http://activemq.apache.org/

www.melodic.cloud 31

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

involve the submission of appropriate deployment and configuration instructions per each
Event Processing Agent, to the Executionware. In addition, its output will involve the complex
event patterns detection posted on the control plane for invoking placement adaptations. We
note that among the responsibilities of the Event Processing Management mechanism is also
the detection of the Monitoring Probes that should be also installed on each VM used by Melodic
(based on the CAMEL model). This part of the work is handled by a dedicated sub-component,
the Event Probes Manager as explained below.

 Event Probes Manager

The Event Probes Manager is the component responsible for deciding and instructing (the
Executionware) to deploy new monitoring probes and configuring their respective event topics
used per metric and per node (i.e., VM). The objective is to install all the necessary sensing
software in order to transmit application-level and hardware-level raw monitoring data that
reveal the state of the application components and the health status of the Cloud resources used
(e.g., CPU load, RAM usage, etc.). This mainly involves the Adapter, based on a devised action
graph, to invoke the Event Probes Manager in order to configure and trigger the installation of
monitoring software on selected nodes (VMs) through the Executionware. The raw monitoring
data is collected and processed by Event Processing Agents (as explained in section 3.1.8 above).
In case of reconfiguration, the Event Probes Manager will be capable of detecting only the delta
of monitoring probes and instructing the installation of the missing ones while deregistering
probes placed on decommissioned resources.

3.2 Data Lifecycle Management System (DLMS)

Data-intensive computing is characterised by challenges associated with complete data
lifecycle comprising data collection, data storage, and data analysis of heterogeneous datasets
[29]. The complexity of managing datasets also grows with their volume. In Cross-Cloud
deployments, intelligent and pre-emptive data placement strategies are important for efficient
data-intensive computing [30]. In addition, data placement in Cloud are also generally subjected
to long-term storage selection, as migration may incur high costs, depending on the size,
location, and other characteristics of the datasets. As a result, the initial Cloud selection for a
given data source potentially affects the subsequent placement of applications requiring access
to that data source, a phenomenon commonly referred to as data gravity. To efficiently manage
data-sources, Melodic Upperware includes a dedicated component, DLMS, which enables
holistic management of data lifecycle in Cross-Cloud environments.

http://www.melodic.cloud/

www.melodic.cloud 32

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

The main functionality DLMS offers include:

 Management of data sources on behalf of the Melodic user
 Optimal data placement in the Cloud based on user-defined data placement

requirements, constraints, and associated costs
 Keeping user-defined data requirements satisfied throughout the data lifetime
 Assignment of data transfer and access costs associated with data sources given an

application topology and its data access requirements

All data sources available to the applications deployed through Melodic are modelled (See
section 3.2, Data Modelling) and registered in DLMS. Once a data source has been registered in
Melodic, it will be managed by DLMS throughout its life-cycle. This covers, when required, the
selection of an appropriate location for the initial placement of the dataset on a Cloud based on
the user-defined requirements and data storage costs in various Clouds, and subsequent
migrations based on the application and data deployment solutions calculated by the Solvers.
Note that both external and internal data sources are possible, where external data sources are
referred to the ones uncontrollable by the Melodic platform and the DLMS will not be able to
manage them.

From the monitoring plane, DLMS will subscribe to the data access metrics associated with the
data processing by deployed application components. Making use of the historical information
about the data access patterns of the application components, and the incurred monitory costs
in the Cloud (data access and data storage costs), DLMS will create the business logic for
assigning costs to the data sources, given the location of the application components accessing
the data. As component data access patterns may be variable and only stabilise over time, DLMS
will employ machine learning techniques to improve prediction accuracy over time.

In the Upperware workflow, for each solution proposed by a Solver, the Utility Generator will
consult DLMS which will associate a cost given the particular Cross-Cloud application
component topology and current location of the required data sources, as prescribed by the
solution. For instance, if the proposed solution does not require any data migrations, DLMS will
assign nominal costs to the solution. However, when a deployment solution requires moving
very large datasets to another location, the costs assigned by DLMS will be very high affecting
the subsequent utility of the solution. Moreover, DLMS will also ensure that the data placement
requirements are not violated by providing an infinitely high cost when the respective user-
defined data constraints are violated for a given solution. In addition to the cost assignment,
when a reconfiguration to the existing deployment is required, DLMS will be consulted by the
Adapter to trigger any data migrations required for the concerned datasets. The actual data
migration though will require customised migration scripts provided by the user at the time of
data registration in DLMS. DLMS interfaces will be exposed as REST APIs on ESB.

http://www.melodic.cloud/

www.melodic.cloud 33

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 10: An overview of the data life-cycle management system

An overview of the internal architecture of DLMS is shown in Figure 10. At the heart of the DLMS
is a DLMS controller that manages interaction between DLMS interfaces and the reasoning
algorithms DLMS employs to assign costs to the proposed deployment solutions. DLMS
interfaces include a data registration and access API that is used to register data sources, as well
as interfaced by the big data applications to connect to the managed data sources. This is
important as the data sources managed by the DLMS are subjected to the data migrations, if
needed, according to the data life cycle management algorithms. As shown in the figure, the
Utility Generator uses a Utility Calculation interface provided by the DLMS to query the data-
related cost associated with each solution proposed by a Solver. In addition, DLMS also provides
a Data Migration interface to the Adapter which is used to realise actual data migrations using a
Data Migration Service. The data migration service uses data migration plugins provided by the
user, which are executed through DLMS Agents that are deployed on each VM initiated by the
Executionware. The DLMS agents, besides enabling data migrations, also install probes to record
data access/transfers by the application components running on a VM. The monitoring data
received by the DLMS agents is forwarded to the Event Processing Agents and is handled
through Event Processing Management as discussed in section 3.1.8. A Data Catalog is
maintained with both historical information about the data access patterns as well as updated

http://www.melodic.cloud/

www.melodic.cloud 34

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

application and data models, prescribed in CAMEL by the user. The DLMS algorithms include
machine learning classifiers and pattern detectors to infer data access and migration costs and
usage patterns according to the historical information stored in the data catalog, and the real-
time monitoring data available through Event Processing Management.

3.3 Upperware Interfaces & Workflows

In this section we provide a bird’s eye view of Upperware with the aim to provide an overview of
its internal and external interfaces along with an explanation of the involved workflows that
present how its objectives are attained. In particular, this presentation is based on the detailed
descriptions provided in the previous sections concerning the individual software components
of Upperware. It demonstrates how all these individual software components can interoperate
for reaching timely decisions on the most suitable data and data-intensive application
components placement over Cross-Clouds.

Figure 11 presents an outline of the workflow that involves the main tasks performed by
Upperware components in order to reach an initial placement decision of both data and the
Cloud application using the appropriate Cloud resources from single or multiple providers (the
same figure is shown enlarged by Figure 12 to Figure 15). Specifically, the process begins with an
opportunity for the application developer to enhance (through the Metadata Schema Editor) the
already available Melodic vocabulary (which is presented in Melodic Deliverable D2.4 - Metadata
Schema [16]) comprised of concepts that can be used for expressing placement and scalability
requirements. Moreover, preferences over a number of selected qualitative criteria can be
provided by the developer (Metadata Schema Editor) to be used in Metasolver’s decisions on
finding the best placement solution when only local optimum solutions are available (i.e.,
adaption scenarios) by the Solvers. In addition, the application developer with the use of a
dedicated CAMEL editor, models her application along with its placement, scalability
requirements and relevant service level objectives (SLOs). The sequence of the interactions
involving the two editors are also depicted in the Upperware sequence diagram, while their
provided and required interfaces are presented in the component diagram in Figure 21.

http://www.melodic.cloud/

www.melodic.cloud 35

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 11: Upperware BPMN diagram (initial placement) – outline (enlarged by Figure 12 to Figure 15)

U
p

p
e

r
 W

a
r
e

S ta r t E ve n t

U pd a te & S to r e

M etad a ta S c he m a

th r o ug h M e ta da ta

S c h em a E d i to r

C r e a te & S to r e

A pp l i c a ti on M od e l i n

C A M E L th r o ug h th e

C A M E L E d i to r

F o r m u la te C P

P r ob le m & C on fig ur e

U F E va lua tio n

In i tia te C P S o lvin g

b y T r i g g e r in g

A pp r op r ia te S o l ve r s

E a c h S o l ver

P r op o s e s a

C an d id a te

S o lu ti on

D LM S C a lc u la tes

D ata M ig r a tio n

C os t

U ti l i ty G en er a to r

C a lc u la te s th e U F

Va lu e

O ptim u m S o lu tio n

F o u nd o r T im e

T hr e s ho ld M et?

S ho u ld D a ta be

M ig r a ted?

S to r e (lo c a l)

O p tim um

S o lu ti on

M e ta s o lve r S e le c ts th e

B e s t S o lu ti on B a s ed o n

Q u a l i ta tive & Q ua n ti ta tive

P r e fe r e n c e s

A r e T h er e M o r e

T h a n O n e

P r o po s ed

D e p loym e nts ?

C r ea te N e w C A M E L

D e p lo ym e n t M o de l

A r e A l l th e

D e p loym e nt

A c tio ns

A u th o r iz e d b y th e

S e c u r i ty

M e c h an is m ?

Ins tr u c t E xe c u tio n

W a r e to Im p le m e nt

N e w D e p lo ym en t

Ins tr u c t E xe c u tion W a r e to

D e p loy N ew /A d d i tio n a l

M o n i to r in g P r ob e s

In s tr uc t E xec u tion W ar e to

D e p loy N ew/A d d i tio n a l E ve nt

P r o c e s s in g A g e nts

C o nfig u r e E ve n t

P r o c es s ing M g m t.

S h ou ld D a ta b e

M ig r a te d?

In s tr u c t D LM S to

M ig r a te D ata

N o ti fy o n

S u c c e s s fu l In i ti a l

A pp l i c a ti on

P la c em e n t

S u c c e s s

D ep lo ym en t &

M ig r a tio n o f D ata (i f

a p p l i c ab le) E ve n ts

R ec e i ved ?

In fe as ib le

P r ob le m ?

N um b er o f r e tr ie s

exc e ed e d the th r e s ho ld ?

C o nfig u r e U F

E va lu a tio n (fo r

fu tu r e

r ec on fi g u r a tion s)

A
p

p
li

c
a

ti
o

n
 D

e
v
e

lo
p

e
r

S ta r t E ven t

U p d ate M e lo d i c

V o c a bu la r y &

S e t W e ig h ts o n

Q u a l i ta ti ve

C r i te r i a

P r o vid e A p p l ic a tion

P la c e m en t &

S c a lab i l i ty

R eq u i r em e nts , S L O s

B e In for m e d o n

In i ti a l A p p l ic a tio n

P la c e m e nt

B e In fo r m ed o n

A pp l i c a ti on

P lac e m en t

R e c o nfig u r a tio n

E
x
e

c
u

ti
o

n
 W

a
r
e

N o

N o

Ye s

Yes

N o

Ye s

N o

Yes

N o

N o

Ye s

N o

N o

Yes

http://www.melodic.cloud/

www.melodic.cloud 36

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 12: Upperware BPMN diagram (initial placement) – enlarged, part I of IV

http://www.melodic.cloud/

www.melodic.cloud 37

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Figure 13: Upperware BPMN diagram (initial placement) – enlarged, part II of IV

Application Developer

Upperware

http://www.melodic.cloud/

www.melodic.cloud 38

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 14: Upperware BPMN diagram (initial placement) – enlarged, part III of IV

Application Developer

Upperware

http://www.melodic.cloud/

www.melodic.cloud 39

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 15: Upperware BPMN diagram (initial placement) – enlarged, part IV of IV

Application Developer

Upperware

Executionware

http://www.melodic.cloud/

www.melodic.cloud 40

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Once the initial placement problem has been formulated in CAMEL, the CP Generator creates the
constraint programming (CP) problem and configures the Utility Generator for being able to
evaluate the different candidate solutions that each solver may suggest. Based on the type of CP
problem at hand (as it was discussed in section 3.1.3) the Metasolver triggers the appropriate
Solver (e.g., CP Solver) while it starts any other solver (i.e., LA Solver) that is based on
reinforcement learning and should continuously operate in the background. As shown in Figure
16 (enlarged by Figure 17 to Figure 20), every time the involved Solver(s) tries a new candidate
configuration, the Utility Generator provides a utility value (using, e.g., Utility Function or Fuzzy
Logic) that can be compared to the best configuration candidate already found. DLMS is invoked
to provide an estimation of the data migration cost as described in section 3.2. In case that there
are more than one proposed deployment solutions (i.e., time for calculating the optimum
solution was not adequate, and more than one solvers were used), the Metasolver selects the
best one based on the functionality described in section 3.1.3. The (local) optimum solution is
stored in the Models Repository, while the Utility Generator is also informed to consider this
solution in future UF evaluations that might be requested by the Solvers.

http://www.melodic.cloud/

www.melodic.cloud 41

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 16: Upperware BPMN diagram (reconfiguration) – outline (enlarged by Figure 17 to Figure 20)

A
p

p
li

c
a

ti
o

n
 D

e
v

e
lo

p
e

r

B e In fo rm e d o n

A p p l ic a t io n

P la c e m e n t

R e c o n fig u ra t io n

E
x

e
c

u
ti

o
n

 W
a

re
U

p
p

e
rW

a
re

A g g re g a t e &

P ro c e s s E ve n t s

W e re S c a la b i l i t y

R e q u i re m e n t , S L O

V io la t io n C o m p le x

E ve n t s o r a n y

C h a n g e in P ro vid e rs

O ffe r in g s D e t e c t e d ?

T r ig g e r t h e (a l re a d y

u s e d) S o lve rs fo r

N e w C P S o lvin g

E a c h S o lve r

R e t r ie ve s M o n i t o r in g

In fo rm a t io n

C o n c e rn in g t h e

C u r re n t P la c e m e n t

E a c h S o lve r

P ro p o s e s a N e w

C a n d id a t e

S o lu t io n

A d a p t e r C a lc u la t e s

R e c o n fig u ra t io n

T im e P e n a l t y

S h o u ld D a t a b e

M ig ra t e d ?

D L M S

C a lc u la t e s D a t a

M ig ra t io n C o s t

U t i l i t y G e n e ra t o r

C a lc u la t e s t h e U F

V a lu e

O p t im u m S o lu t io n

F o u n d o r T im e

T h re s h o ld M e t ?

M e t a s o lve r S e le c t s

t h e B e s t (L o c a l)

O p t im u m B a s e d o n

Q u a l i t a t i ve &

Q u a n t i t a t i ve

P re fe re n c e s

S t o re (lo c a l)

O p t im u m

S o lu t io n

C re a t e N e w C A M E L

D e p lo y m e n t M o d e l

A re t h e D e p lo y m n e t

A c t io n s A u t h o r iz e d

b y t h e S e c u r i t y

M e c h a n is m ?

I n s t r u c t E x e c u t i o n W a r e ,

D L M S & E v e n t P r o c e ss i n g

M g m t to I m p l e m e n t

R e c o n f i g u r a t i o n

N o t i fy o n

S u c c e s s fu l

A p p l i c a t io n

P la c e m e n t

R e c o n fig u ra t io n

C o n fig u re U F

E va lu a t io n (fo r

fu t u re

re c o n fig u ra t io n s)

Is t h e N e w

D e p lo y m e n t

P la n V a l id ?

(A d a p t e r)

D e r ive D e p lo y m e n t

A c t io n s

U p d a t e C P

M o d e l 's M e t r i c s

(b a s e d o n

m o n i t o r in g d a t a)

M o n i t o r in g E ve n t s C o m p le x E ve n t P a t t e rn s

Y e s
Y e s

N o

N o

Y e s

N o

Y e s

Y e s

N o

N o

http://www.melodic.cloud/

www.melodic.cloud 42

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Figure 17: Upperware BPMN diagram (reconfiguration) – enlarged, part I of IV

Application Developer

Executionware

http://www.melodic.cloud/

www.melodic.cloud 43

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Figure 18: Upperware BPMN diagram (reconfiguration) – enlarged, part II of IV

Application Developer

Executionware

Upperware

http://www.melodic.cloud/

www.melodic.cloud 44

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Figure 19: Upperware BPMN diagram (reconfiguration) – enlarged, part III of IV

Application Developer

Executionware

Upperware

http://www.melodic.cloud/

www.melodic.cloud 45

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Figure 20: Upperware BPMN diagram (reconfiguration) – enlarged, part IV of IV

Application Developer

Executionware

Upperware

http://www.melodic.cloud/

www.melodic.cloud 46 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 21: Upperware UML Component Diagram

Next, the Metasolver requests Solver-to-Deployment component to create and store the CAMEL
deployment model that will drive the placement implementation orchestrated by the Adapter
and executed by the components of the Executionware. We note that, before the Adapter is
allowed to proceed with the new solution, there can be an optional manual validation step by the
DevOp that may indicate his consensus for allowing the initial placement or the re-
configuration of a big data intensive application. Then, the Adapter instructs the commissioning
of Cloud resources and the data/application placement according to an action graph devised
based on the CAMEL deployment model. After this, the Event Processing Management
component is instructed to initiate the deployment of the monitoring probes and event
processing agents as explained in sections 4.8 and 4.9. Besides, if any data artefacts should be

http://www.melodic.cloud/

www.melodic.cloud 47

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

moved from their current hosting environments, then the DLMS will undertake their migration.
Both Adapter’s and DLMS activities are authorised by the security services described in section
6.1. Upon a successful implementation of the initial application placement, all the necessary
configurations (described in sections 3.1.8 & 3.1.9) will take place for detecting situations in
which adaptation might be needed.

Based on the distributed event processing approach that Melodic will adopt, the Upperware will
be informed and triggered on time about any scalability requirements or SLOs violations that
will be intercepted as complex events. Other triggers for initiating the reconfiguration process
may constitute any change in the Cloud provider offerings (e.g., provider outage, replacement of
a certain VM offering). We note that based on how the application placement has been
configured there are cases where small, automatic scaling actions (e.g., adding 2 new instances
of a certain application component) can be directly performed by Executionware in order to
guarantee the appropriate operation of the Melodic-enabled application. In either case, the
Upperware will be informed and a process for calculating the new placement optimum solution
will be triggered. During this reconfiguration process, the Metasolver updates the CP Model in
the Models Repository (based on the relevant monitored data) and invokes again the relevant
Solvers with (probably) a shorter time threshold. Solvers request the Utility Generator to provide
UF values, while the latter invokes both DLMS and Adapter for receiving data migration costs (if
it is implied by the candidate solution) and reconfiguration penalties, respectively. These costs
are considered in the calculation of the UF value provided back to the Solver. After the time
threshold is reached, the Metasolver compares the available local optimum solutions against the
current (to be adapted) placement topology as it has been implemented by the Executionware.
The best option is selected and if it does not match with the current implementation then once
again the Adapter will undertake the task of devising an action graph based on which it will
instruct the Executionware, DLMS and Event Processing Management components to
implement the new placement solution for the application, its data and the monitoring and
event processing infrastructure.

The provided and required interfaces of the Upperware components are depicted in the
component diagram of Figure 21. We note that the control plane was omitted for improving the
readability of this diagram. Moreover, the sequence of the interactions involving all Upperware
components is also depicted in the Upperware sequence diagram (Figure 22) where more details
are presented. We note that this sequence diagram is also provided in three parts for improved
readability (Figures 23, 24, 25).

http://www.melodic.cloud/

www.melodic.cloud 48

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 22: Upperware UML Sequence Diagram

http://www.melodic.cloud/

www.melodic.cloud 49 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 23: Upperware UML Sequence Diagram in parts (1/3)

http://www.melodic.cloud/

www.melodic.cloud 50

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 24: Upperware UML Sequence Diagram in parts (2/3)

http://www.melodic.cloud/

www.melodic.cloud 51

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Figure 25: Upperware UML Sequence Diagram in parts (3/3)

http://www.melodic.cloud/

www.melodic.cloud 52 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

4 Executionware

Figure 26: High-level Executionware Architecture

In the overall workflow of Melodic, the Upperware interacts with the Executionware in order to
deploy data intensive applications, specified in the user-supplied CAMEL application model, to
the Cloud. Hence, the main responsibilities of the Executionware are the management of diverse
Cloud resources in a provider-agnostic way, the orchestration of data intensive applications on
top of these Cloud resources and the deployment of the monitoring services to collect run-time
metrics.

http://www.melodic.cloud/

www.melodic.cloud 53

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4.1 Cloud Orchestration

A high-level view on the Executionware components and its interaction is depicted in Figure 26.
The core functionalities of the Executionware are built upon the Cloud orchestration tool (COT)
[32], Cloudiator [33] [34]. Hence, the Cloudiator Interface represents the central entry point for the
Upperware to interact with the Executionware. Cloudiator was initially developed within the
PaaSage project with the focus on orchestrating web-based applications components in a Cross-
Cloud context. Within the CACTOS project, Cloudiator was enhanced with respect to private
Cloud deployment by adding functionalities, such as the discovery of private Cloud resource
offerings or the optimised virtual machine placement by selecting the physical host to run the
virtual machine. As Melodic requires the management of more diverse Cloud resources in
conjunction with the orchestration of Big Data processing frameworks, Cloudiator will be
redesigned in the context of Melodic in order to provide a more flexible and extensible
architecture, adding a holistic Resource Management Framework and Data Processing Layer to
Cloudiator. Further, the Monitoring Services of Cloudiator will be extended to support the
integration of Event Processing Agents of the Upperware’s Event Probes Manager.

As the enhanced architecture of Cloudiator is inspired by recent advancements in large-scale
cluster management systems, its terminology for executable entities differs from the CAMEL
terminology. The basic entities are depicted in Figure 27. While CAMEL features an application
centric view, where the users model applications and their components, Cloudiator’s entities are
more execution centric. It, thus, uses a Job entity to group multiple independent, executable
Task entities that require execution. One execution of a task is represented by a Process entity,
therefore mapping exactly one task entity to a Node (e.g. representing a VM). We therefore map
an application described by CAMEL to one Job, and each application component described in
CAMEL to a Task. Instances described in CAMEL are mapped to process entities in Cloudiator.

Figure 27: Cloudiator Executable Entity Terminology

The workflow of interactions between the Upperware and the Executionware is depicted in
more detail in Figure 28 by explaining the workflow addressing the placement of both a job as
well as the corresponding monitoring/event processing. The application deployment is initiated
by the Upperware by requesting a new deployment by the Executionware. Thus, the
Executionware provisions the required nodes and deploys the specified processes on top of the
nodes. These processes comprise traditional web-based processes, data processing processes

such as Apache Spark applications and PaaS processes. Cloudiator already offers the

http://www.melodic.cloud/

www.melodic.cloud 54

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

life-cycle agent Lance for web-based applications and will be extended with additional life-cycle
handler to support data processing and PaaS processes. After the deployment of the processes,
the Upperware is requesting from the Executionware the deployment and configuration of the
Event Processing and Monitoring on the provisioned nodes at the Executionware. After
executing these steps, the Executionware notifies the Upperware about the deployment state,
i.e., success or possible error messages in order to retry the deployment with a different
configuration.

Figure 28: Executionware Deployment BPMN

A high level view on the Cloudiator components is depicted in Figure 14. As entry point to
Cloudiator, a REST interface is provided. The interaction with the REST interface is enabled via a
Web-based UserInterface and programmatically via API client libraries for multiple
programming languages. Consequently, the programmatic interaction is exploited in the
Upperware, which is interacting with the REST Server via the API client library.

Behind the REST Server, Cloudiator is built upon a message-driven architecture, following the
publish-subscribe paradigm. Therefore, each call against the RestServer is transformed into a
Cloudiator specific message and published to the KafkaMessageQueue. For the sake of clarity,
the KafkaMessageQueue component of the Cloudiator architecture is depicted without the
dedicated interaction between all Cloudiator components. Yet, all internal communication
(behind the RestServer) of Cloudiator relies on messages over the KafkaMessageQueue.

4.2 Resource Management

Building upon the initial Cloudiator features, the new architecture enhances Cloudiator with the
dedicated Resource Management Framework and Data Processing Layer components as
depicted in Figure 29. In this respect, Cloudiator provides the automated discovery of Cloud
resource offering of IaaS providers, which can be triggered via DiscoveryQueries. The
DiscoveryAgent collects the resource offerings from the Cloud providers, while the

http://www.melodic.cloud/

www.melodic.cloud 55

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

DiscoveryRegistry stores the collected resource offerings. The collected resource offerings can
be enriched via additional metadata from third party providers, such as CloudHarmony12, by the
MetaDataService. The discovery and the actual provisioning of Cloud resources across multiple
Cloud providers is enabled by the Provider Agnostic Interface Mapper, which is integrated into
the Resource Management Framework of Cloudiator.

Figure 29: Cloudiator Architecture

As the Upperware requests a new deployment by the Executionware, Cloudiator executes a
sequence of multiple steps across the Cloudiator components, which is depicted in the sequence
diagram in Figure 30.

12 https://cloudharmony.com/

http://www.melodic.cloud/
https://cloudharmony.com/

www.melodic.cloud 56

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

4.3 Data Processing Layer

A new deployment is requested by the Upperware at the RestServer component of Cloudiator.
Consequently, the RestServer creates an internal message which is published via the
KafkaMessageQueue, triggering the NodeAgent to allocate the required number of nodes at the
specified Cloud providers. As depicted in Figure 14, this step can be executed multiple times,
depending on the specified resources by the Upperware. The NodeAgent is responsible for
allocating new Cloud resources, i.e., triggering the provisioning of VMs via the
VirtualMachineAgent and the bootstrapping of the VM with internal Cloudiator tools, namely
Lance for the lifecycle management of the processes and Visor (our MonitoringAgent) for their
monitoring [23]. In addition, the NodeAgent will be able to include existing nodes into the
orchestration workflow of Cloudiator, e.g., non-Cloud resources such as physical servers located
a user site. All nodes are stored in the NodeRegistry and can be queried via the REST interface.
Further, the modular architecture of the Resource Management Framework allows the
integration of other resources management frameworks such as Apache Mesos13 or Hadoop
YARN14 as special NodeAgent types.

After the provisioning of the required nodes, the NodeAgent publishes a message in the
KafkaMessageQueue, indicating the initiated nodes and triggering the Data Processing Layer,
which takes over with the Scheduler transforming the defined Tasks into deployable Processes
and triggers their orchestration via the ProcessAgent. Due to the heterogeneity of the Processes,
from traditional web-based Processes to data-intensive Big Data Processes, the ProcessAgent
triggers the required agent to orchestrate the Process on the defined resources: the LanceAgent
orchestrates Processes on IaaS level, the PaaSAgent orchestrates Processes running on PaaS
level and the Data Processing Process for data processing clusters. Due to the modular
architecture of Cloudiator, a Data Processing process can be implemented via SparkAgents to
orchestrate Apache Spark clusters15 or MapReduceAgents for Hadoop MapReduce16 clusters. The
information of the Jobs, their Tasks and the deployed Processes is stored in the JobRegistry,
which can be queried via the RESTServer. In case of unsuccessful deployments due to resource
or task failures, Cloudiator will inform the control plane of the Upperware to trigger a
redeployment. The monitoring and event processing configuration and deployment of the nodes
is managed via the MonitoringAgent, which configures and triggers the monitoring probes on
selected nodes based on the instructions of the Upperware. Based on the provided configuration,
raw monitoring data from the respective nodes is provided to the Event Processing Agents and
stored in the MonitoringDatabase, which is queried by the Upperware.

13 http://mesos.apache.org/
14 https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
15 https://spark.apache.org/
16 https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

http://www.melodic.cloud/
http://mesos.apache.org/
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://spark.apache.org/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

www.melodic.cloud 57 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 30: Executionware deployment sequence diagram

http://www.melodic.cloud/

www.melodic.cloud 58 This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

5 Auxiliary Services

In this chapter, we describe two important auxiliary components in the Melodic middleware
platform, the Security Services and Status and Event Service (as shown in Figure 5). The
Security Services component includes sub-components necessary to realise secure operations
within the Melodic platform. The status and event Service is a utility service offering a unified
and integrated event notification mechanism for the Melodic components.

5.1 Security Services

Security services encompass those architectural components responsible for authenticating
and authorising the actions of core Melodic components, related to the implementation of data
placement and application actions. They comprise of the Authentication and Authorisation
services as well as a security and access policy repository.

Authentication service securely stores all credentials used for accessing Cloud providers
services or for attesting Melodic components when making decisions, commissioning or
decommissioning Cloud resources, placing or reconfiguring an application and migrating data.
It may contain an actual credentials store or alternatively use an external identity system (e.g.,
LDAP or other).

Authorisation Service corresponds to a policy-based security mechanism that enables the
adequate protection of sensitive Melodic platform resources (such as components, workflows
and data), both from unauthorised access attempts as well as from compromised or
misbehaving platform parts (due to cyberattacks). Based on this service, we are introducing an
additional guarantee, in case of a cyberattack, that the Melodic platform will not deploy any
application changes, which contradict the constraints set by the application developer or the
DevOps. The policies involved are Attribute-Based Access Control (ABAC) policies, expressed
using the eXtensible Access Control Markup Language (XACML) [35], which is the de facto
standard in XML-based access control policies. The language is generic and extensible enough
as it provides several syntactical artefacts that enable the expression of complex access control
rules using contextual information. The authorisation service encompasses an XACML-
compatible policy engine, as well as the corresponding XACML repository.

Security services communicate with the rest of Melodic components through ESB. They receive
events about the availability of new placements, and publish events reporting the security check
outcome (permit or deny, as well as the reasons of such denial). Security check reports can be
stored in the Models Repository alongside the application models and other artefacts. Security

http://www.melodic.cloud/

www.melodic.cloud 59

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

services input can either be authentication requests or new configuration and deployment
actions. The former may originate from any Melodic component whereas the latter may come
from the Upperware’s Adapter. In both cases, the output is routed back to the requesting
component (originator).

From a conceptual perspective, Security services interface with Melodic Upperware and
Executionware for authorisation, as well as those Melodic components that require
authentication. In technical terms, they communicate with the ESB in order to send and receive
events, the Models Repository in order to retrieve deployment models and other needed
information while we may also consider the use of an external identity server.

5.2 Status and Event Service

The Status and Event Service is a utility service that encompasses operational status
notifications and control events to the Melodic platform. Following operations will be realised by
this service:

 GetStatusData – returning deployment/reasoning status of the given application with
additional data (deployment plan, found solutions, etc.)

 UploadData – method which allows to upload CAMEL models into the platform
 StartReasoning – method which allows to start reasoning process
 StartDeployment – method which allows to start deployment process.

The service will be implemented as an ESB service. The communication between integration
layer ESB and this service will be realised through a REST API. The list of exposed methods
could be extended in the future. This service will be also used by User Interface component of
the Melodic platform. Further, the usage by external systems (e.g., monitoring systems) will be
possible as future extensions.

http://www.melodic.cloud/

www.melodic.cloud 60

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6 Initial Feature Definitions

In this chapter, we describe key Melodic capabilities and list its salient features. The feature
definitions presented here correspond to the requirements gathered and presented in the
deliverable D2.1 System Specification. To start the chapter, in section 7.1, we briefly present the
timeline of the planned Melodic releases so that we can associate a target release to each of the
features we describe later in the chapter. Next, we list the Melodic capabilities and the initial
associated features, stemming from the generalised requirements of efficient execution of data-
intensive applications in Cross-Cloud environments, in section 7.2. Next, in section 7.3, we move
on to the list of Melodic features originated from the specific use-case requirements of our four
demonstration use-cases. All feature requirements are gathered and documented in the
Melodic’s JIRA17. Once the features corresponding to the generic and use-case requirements
have been described, we present features beneficial to satisfy non-functional requirements of
the Melodic middleware platform in section 7.4. Note that the feature set presented in this
document is initial based on the requirements gathered in the first iteration (as reported in D2.1
System Specification). As new requirements may come during the project, for instance as
feedback from iterative use-case implementations, the final list of features will be presented in
the deliverable ‘D2.6 Final Features’ towards the end of the project.

6.1 Planned Software Releases

As per the description of action, the Melodic project plans to have three releases. The first
release, due in M12, is the integration release integrating the identified components of existing
platforms developed by the PaaSage, CACTOS, and the PaaSword projects. The first release will
be able to deploy applications on resources acquired from multiple Cloud providers and monitor
them, however, without any data-awareness. The second release, due in M24, adds both the
data-awareness in the Melodic platform and the security component. This release also
encapsulates the initial integrated platform with the big data processing frameworks for
deploying user big data applications. The second release, due in M24, enhances the first
platform release with additional capabilities spanning data-awareness and security as well as
encompasses initial integration with selected big data processing frameworks, thus making it
capable to support the deployment of big data applications. The third release, final release,
includes the feedback from the second release and incorporates the final set of features at the
project end (M36).

17 https://jira.7bulls.eu/

http://www.melodic.cloud/
https://jira.7bulls.eu/

www.melodic.cloud 61

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Following a comprehensive evaluation and code assessment of the available components from
PaaSage, CACTOS, and PaaSword (as described in D2.1), it was observed that some key
integration functionalities are missing, as well as some component redevelopment and code
refactoring is necessary to build a solid foundation for the upcoming releases, and to achieve
efficient software maintenance. The features missing in PaaSage, for instance, the professional
enterprise bus and flexible orchestration using BPM, in the long term would hinder both the
flexibility and easy extensibility of the platform. Therefore, the consortium decided to pay
special attention to building a solid code-base foundation in the first release. Yet, as some of the
component integration is not possible in the tighter first release schedule, the Melodic
consortium agreed to include another release between the integration release, and the prototype
release. The added intermediate release, versioned as Release 1.5, will complete the integration
of the available components from the parent projects on the solid foundation led by the first
release. Additionally, it will introduce some new features (previously not planned before the
second release) as described in more detail in section 7.3 and section 7.4. The key changes as
featured in the integration layer over the parent projects are subject of D5.02 Update to OSS
frameworks.

The updated release timeline is shown in Figure 31.

Figure 31: Updated release timeline for the Melodic middleware platform

• Solid framework
foundation

• Initial component
integration

Initial Integration
Release 1.0

• Complete component
integration

Intermediate
Release 1.5 • Data-awareness and

integration with data
processing frameworks

• Security technical
component

Prototype
Release 2.0

• Final set of features

• Evaluation in use-cases

• Commercial applications

Final Release 3.0

M12

M16

M24

M36

http://www.melodic.cloud/

www.melodic.cloud 62

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6.2 High-Level Melodic Capabilities and Salient Features

The high-level Melodic capabilities and corresponding features based on the generalised
requirements of deployment and execution of data-intensive applications on Cross-Clouds are
provided in Table 2: Melodic capabilities and features corresponding to the generalised Cross-
Cloud requirements.

Table 2: Melodic capabilities and features corresponding to the generalised Cross-Cloud
requirements.

Capability Features

Transparent Deployment
and Execution of Data-
Intensive Applications on
Cross-Cloud infrastructures

 Ability to comprehensively model data-intensive
applications and requirements, covering both design-time
and runtime parameters

 Support of provider-agnostic Cloud interfaces for IaaS and
PaaS platforms

 Ability of automated deployment of applications in
distributed Cloud environments

 Support for the deployment of two major big data
processing frameworks, Apache Hadoop MapReduce and
Apache Spark

 Implementation of a Cross-Cloud resource management
system for the data-processing frameworks

 Realisation of efficient algorithms for data-aware
application component deployments over Cross-Cloud
resources

Holistic Data Management

 Ability to comprehensively model specification and
requirements for heterogeneous data sources

 Data-awareness in Cross-Cloud application deployment
models

 Efficient data placement and migration methodologies on
Cross-Cloud platforms

 Context-aware data access control
 Metadata-schema with appropriate editors

http://www.melodic.cloud/

www.melodic.cloud 63

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Runtime Adaptation of
deployed data-intensive
applications

 Ability to calculate optimised Cross-Cloud resource
allocations for data-intensive applications

 Support for user-defined scalability rules for intra-Cloud
application scaling

 Ability to improve reasoning accuracy over time using
historical data and statistical models

 Availability of efficient re-configuration mechanisms
 Support for proactive reconfiguration of applications

Privacy and Confidentiality
for applications deployed
on Cross-Clouds

 Context-aware access control mechanisms for distributed
cross-domain deployments of data-intensive applications

Application Support

 Support for MapReduce and Spark big data processing
frameworks

 Application components correctly mapped on
heterogeneous Cross-Cloud infrastructures according to
the application requirements

 Data-aware deployment of big data applications

Private Cloud Resource
Management

 Optimal usage of private Cloud resources by exploiting, for
instance, topology, and hardware-specific information
unavailable on public Cloud platforms

Application Scalability and
Availability

 Support for computational and data scaling
 Support for application-defined Cloud-specific scalability

rules
 Utility-based scalability through global application

reconfiguration
 Transparent exploitation of geo-graphically dispersed

Cloud locations to increase application availability

http://www.melodic.cloud/

www.melodic.cloud 64

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

6.3 Features corresponding to the use-case requirements

In Table 3: Features corresponding to the use-case requirements, related components, and target
releases.3, we list the features extracted from the use-case requirements. We also list the
affected component or component groups in the Melodic platform as well as the target release
for the realization of these features. Note that many of these features indirectly correspond to
the capabilities and features listed in section 7.2.

Table 3: Features corresponding to the use-case requirements, related components, and target
releases.

Feature Specification and Benefits Components
Target
Release

Ability to add application components/component
instances during runtime

Ability to add new application components and component
instances during runtime will reduce reconfiguration
downtime for the use-case applications.

User Interface,
Upperware,
Executionware

3.0

Running big data frameworks over aggregated resources
from the infrastructures of different Cloud providers

Transparent execution of data-intensive applications and
components on Cross-Clouds will help taking full advantage
of different offerings of the Cloud providers, and will
optimise costs and running time for the user jobs.

Upperware,
Executionware

2.0

Automatic configuration of the big data frameworks

Automatic configuration of the big data frameworks on
acquired Cloud resources, based on information specified in
CAMEL, will substantially decrease deployment and
configuration time for the big data applications.

Executionware 2.0

http://www.melodic.cloud/

www.melodic.cloud 65

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Efficient optimisation of the big data frameworks based on
historical data from metrics

Efficient optimisation of the job allocations and data
placement during runtime, based on gathered performance
data, will optimise application performance and cost in the
Cloud.

Upperware,
Executionware

2.0

Reconfiguration of big data frameworks based on user-
specification

Application-specific reconfigurations are only possible
when the reconfiguration of big data frameworks based on
user-specification is supported.

Modelling, Upperware 2.0

Ability to specify scalability rules for the big data
applications in CAMEL model

Application developers need to define scalability rules for
their big data applications to adapt with the dynamic
workload.

Modelling, CAMEL
Editor

1.5

Ability to use predefined big data metrics

For quickly setting up monitoring, the basic big data
framework metrics need to be selectable in the CAMEL
model as Melodic metrics.

CAMEL Editor 2.0

Ability to specify initial configuration for the big data
frameworks

The initial configuration of the big data frameworks greatly
influences the performance for the data-intensive
applications. For Melodic users, the CAMEL model should be
rich enough to specify initial configurations, e.g., executors
per node, cores per executor, memory per executor etc.

CAMEL Editor,
Executionware

2.0

Ability to use existing big data cluster

A melodic user can only benefit from available existing big
data cluster from Melodic, if the support to deploy
applications on existing big data clusters, such as Spark
cluster, is provided.

Upperware,
Executionware

2.0

http://www.melodic.cloud/

www.melodic.cloud 66

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Ability to use custom image of big data frameworks

Many users benefit from customisation of big data
frameworks for their applications. So, it is important to have
the capability of specifying custom binary image for the big
data framework installations in the Cloud infrastructure.

Modelling,
Executionware

3.0

Ability to utilise existing Mesos cluster

Existing data centre Mesos cluster should be able to be
utilised from the Melodic platform.

Executionware
Upperware

3.0

Support of ProfitBricks 18as infrastructure Cloud provider

CAS Software needs deploy applications on VMs provided
and managed by ProfitBricks as they have good presence
and support in Germany. Cloudiator needs to be extended
with an additional adapter/driver to communicate with the
ProfitBricks API to start/shutdown VMs.

Cloudiator Interfaces 1.5

Ability to define scalability rules in the web-based editor

A web-based editor will greatly simplify defining scalability
rules in an intuitive way without the necessity to
understand to whole complexity of the underlying model.
For instance, in the form of “if CPU load > 90%, then scale
out.

CAMEL Editor 2.0

Ability to define application/component requirements in
the web-based editor

A web-based editor will greatly simplify application
requirement modelling without the necessity to understand
the complete CAMEL metamodel.

CAMEL Editor 1.5

Ability to model application components in web-based
editor

A web-based editor will greatly simplify application
modelling without the necessity to understand the
complete CAMEL metamodel.

CAMEL Editor 1.5

18 https://www.profitbricks.com/

http://www.melodic.cloud/
https://www.profitbricks.com/

www.melodic.cloud 67

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Cloud service provider models

In order to find an appropriate infrastructure for the
deployment, the Cloud providers and the services they offer
need to be described.

CAMEL,
Executionware

2.0

Ability to specify utility and cost function for the Melodic
Upperware

As the utility of a deployment is based on the perception of
the user, it is important that the user themselves can
specify utility and cost functions used in the reasoning
process of the Melodic Upperware.

CP Generator 3.0

Ability to utilise template utility profiles

With reference to the use-case requirements pertaining to
rapid utility function placement, utility profiles will be
offered where users can base their utility function on the
base templates and specify basic parameters, for instance
response time requirements, without the need to specify the
whole utility function itself.

User Interfaces

3.0

Ability to view/monitor deployed applications through a
user interface

The Melodic users would like to view and monitor their
application deployments through the Melodic dashboard.

User interface 3.0

Ability to optimise private resource allocations through
hardware-level selection

As private Cloud infrastructure offer greater administrative
capabilities for the workload optimisations, hardware-level
selection of resources, topology exploitations will greatly
improve deployment solutions.

Upperware 3.0

Support of PaaS

Many Cloud providers offer useful PaaS services for the
Cloud users, such as RDMS, or ElasticSearch. Enabling
PaaS-based deployment and exploitation of PaaS services
will improve the overall user-experience and support array
for the Melodic.

Upperware,
Executionware,
CAMEL Editor

3.0

http://www.melodic.cloud/

www.melodic.cloud 68

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Support for DevOps tools like Chef/Puppet/Ansible

User-case partners would like to use DevOps tools like
Chef/Puppet/Ansible for managing the lifecycle of their
application components. A preliminary approach could be
to add support for the Ansible recipes into CAMEL instead
of installation/configuration scripts, based on predefined
Ansible templates.

Executionware 3.0

Utility generator interface

Utility generator interfaces will enrich the optimisation
capabilities of the Melodic Upperware

Utility Generator 1.5

Support of multiple solvers

Different application mappings and requirements leads to
different problem sets. Ability to use multiple solvers help
reaching solution faster as the appropriate solver can be
used according to the problem description.

Meta solver 2.0

Support of Component Composition

Full support of component composition is needed to
correctly model applications using such attributes.

CAMEL,

CP Generator
3.0

Ability to specify component co-location parameter in the
application modelling

Performance of communicating application components
improves considerably when they are co-located.

CAMEL,

CP Generator
2.0

Allow replication of the components across Cloud providers

Replication of critical components across Cloud providers
will improve the application availability. From modelling
perspective, this can be done by adding an attribute
Replication in CAMEL to mark components which should be
replicated between defined numbers of Cloud providers.

CAMEL, Upperware,
Executionware

Upperware,

2.0

http://www.melodic.cloud/

www.melodic.cloud 69

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Ability to reconfigure applications based on the delta
deployments

To avoid frequent orchestration and re-orchestration of the
Cloud resources, it is important to have the ability to deploy
only changes/delta between current deployed deployment
plan and the new one.

Adapter 1.5

Ability to evaluate reconfiguration utility and overhead
before the actual reconfiguration

To avoid frequent reconfigurations and resultant downtime
and overhead, the new deployment plan needs to be
validated based on the differences in value of the utility
function. If there are already deployed applications with
given deployment plan, a new deployment plan should be
deployed only if the utility of the new plan is better than the
previous one (including the consideration of the
reconfiguration overhead).

Adapter 2.0

Ability to optimise, reconfigure, scale application
components

Apart from optimising / reconfiguring the big data
processing frameworks, other legacy application
components might also need to be re-configured at runtime.

For CAS use-case, based on the monitoring information and
usage statistics, the applications and the data storage need
to be scaled.

All 1.5

http://www.melodic.cloud/

www.melodic.cloud 70

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Ability to integrate Melodic with other systems through an
API

In order to integrate the Melodic framework with other
systems, Melodic needs to offer an external programming
interface.

CE-Traffic needs such an API to easily deploy and
reconfigure their applications.
Third-party developers also need to use such as API to
connect to the CAS App Store in order to deploy their apps.
The CAS app store will use the Melodic API and offer a
dedicated user interface to their developers.

Melodic Interfaces to
the End Users,
Melodic External
APIs

2.0

Ability to specify backup strategy for the data sources

The ability to specify backup strategies through the Melodic
platform will help avoiding losing data and possible
downtimes.

For CAS, in case of deploying an app that uses its own data
and data store (not acting on data stored and managed on
CAS premises), it would be useful to define a backup
strategy and let Melodic manage the data replication and
backup.

DLMS, CAMEL 3.0

http://www.melodic.cloud/

www.melodic.cloud 71

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Ability to deploy several applications on one Melodic
framework instance

The use-case partners CE-Traffic and CAS Software will
benefit from the ability to deploy multiple applications on
one Melodic framework instance.
The approach here would be that several applications are
modelled as components of one larger parent application.
Then, it should be possible to include new instances of
existing component types to the model during runtime.
This should trigger the parsing and reasoning of the model,
and the subsequent deployment process.
In CET use case, Melodic will be used to deploy several
applications or several instances of the same application
but with different settings, often sharing the same data
sources. Therefore, in view of general deployment
management and usability, Melodic should run as one
instance supporting several deployments.
As part of the CAS use case, Melodic will be used in
combination with the app store to support the deployment
(and dynamic deployment changes) for several apps
running on the same CAS Open platform.

CAMEL Editors,
Upperware,
Executionware

2.0

http://www.melodic.cloud/

www.melodic.cloud 72

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Ability to deploy docker containers

The use-case partners CE-Traffic and CAS Software will
benefit from the ability to deploy docker containers via
Melodic.

For CE-Traffic, Kubernetes 19 dockers may be used to run
multiple instances of the same application for the
evaluation of traffic control settings (using traffic
simulation or machine learning algorithms) in parallel.
Each instance will be run with different parameters.

CAS will investigate the use of docker containers for the
deployment of either the platform itself or the 3rd party
apps. CAS would profit from reusing the information
provided in the docker file for the app description in
CAMEL.

CAMEL,
Executionware

2.0

6.4 Features corresponding to the non-functional requirements

In Table 4, we list the features that are not directly visible to the end users but contribute
towards achieving the non-functional requirements specified for the Melodic platform. We have
also indicated key targets for the first release.

Table 4: Features corresponding to the non-functional requirements

Non-Functional
Requirement

Feature and Benefits

Extensibility and Openness

Component Integration via Enterprise Service Bus (ESB)

ESB integration provides a consistent interface through which
components interact with each other. This simplifies
communication as the individual components need to conform

19 https://kubernetes.io/

http://www.melodic.cloud/
https://kubernetes.io/

www.melodic.cloud 73

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

only to the standard communication interface, and not
implement direct communication between each other.
Integration through ESB provides easy component integration,
and improves platform extensibility and reusability.

ESB integration is targeted for Release 1.0.

Software Maintainability

Key component refactoring

Key platform components inherited from selected European
projects need to be refactored/rewritten from scratch to improve
quality, maintainability, and extensibility. For instance, the
Adapter is rewritten and the CP Generator would be refactored
for Release 1.0.

Reliability

High-Availability (HA) configuration

Due to redesigning the integration layer in the Melodic platform,
the system is ready for HA configuration, even a distributed one.
Thanks to that it is possible to use the platform for the
deployment of critical applications. The key components of the
system could be deployed in multiple instances and fault
tolerance will be achieved by proper configuration.

Flexible orchestration

Orchestration by Business Process Management (BPM)

A business process is used to describe the data and control flow
and though its execution an appropriate orchestration of the
Melodic components is achieved. Thanks to BPM process
orchestration, most of the changes in functional requirements
related to the flow of actions/data could be implemented without
changing the underlying software. This will speed up
implementation of the required changes as the project
progresses. Flexible orchestration through BPM will be
incorporated in Release 1.0.

http://www.melodic.cloud/

www.melodic.cloud 74

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

System Monitoring

Unified Logging

As Control and Data flow in the Melodic platform is integrated
using ESB, BPM, and REST APIs, all requests are centralised and
logged in one place. This helps with troubleshooting the system
and discovery of bugs or misconfiguration issues. The initial
development is targeted for Release 1.0, and will be subsequently
improved in later releases.

Unified deployment

Using Docker components

Starting from Release 1.0, all components of the Melodic platform
are deployed in containers managed by Docker Swarm. Due to
that, the deployment of the platform will be very easy and
flexible.

Security

Implementation of ESB level security

Communication between Melodic components goes through the
ESB. The security, authentication and authorisation of the
method invocation is unified and managed by the ESB. Most of
the authentication and authorization features are the target of
Release 2.0.

Platform Scalability

Implementation of Micro-services

The Melodic platform, starting from Release 1.0, due to the use of
Docker containers and ESB, is built around a micro-services
architecture. Thanks to that, the platform is scalable, both at the
component and integration level and could be used to provision
large scale, big data applications.

http://www.melodic.cloud/

www.melodic.cloud 75

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

7 Conclusions

In this document, we have presented the final Melodic architecture. We identified key Melodic
components and presented their internal architecture. We also presented the interaction
between different Melodic components and the corresponding control and monitoring data flow.
Furthermore, the document also listed key Melodic capabilities, its initial feature definitions,
and the corresponding non-functional requirements. This document will serve as a guiding
reference to the implementation of the Melodic framework, its external APIs, and use-case
demonstrators.

The architecture of Melodic is greatly influenced by the PaaSage project and we take a model-
driven engineering approach where applications and corresponding datasets are first modelled
using a domain-specific language, CAMEL, so that the Melodic platform can reason about their
optimal Cross-Cloud deployments according to the formal specification of the applications in
CAMEL. The platform is conceptually divided into three main component groups: the
Upperware, the Executionware, and the interfaces for user-platform interactions. Application
deployments are continuously monitored and analysed by the Melodic platform, and if the
current deployment is no longer optimal, a new deployment solution is calculated and the
adaptation is planned and executed.

Based on the requirements gathered in the System Specification Document, key Melodic
capabilities and its salient features have been identified. Three main Melodic releases are
planned and the target features for each of the release have been assigned. The feature list will
be updated and extended from the feedback after the initial use-case deployments as well as
from the feedback received from the external users.

http://www.melodic.cloud/

www.melodic.cloud 76

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

References

[1] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, “Cloud federation,”
CLOUD Comput., vol. 2011, pp. 32–38, 2011.

[2] N. Grozev and R. Buyya, “Inter-Cloud architectures and application brokering:
taxonomy and survey,” Softw. Pract. Exp., vol. 44, no. 3, pp. 369–390, Mar. 2014.

[3] Y. Verginadis et al., “D2.1 System Specification.” The Melodic H2020 Project
Deliverable D2.1, 2017.

[4] T. Kirkham and K. Jeffery, “D1.6.2 Final Architecture Design.” The PaaSage Project
Deliverable D1.6.2, 2016.

[5] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to Enhance Cloud Architectures
to Enable Cross-Federation,” in 2010 IEEE 3rd International Conference on Cloud
Computing, 2010, pp. 337–345.

[6] D. C. Schmidt, “Model-driven engineering,” Comput.-IEEE Comput. Soc.-, vol. 39, no.
2, p. 25, 2006.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol.
36, no. 1, pp. 41–50, Jan. 2003.

[8] A. Computing and others, “An architectural blueprint for autonomic computing,”
IBM White Pap., vol. 31, 2006.

[9] H. V. Jagadish et al., “Big Data and Its Technical Challenges,” Commun ACM, vol. 57,
no. 7, pp. 86–94, Jul. 2014.

[10] A. Celesti and P. Leitner, Advances in Service-Oriented and Cloud Computing:
Workshops of ESOCC 2015, Taormina, Italy, September 15-17, 2015, Revised Selected
Papers. Springer, 2016.

[11] D. Chappell, Enterprise Service Bus. O’Reilly Media, Inc., 2004.
[12] J. Sutherland and W.-J. van den Heuvel, “Enterprise Application Integration and

Complex Adaptive Systems,” Commun ACM, vol. 45, no. 10, pp. 59–64, Oct. 2002.
[13] P. Hintjens, ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013.
[14] D. Palma and T. Spatzier, “Topology and orchestration specification for cloud

applications (TOSCA),” Organ. Adv. Struct. Inf. Stand. OASIS Tech Rep, 2013.
[15] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Computer, vol. 42, no. 10,

pp. 22–27, Oct. 2009.
[16] Y. Verginadis, I. Patiniotakis, C. Halaris, G. Mentzas, K. Kritikos, and K. Jeffery, “D2.4

Metadata Schema.” The Melodic H2020 Project Deliverable D2.4, 2017.
[17] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming. Elsevier,

2006.
[18] Center for History and New Media, “Zotero Quick Start Guide.” [Online]. Available:

http://zotero.org/support/quick_start_guide.
[19] Jeffrey O. Kephart and Rajarshi Das, “Achieving Self-Management via Utility

Functions,” IEEE Internet Comput., vol. 11, no. 1, pp. 40–48, Jan. 2007.

http://www.melodic.cloud/

www.melodic.cloud 77

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

[20] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg,
“Models@run.time to Support Dynamic Adaptation,” Computer, vol. 42, no. 10, pp.
44–51, 2009.

[21] Jacqueline Floch et al., “Playing MUSIC — building context-aware and self-adaptive
mobile applications,” Softw. Pract. Exp., vol. 43, no. 3, pp. 359–388, Mar. 2013.

[22] Witold Pedrycz, Petr Ekel, and Roberta Parreiras, Fuzzy Multicriteria Decision-
Making: Models, Methods and Applications. Wiley, 2010.

[23] Mounir Beggas, Lionel Médini, Frederique Laforest, and Mohamed Tayeb Laskri,
“Fuzzy Logic Based Utility Function for Context-Aware Adaptation Planning,” in
Modeling Approaches and Algorithms for Advanced Computer Applications:
Proceedings of the 4th International Conference on Computer Science and Its
Applications (CIIA 2013), Conference Location: Saida, Algeria, 2013, vol. 488, pp. 227–
236.

[24] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms,”
Softw. — Pract. Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[25] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” J.
Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[26] Geir Horn, “A vision for a stochastic reasoner for autonomic cloud deployment,” in
Proceedings of the Second Nordic Symposium on Cloud Computing & Internet
Technologies (NordiCloud 2013), Conference Location: Oslo, Norway, 2013, pp. 46–53.

[27] Mandayam A. L. Thathachar and P. S. Sastry, Networks of Learning Automata:
Techniques for Online Stochastic Optimization, 1st ed. Boston, MA, USA: Kluwer
Academic, 2004.

[28] M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without
derivatives,” Cambridge University, England, UK, Department of Applied
Mathematics and Theoretical Physics, Centre for Mathematical Sciences, DAMTP
2009/NA06, Aug. 2009.

[29] C. L. Philip Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data,” Inf. Sci., vol. 275, no.
Supplement C, pp. 314–347, Aug. 2014.

[30] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in scientific cloud
workflows,” Future Gener. Comput. Syst., vol. 26, no. 8, pp. 1200–1214, Oct. 2010.

[31] A. Buchmann and B. Koldehofe, “Complex Event Processing,” It - Inf. Technol.
Methoden Innov. Anwendungen Inform. Informationstechnik, vol. 51, no. 5, pp. 241–
242, 2009.

[32] J. Domaschka, F. Griesinger, D. Baur, and A. Rossini, “Beyond Mere Application
Structure Thoughts on the Future of Cloud Orchestration Tools,” Procedia Comput.
Sci., vol. 68, no. Supplement C, pp. 151–162, Jan. 2015.

[33] J. Domaschka, D. Baur, D. Seybold, and F. Griesinger, “Cloudiator: a cross-cloud,

http://www.melodic.cloud/

www.melodic.cloud 78

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

multi-tenant deployment and runtime engine,” in 9th Symposium and Summer
School on Service-Oriented Computing, 2015.

[34] D. Baur and J. Domaschka, “Experiences from Building a Cross-cloud Orchestration
Tool,” in Proceedings of the 3rd Workshop on CrossCloud Infrastructures &
Platforms, New York, NY, USA, 2016, p. 4:1–4:6.

[35] E. Rissanen, extensible access control markup language (xacml) version 3.0.
January, 2013.

http://www.melodic.cloud/

