

www.melodic.cloud

 Title:

Integration & testing requirements

Abstract:

A careful design of the Melodic integration strategy is very
important as the main mission of Melodic is to integrate and
adapt underlying frameworks, including PaaSage and
CACTOS. This deliverable provides a detailed description of
the requirements of this integration. The methodology for
collecting integration requirements focuses on identifying
the requirements separately for Control & Data Plane and
Monitoring Plane. The other key set of requirements is
functional testing and UI components testing, which
specifies rules and conditions verifying the proper
implementation of respective functional features of the
Melodic system. The functional testing requirements are
provided in the form of testing scenarios, which should be
executed for a given Melodic release. These scenarios include
initial deployment testing, global reconfiguration & local
reconfiguration testing, metric management testing,
reasoning related testing, and API testing. D2.1 "System
specification" and use-case application descriptions are two
main sources of identifying testing requirements. Apart from
functional, also non-functional testing requirements are
covered to verify the proper implementation of the non-
functional features of the Melodic system. The non-
functional testing scenarios include fault handling testing,
performance testing, security testing, and other non-
functional testing.

Multi-cloud Execution-ware

for Large-scale Optimised

Data-Intensive Computing

H2020-ICT-2016-2017

Leadership in Enabling and
Industrial Technologies;
Information and
Communication
Technologies

Grant Agreement No.:

731664

Duration:

1 December 2016
30 November 2019

www.melodic.cloud

Deliverable reference:

D5.04

Date:

1 February 2018

Responsible partner:

7bulls

Editor(s):

Paweł Skrzypek

Author(s)

Antonia Schwichtenberg,
Sébastien Kicin,
Katarzyna Materka,
Somnath Mazumdar,
Jörg Domaschka,
Yiannis Verginadis,
Michał Semczuk,
Paweł Skrzypek,
Sebastian Schork

Approved by:

Ernst Gunnar Gran

ISBN number:

N/A

Document URL:

http://www.melodic.cloud/d
eliverables/D5.04 Integration
& testing requirements.pdf

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664

http://www.melodic.cloud/
http://www.sec_bridge.eu/
http://www.melodic.cloud/deliverables/D5.04%20Integration%20&%20testing%20requirements.pdf
http://www.melodic.cloud/deliverables/D5.04%20Integration%20&%20testing%20requirements.pdf
http://www.melodic.cloud/deliverables/D5.04%20Integration%20&%20testing%20requirements.pdf

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 2

Document

Period Covered M6-12

Deliverable No. D5.04

Deliverable Title Integration and Testing Requirements

Editor(s) Paweł Skrzypek

Author(s) Sébastien Kicin, Katarzyna Materka, Antonia Schwichtenberg,
Somnath Mazumdar, Jörg Domaschka, Yiannis Verginadis,
Michał Semczuk, Paweł Skrzypek, Sebastian Schork

Reviewer(s) Kyriakos Kritikos, Antonia Schwichtenberg, Feroz Zahid

Work Package No. 5

Work Package Title Integration and Security

Lead Beneficiary 7bulls

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 83

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 3

Table of Contents

1 Introduction ..6

1.1 Scope of the Document ... 6

1.2 Audience of the Document .. 6

1.3 Purpose and methodology of collecting the integration requirements 7

1.3.1 Purpose of the integration requirements ... 7

1.3.2 Methodology of collecting integration requirements .. 8

1.4 Purpose and methodology of collecting the functional testing requirements 9

1.4.1 Purpose of the functional testing requirements .. 9

1.4.2 Methodology of collecting functional testing requirements .. 10

1.5 Purpose and methodology of collecting non-functional testing requirements 11

1.5.1 Purpose of non-functional testing requirements ... 11

1.5.2 Methodology of collecting non-functional testing requirements 12

1.6 Structure of the document ... 13

2 Integration requirements .. 14

2.1 Description of the integration components ... 14

2.2 Control Data and Flow Integration Requirements .. 15

2.3 Monitor Plane integration requirements ..19

3 Functional testing requirements .. 20

3.1 Initial deployment testing scenarios .. 20

3.2 Metric management testing scenarios .. 34

3.3 Local reconfiguration testing scenarios .. 40

3.4 Global reconfiguration testing scenarios .. 42

3.5 Reasoning related testing scenarios ... 45

3.6 API testing scenarios ... 50

3.7 UI testing scenarios .. 52

3.8 Data Management Testing Scenarios ... 54

4 Non-functional testing requirements ... 54

4.1 Fault handling testing scenarios .. 54

4.2 Performance testing scenarios ... 62

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 4

4.3 Security testing scenarios ... 68

4.4 Other non-functional testing scenarios .. 74

5 Summary ... 81

6 References: ... 83

Index of Figures
Figure 1 Methodology of collecting integration requirements ... 9

Figure 2 Methodology of collecting functional testing requirements ... 11

Figure 3 Methodology of collecting non-functional testing requirements .. 13

Index of Tables
Table 1 Control Data and Flow Integration Requirements ..16

Table 2 Monitor Plane integration requirements ...19

Table 3 scenarios related to the Initial Deployment Scenario group .. 21

Table 4 Test scenario 1.2 .. 22

Table 5 Test scenario 1.3... 23

Table 6 Test scenario 1.4 .. 25

Table 7 Test scenario 1.5 .. 26

Table 8 Test scenario 1.6 .. 27

Table 9 Test scenario 1.7 .. 29

Table 10 Test scenario 1.8 .. 30

Table 11 Test scenario 1.9 ... 32

Table 12 Reference data for the Test scenario 1.9 .. 33

Table 13 Test scenario 2.1 ... 34

Table 14 Reference data for the Test scenario 2.1 .. 35

Table 15 Test scenario 2.2 .. 36

Table 16 Reference data for the Test scenario 2.2 .. 37

Table 17 Test scenario 2.3 .. 37

Table 18 Reference data for the Test scenario 2.3 .. 38

Table 19 Test scenario 2.4 .. 39

Table 20 Reference data for the Test scenario 2.4 ... 40

Table 21 Test scenario 3.1 ... 41

Table 22 Test scenario 3.2 ... 42

Table 23 Test scenario 4.1 .. 43

Table 24 Test scenario 4.2 ... 44

Table 25 Test scenario 5.1 .. 45

Table 26 Test scenario 5.2 ... 46

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 5

Table 27 Test scenario 5.3.. 47

Table 28 Reference data for the Test scenarios 5.1, 5.2, and 5.3.. 47

Table 29 Test scenario 5.4 ... 48

Table 30 Test scenario 5.5 ... 49

Table 31 Reference data for the Test scenarios 5..4 and 5.5 ... 49

Table 32 Test scenarios related to the API Testing scenario group ... 50

Table 33 Web based UI for application view: .. 53

Table 34 Eclipse based editor of the CAMEL: ... 53

Table 35 Test scenario 6.1 .. 55

Table 36 Test scenario 6.2 ... 57

Table 37 Test scenario 6.3 ... 58

Table 38 Test scenario 6.4 ... 60

Table 39 Test scenario 6.5 ... 63

Table 40 Test scenario 6.6 ... 64

Table 41 Test scenario 6.7 .. 65

Table 42 Test scenario 6.8 ... 66

Table 43 Test scenario 7.1 .. 68

Table 44 Test scenario 7.2 ... 69

Table 45 Test scenario 7.3 .. 71

Table 46 Test scenario 7.4 ... 72

Table 47 Test scenario 7.5 ... 73

Table 48 Test scenario 7.6 ... 74

Table 49 Test scenario 8.1 .. 75

Table 50 Test scenario 8.2 ... 75

Table 51 Test scenario 8.3 .. 76

Table 52 Test scenario 8.4 ... 76

Table 53 Test scenario 8.5 .. 77

Table 54 Test scenario 8.6 ... 78

Table 55 Test scenario 8.7 .. 79

Table 56 Test scenario 8.8 ... 79

Table 57 Test scenario 8.9 ... 80

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 6

1 Introduction

The purpose of this document is to specify functional and non-functional requirements of
integration and testing of all technical components of the Melodic middleware platform. This
chapter describes methodologies used for collecting and presenting the integration requirements
(section 1.1), functional testing requirements (section 1.2) and non-functional testing requirements
(section 1.3).
The testing requirements are described in the form of general testing scenarios. This is the typical
form of describing high level test sequences, which could be transformed in the next step into
more detailed test cases. The testing scenarios are prepared for both functional and non-functional
requirements. Based on these scenarios, the detailed test cases will be prepared in JIRA1 before the
acceptance tests of Melodic are carried out.

1.1 Scope of the Document

The deliverable contains integration and testing requirements, together with testing scenarios, for
the Melodic project. The deliverable is based on the deliverable D2.1 "System specification", D5.01
"Integration and adaptation strategy" and D5.02 "Updates to OSS frameworks". Also for the testing
requirements, the guidance of test strategy described in the D5.06 "Test strategy and environment"
deliverable is followed in the area of the rules of test scenarios and test cases creation.

1.2 Audience of the Document

This deliverable should be read by the following persons:

1. Test team – the detailed test cases should be prepared based on presented test scenarios of
functional and non-functional testing, in chapter 3 and chapter 4, respectively.

2. Development teams - to confirm the scope and implementation requirements, especially
for the integration layer, described in chapter 3.

3. Use case partners - to verify the scope of testing of the Melodic platform, described in
chapters 4 and 5.

The deliverable could also be of interest to readers outside of consortium, who would like to know
more about the integration and testing required of the Melodic platform.

1 https://jira.7bulls.eu/secure/Dashboard.jspa?selectPageId=10103 - a free account needs to be created to get access.

http://www.melodic.cloud/
https://jira.7bulls.eu/secure/Dashboard.jspa?selectPageId=10103

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 7

1.3 Purpose and methodology of collecting the integration

requirements

1.3.1 Purpose of the integration requirements

The Melodic project is focused on the integration and adaptation of the underlying PaaSage2 and
CACTOS3, and the extensions covering support for big data management (data awareness and
locality). For that reason, a careful design of the integration strategy and method is very important
for the project. Based on integration requirements, a detailed description of the integration strategy
and integration method is provided. The proper design and further fulfilment of these
requirements will be a key point for development and evaluation of the project.

As described in the deliverable D5.01 "Integration and adaptation strategy", the fundamental
purpose of integration in Melodic is to achieve smooth cooperation of the components
independent from the basic frameworks. This attitude is very important for this project due to the
following reasons:

 Only a subset of the components from the PaaSage project are being reused in Melodic,
while a large number of new components and extensions are planned to cover data-
aware deployment of cross-cloud applications.

 Though Cloudiator4 - part of the PaaSage and the CACTOS projects - has a certain
component structure, the features are exposed by one unified API, which is different
than the integration method used in PaaSage. Therefore there is a need to unify
integration methods across the whole Melodic project.

There are two separate layers of the integration:

 Control Plane – integration layer for control flow of the process/actions in the system
 Monitoring Plane – integration layer for gathering, processing and storing all the

monitoring events and measurements.

Each plane has different purposes and requirements against the integration. The Control Plane is
responsible for controlling actions within the process and should be reliable and transactional. The
Monitor Plane is focused on fast delivery of a big amount of monitoring data.

The high-level integration and adaptation requirements for each Plane are listed in the deliverable
D5.01 "Integration and adaptation strategy". A more detailed description of these requirements is
provided in chapter 2 of this deliverable.

2 http://www.paasage.eu/
3 http://www.cactosf-project.eu/
4 https://Cloudiator.org/

http://www.melodic.cloud/
http://www.paasage.eu/
http://www.cactosf-project.eu/
https://cloudiator.org/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 8

1.3.2 Methodology of collecting integration requirements

The assumption for the integration requirement collection methodology is that the requirements
are identified separately for the Control Plane and for the Monitoring Plane.

The methodology of collecting and describing integration requirements is as follows:
1. The first step of the methodology is to review carefully the objectives of the Melodic

project provided in the project’s "Description of Action" (DoA), and to create the initial
list of integration requirements.

2. The second step is to align and extend the created list of integration requirements with
deliverable D2.1 "System specification". The requirements in D2.1 were based on the
generic requirements for cross–cloud data-intensive applications.

3. The third step is to review the use-case application requirements as well as to adjust
and refine the list of the integration requirements based on them. The conditions of use
case applications are described in the D2.1 deliverable, the DoA and in the JIRA5 user
stories. The missing integration requirements will be identified and added to the list.

4. The final step of the methodology is to apply the cloud computing principles and
requirements for modern integration solutions (as presented in [1]) to further improve
and finalise the list of integration requirements.

These steps are illustrated by Figure 1.

5 https://jira.7bulls.eu/projects/MEL/issues/MEL-409?filter=allissues

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 9

Figure 1 Methodology of collecting integration requirements

1.4 Purpose and methodology of collecting the functional testing

requirements
This section contains the purpose, definition and methodology required for collecting the
functional testing requirements. References to the sources of the requirements as well as to the
quality assurance methodology are also provided.

1.4.1 Purpose of the functional testing requirements

The purpose of functional testing is to perform the respective tests that can lead to an acceptance
of a system. A major pre-requisite should be the collection of the functional testing requirements
that will guide this functional testing. Once a functional testing requirement is defined, rules and
conditions need to be fulfilled to verify if the respective functional feature of the Melodic system
is properly implemented. The functional testing requirements are provided in the form of testing

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 10

scenarios, which should be executed for a given Melodic release. The positive execution of the
testing scenarios will constitute a required condition before a Melodic release can be delivered.

The rules and guidance for the testing scenarios creation are described in the deliverable D5.06
“Test strategy and environment”.

1.4.2 Methodology of collecting functional testing requirements

The functional testing requirements, in the form of testing scenarios, are collected based on the
following methodology, also illustrated by Figure 2:

1. The "Description of the Action" is reviewed, and an initial list of high-level functional
features described in that document is extracted to be the input for the test scenarios.

2. The deliverable D2.1 "System specification" is reviewed and additional testing scenarios are
specified for the remaining functional features. For example, based on section 9.4 of D2.1,
Architecture Overview, more detailed scenarios for testing the deployment process have
been prepared.

3. Also the use-case application descriptions in D2.1 are reviewed and, if needed, missing
(functional) testing scenarios are specified. For example, the test scenarios related to the
backup and user management have been created.

4. Finally, the produced list of functional test scenarios is reviewed and checked for
consistency and completeness.

Test scenarios will be implemented in JIRA as test cases, according to the description provided in
D5.10 "Quality Assurance Guide". The test cases name will comprise the scenario number, an
indication of whether it is a positive or negative test case and the test case title. The scenario
number, the positive/negative indicator and the test case name will be unique for all test cases.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 11

Figure 2 Methodology of collecting functional testing requirements

1.5 Purpose and methodology of collecting non-functional testing

requirements
This section contains the purpose, definition and methodology needed for collecting the non-
functional testing requirements. References to the sources of requirements as well as to the quality
assurance methodology are also provided.

1.5.1 Purpose of non-functional testing requirements

The purpose of the non-functional testing requirements is to verify that the non-functional
requirements are fulfilled in order to accept the final release of the system. As the non-functional
testing requirements are defined, rules and conditions need to be fulfilled to verify whether the
given non-functional feature of the Melodic system is properly implemented. The non-functional

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 12

testing requirements are provided in form of testing scenarios, which should be executed in the
given Melodic release. The positive execution of the testing scenarios will be a required condition
for accepting the Melodic release delivered.

The rules and guidance for the testing scenarios creation are described in the D5.06 "Test strategy
and environment" deliverable.

1.5.2 Methodology of collecting non-functional testing requirements

The methodology for the non-functional testing requirements collection is the following, also
shown in Figure 3:

1. The "Description of Action" is reviewed and the list of testing scenarios for Melodic non-
functional features is prepared. For example, a high-level non-functional feature of Melodic
is security in communication between components (see Test Scenario 7.1 in section 5.3 as
an example). Based on that high-level feature, testing scenarios will then be prepared.

2. The D2.1 "System specification" deliverable is reviewed and additional testing scenarios are
specified for the remaining non-functional features. For example, the high-level security
requirements for authorization and authentication will be covered in test scenarios. The
goal of the example scenario would be to check if the invocation of the method is possible
only with valid credentials.

3. Also the use case application descriptions in D2.1 are reviewed and, if needed, the missing
testing scenarios are created.

4. Finally, the produced list of non-functional test scenarios is reviewed and checked for
consistency and completeness.

During the construction of the test scenarios, the rules described in D5.06 "Test strategy and
environment" are utilised. Test scenarios will be implemented in JIRA as test cases, according to
the description provided in D5.10 "Quality Assurance Guide". The test case’s name will contain
scenario number, indication if it is a positive or negative test case and the test case title. The
scenario number, the positive/negative indicator and the test case name will be unique for all test
cases.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 13

Figure 3 Methodology of collecting non-functional testing requirements

1.6 Structure of the document
This deliverable is divided into two parts. The first part of the document is covered by this chapter.
In the second part of the document, covered by chapters 2, 3, 4 and 5, both integration requirements
and testing scenarios are analysed in detail. The testing scenarios are divided into functional and
non-functional ones; they contain all necessary details to execute the scenarios and evaluate the
results. Integration requirements and testing scenarios are concluded in the summary of the
deliverable where also some respective conclusions are provided.

The detailed structure of the document is as follows:
 Chapter 2 – Integration requirements: this chapter contains the detailed list of integration

requirements with a more detailed description, purpose and usage of each requirement.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 14

These requirements will be used to produce functional and non-functional testing
scenarios.

 Chapter 3 – Functional testing requirements: this chapter analyses functional testing
scenarios which are supplied in the form of testing scenarios which should be executed and
verified for the Melodic project. The description of each scenario incorporates the scope of
the tested functional requirements, the scope of the test data, the list of the steps to execute
and the expected result.

 Chapter 4 – Non-functional testing requirements: this chapter provides, in form of testing
scenarios which should be executed and verified for the Melodic project, the description of
the non-functional testing requirements by describing the list of the non-functional testing
scenarios for each type of non-functional requirement. As in the previous chapter, a specific
description of each scenario incorporates the scope of the tested functional requirements,
the scope of the test data, the list of the steps to execute and the expected result.

 Chapter 5 – Summary: this chapter supplies the summary as well as the main conclusion
for this deliverable.

2 Integration requirements

One of the key assumptions for the Melodic project is integration and adaptation of components
from fundamental frameworks. This chapter supplies the definition of the integration
requirements and a brief description of the integration strategy and method in Melodic, based on
the integration strategy chosen in D5.01 “Integration and adaptation strategy”. In the following
sections, the integration requirements are presented, with their detailed description, purpose and
impact on the design and realization of the Melodic system.

2.1 Description of the integration components

The integration and adaptation strategies, along with the description of the method of integration
in the Melodic project, are described in the D5.01 “Integration and adaptation strategy”. Also, the
high-level integration architecture of the Melodic system is presented there.

For the Melodic project, a hybrid solution with two different integration methods has been chosen.
Such a hybrid, non-unified solution is more difficult to implement and maintain, but allows for the
full utilization of the benefits of the two underlying solutions.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 15

For the integration of components and their interaction within Melodic (mapping to the Control &
Data plane), an Enterprise Service Bus (ESB)6 and a business process management (BPM)7 based
architecture will be exploited. Using a BPM processes for controlling and orchestrating the
behaviour of the system will result in an easier and more efficient implementation of new
requirements, leading to a high degree of customization. It also allows for more flexibility as such
a behaviour can be flexibly adapted when required.

For the Monitoring Plane, ActiveMQ8, as a queue-based message broker, has been carefully chosen
as it fulfils the requirements of the Melodic project for the Monitoring Plane. The metric collection
is not a transactional flow, so the loss or late delivery of one measurement of one metric will not
impact the operation of the whole system. This is especially true as the system relies on conditions
over metric aggregations in order to adapt/reconfigure a user application. So, the loss of one metric
measurement would not burden or destroy the capability of the system to adapt the user
application. In case of late delivery of a metric measurement, the system will still be working
properly; the only possible disadvantage is that the reconfiguration might be completed later than
possible. However, as reconfiguration usually takes a long time to execute, such a delay could be
considered as negligible.

2.2 Control Data and Flow Integration Requirements

The section contains integration requirements collected using the methodology described in
section 1.3.2 for the Control Data and Flow Plane. The requirements are presented in Table 1 below.
The structure of the table, for this section and the following ones, is as follow:

 Requirement's Name – the unique name of the requirement.
 Requirement's Purpose – Purpose of introducing a requirement for the Melodic platform.
 Requirement's description – More detailed description of the requirement.
 Source of requirements – Source (document) which defines the requirement or high-level

objectives which provide the need for defining the requirement.

6 http://www.service-architecture.com/articles/web-services/enterprise_service_bus_esb.html
7 http://searchcio.techtarget.com/definition/business-process-management
8 http://zguide.zeromq.org/page:all

http://www.melodic.cloud/
http://www.service-architecture.com/articles/web-services/enterprise_service_bus_esb.html
http://searchcio.techtarget.com/definition/business-process-management
http://zguide.zeromq.org/page:all

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 16

Table 1 Control Data and Flow Integration Requirements

Req.
Id

Requirement's Name Requirement 's Purpose Requirement's
description

Source of
requirements

1 High Reliability To assure stable functioning
of the whole integrated
system and reliable
communication between
components.

 Reliable flow of the
invoked operations, with
full control over the
operations' execution and
returned results.

 Support for transactions
and data integrity, as well
as for recoverability after
the failure.

D2.1 System

specification

2 Performance To assure that the system is
able to fulfil the performance
requirements of all use case
applications.

 Execute a given number
of operations within a
certain period of time and
with given response time.
The system should be
able to sustain a certain
performance level which
can be translated in the
requirement to execute

 Planned use case
applications. Sustaining
such performance level
also requires the
detection and addressing
of bottlenecks that affect
the normal system
operation. The detailed
performance
measurements will be
provided in dedicated test
cases.

DoA

3 Scalability Possibility to improve
performance in case of more
demanding use case
applications through the
dynamic reservation of
additional resources.

 Ability to improve
performance through
adding new nodes in the
integration layer (scaling
horizontally) or by
upgrading an existing
node of integration layer
to a more powerful
machine (scaling
vertically).

D2.1 System

specification

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 17

4 High availability Ability to continue the
system operation in presence
of component failures.

 Support for highly
available, multi-node
configurations, at least in
active-passive
configuration (active-
active configuration can
bring about additional
benefits, but is more
difficult to implement).

D5.01

Integration and

adaptation

strategy

5 Flexible orchestration Possibility to adapt the
system flexibly in order to
apply changing
requirements. Thus, such an
adaptation can be more
rapidly and efficiently
performed.

 Ability to dynamically set
up an orchestration for
the invocation of the
methods of the
underlying platform
components in a flexible
and configurable way. It
should be possible to
configure such an
orchestration without the
necessity to code and
recompile the whole
platform.

D5.01

Integration and

adaptation

strategy

6 Support for synchronous
and asynchronous
communication

To be able to support
different integration
requirements in the most
efficient way. Various
components and features of
the system requires different
types of communication to
achieve best performance
and reliability. The different
features of the system and
respective connections
between components require
different types of
communication.

 The chosen solution for
the integration in this
plane should support both
synchronous and
asynchronous
(component)
communication with an
easy way to change this
for a given operation. The
change should be
transparent for the users.
It shall be possible to use
both types, according to
the given requirements.
Not fulfilling these
requirements will result
in using a not optimal
method of
communication for some
given cases.

D5.01

Integration and

adaptation

strategy

7 Security To achieve secure usage
of the system.

 To be sure that there will
be one central point for

 Support for both
authentication (user and
method invocation) and
authorization (users,

DoA

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 18

the authentication and
the access control over
each component
belonging to the system

components and external
systems) with the
capability to define
access rights to invoke
given operations, and
access to data for the
latter.

8 Monitorability Capability to support
proper system
monitoring and
optimization. Also for the
troubleshooting as well
as the discovery of bugs
or misconfigurations.

 Monitorability includes
logging as an extension
of monitoring. It allows
to access and review all
operations executed by
the system, especially all
operations finished with
errors. Due to that it will
be possible to track
incorrect system
behaviour and fix bugs

 Ability to monitor at
configurable levels of
detail the operations
invoked on the
integration layer.

D5.01

Integration and

adaptation

strategy

10 Support for different
integration protocols

Allow efficiently to integrate
the underlying frameworks
and to integrate different
cloud providers with
different APIs and protocols
through an abstraction layer.

 Ability to support
different, most common
and widely used
integration protocols like
REST, SOAP, and JMS.

D2.1 System

specification

11 Data model
transformation

Allows to have one common
data model for the whole
system and to assure a
unified way of
transformation from the
common (canonical) model
into the models of particular
components. The
transformation from own to
canonical data model
guarantees the least possible
effort in the entry of new
components in the system.

 Ability to support data
model transformation in
the integration layer.
Introduce the canonical
model for the system.

 Prepare and map data
transformation from
domain models of
particular component to
canonical model.

D5.01

Integration and

adaptation

strategy

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 19

12 Exception/fault handling. To guarantee a stable and
predictable behaviour of the
system which can be quite
appealing to its possible
exploiters/adopters.

 Unified exception
handling and retrying of
operations.

D2.1 System

specification

13 Support for integration
standards and patterns

It allows to avoid vendor
lock-in and move the system
into a different integration
solution, if and when needed.
The integration process can
also be faster.

 Need to implement in a
simple and user-intuitive
manner the integration in
terms of integrating
components and to set up
the integration layer.

 The most typical
integration patterns like
splitter and aggregator
should be possible to
implement.

D2.1 System

specification

2.3 Monitor Plane integration requirements

The section contains integration requirements collected using the methodology described in
section 1.3.2 for the Monitor Plane. The requirements are presented in Table 2 below, according to
the format described in section 2.2.

Table 2 Monitor Plane integration requirements

Req.
Id

Requirement's
Name

Requirement 's Purpose Requirement's
description

Source of
requirements

1 Performance To assure that the system is
able to fulfil the performance
requirements of all use case
applications. There should not
be bottlenecks in the normal
system operations. This
requirement is particularly
important for the Monitor plane
due to expected high number of
transmitted messages.

 Execute a given
number of
operations
within a certain
period of time
and within a
given response
time threshold.

Ability to support real use
case applications for
commercial and non-
commercial
organizations

2 Low resource usage As application monitoring is
performed in an intrusive
manner in Melodic, there is a
need to have low resource usage
on monitoring plane without
compromising efficient

 Low resource
usage by the
monitoring plane
at both the client
and server side.

Optimal deployment
based on given utility
function (e.g., business
constraints)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 20

application monitoring as well
as the proper execution of the
application components (in
respective user VMs which
translates then to saving
enough resources to support the
actual computation needs for
these components).

3 Support for
integration
standards and
patterns

Allow fast and efficient
integration of the Monitor Plane
related components. This
requirement ensures that there
is no proprietary knowledge
required to implement
connection to integration layer.
It is especially important for the
Monitoring Plane, due to the
distributed nature of the
monitoring capabilities, which
are installed on each virtual
machine deployed by Melodic.

 Need to
implement easily
the integration in
terms of
integrating
components and
setup of the
integration layer.
The most typical
integration
patterns like
splitter and
aggregator
should be
possible to
implement.

Ability to support real use
case applications for
commercial and non-
commercial
organizations

3 Functional testing requirements

In this chapter, testing requirements collected using the methodology described in section 1.4.2
are described in the form of functional testing scenarios. The definition of each scenario
incorporates the scope of testing, the requirements for testing and the expected results from the
scenario execution.

The functional testing scenarios are divided into scenario groups. Each scenario group contains
scenarios related to a particular high-level feature or process of the Melodic system.

3.1 Initial deployment testing scenarios

This section presents scenarios related to the Initial Deployment Scenario group. This group
contains all scenarios related to the initial deployment of an application in the Melodic platform.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 21

Table 3 scenarios related to the Initial Deployment Scenario group

Test scenario Id 1.1

Name Installation and deployment of a simple application on one Cloud Provider -
webserver installed on Unix-based OS.

Scenario group Initial deployment

Components to be
tested

 CPGenerator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider has been integrated with the Melodic platform,
where the user has provided his/her own credentials for the provider.

3. Meta Solver has been configured in this scenario to use CP solver for that
case.

4. Cloudiator properly connected to the given Cloud Provider

Input data 1. Complete CAMEL model of the simple application (which includes the
definition of the application components and their installation/lifecycle
management scripts). This simple application comprises one component
which should be installed as a Unix process (no container), in one virtual
machine. For example, installation of the Apache web server using a
standard (Unix-specific) installation command.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer being provided.

Steps to execute
scenario

Using appropriate tool (e.g. possibly ENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload application model in CAMEL
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions
performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model in CAMEL

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 22

3. Offer filtering and CP model (a kind of deployment optimisation model)
generation

4. Deployment optimisation model reasoning
5. Deployment Plan-based application reconfiguration.

Expected results 1. A certain virtual machine on the selected Cloud Provider should be created
2. The sole component (e.g. web server) of the simple application should be

installed on that virtual machine
3. The application should be run properly (for example, the root web page of

the web server should be displayed properly)

Table 4 Test scenario 1.2

Test scenario Id 1.2

Name Installation and deployment of a two-component application on one Cloud Provider
- application presenting records from database.

Scenario group Initial deployment

Components to
be tested

 CPGenerator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider integrated with the Melodic platform, where the
user has provided his/her own credentials for the provider.

3. Meta Solver configured to use CP solver.
4. Cloudiator properly connected to the given Cloud Provider

Input data 1. Complete CAMEL model of the two-component application (which includes
the definition of these two components and their installation/lifecycle
management scripts). For instance, an example application like WordPress
could have one business logic component and another one mapping to the
underlying database used, like MySQL, in this case.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer provided.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 23

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT9), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions
performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment plan reasoning
5. Deployment Plan-based application reconfiguration.

Expected results 1. Two virtual machine instances (of the same VM flavour/offering) should be

created using the selected Cloud Provider.
2. The application should be installed on those VM instances (one business

logic component instance should be installed on the first VM instance and
the database component instance should be installed on the second VM
instance)

3. The application should run properly. This means that proper
communication between the application components should have been
established (for example, the WordPress initial page can be loaded and
displayed to the user from the underlying database).

Table 5 Test scenario 1.3

Test scenario Id 1.3

Name Installation and deployment of a two-component application on two
different Cloud Providers - application presenting records from database

Scenario group Initial deployment

Components to be tested CP generator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

9 Tool to connect to REST API in Melodic platform

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 24

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least two cloud providers integrated with Melodic platform, where
the user has provided his/her own credentials for both of them.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to given Cloud Providers.

Input data 1. Complete CAMEL model of the two-component application (which
includes the definition of these two components and their
installation/lifecycle management scripts). One component can map
to the main business logic of the application and the other to the
underlying database used. An example application could be
WordPress which also includes an underlying MySQL database.
There should be a requirement in the application CAMEL model to
use different Cloud Providers (this could be done in different ways;
for example, by placing a location requirement that is then
referenced in the virtual machine requirement set).

2. CAMEL models of given Cloud Providers have been prepared and
registered in the Melodic platform. Each model should contain at
least one virtual machine offering being provided.

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by
the system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment plan reasoning
5. Deployment Plan-based application reconfiguration.

Expected results 1. Two virtual machine instances mapping to two different VM flavours
of the two given cloud providers should be created.

2. The application should be installed on those VM instances (one
business logic component instance should be installed on the first
VM instance and the database component instance should be
installed on the second VM instance)

3. The application should run properly which actually involves that
proper communication between application components should
have been established (for example, the WordPress initial page can
be loaded and displayed to the user from the underlying database).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 25

Table 6 Test scenario 1.4

Test scenario Id 1.4

Name Installation and deployment of a simple application in Docker container on
one Cloud Provider - webserver installed on Unix-based OS

Scenario group Initial deployment

Components to be tested CPGenerator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least one cloud provider integrated with Melodic platform, where
the user has provided his/her own credentials for the cloud provider.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to given Cloud Providers.

Input data 1. Complete CAMEL model of the two-component application (which
includes the definition of these two components and their
installation/lifecycle management scripts). For instance, an example
application like WordPress could have one business logic
component and another one mapping to the underlying database
used, like MySQL, in this case.

2. For example, installation of the Jboss Drools Workbench using a
standard container installation.

3. CAMEL model of given Cloud Provider prepared with at least one
virtual machine offer provided. There should be a proper
configuration of the virtual machine both in CAMEL Provider model
and on the Cloud Provider side. The configurations should be
aligned.

Steps to execute scenario Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 26

Actions performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.

Expected results 1. One virtual machine instance should be created using the selected
Cloud Provider.

2. The application should be installed on the VM instance.
3. The application should run properly.

Table 7 Test scenario 1.5

Test scenario Id 1.5

Name Installation and deployment of a two-component application in Docker
containers on one Cloud Provider - application presenting records from
database

Scenario group Initial deployment

Components to be tested CP generator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least two cloud providers integrated with the Melodic platform,
where the user has provided his/her own credentials for both of
them.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to given Cloud Providers.

Input data 1. Complete CAMEL model of a two-component application (which
includes the definition of these two components and their
installation/maintenance scripts). The two components should be
installed within Docker containers on two VM instances.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer provided.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 27

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider

Expected results 1. Two virtual machine instances (of the same VM flavour/offering)
should be created using the selected Cloud Provider.

2. The application should be installed on those VM instances (one
business logic component instance should be installed on the first
VM instance and the database component instance should be
installed on the second VM instance)

3. The application should run properly which actually involves that
proper communication between application components has been
established.

Table 8 Test scenario 1.6

Test scenario Id 1.6

Name Installation and deployment of a two-component application in Docker
containers on two different Cloud Providers - application presenting records
from database

Scenario group Initial deployment

Components to be tested CP generator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 28

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least two cloud providers integrated with Melodic platform, where
the user has provided his/her own credentials for both of them.

3. Meta Solver configured to use CP Solver for that case.
4. Cloudiator properly connected to given Cloud Providers.

Input data 1. Complete CAMEL model of the two-component application (which
includes the definition of these two components and their
installation/maintenance scripts). The two components are installed
as Docker containers in two VM instances of different VM offerings
(each mapping to a different cloud provider). For example,
installation of WordPress with DAM application using standard
container installation.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer provided.

3. There should be a requirement in the application to use different
Cloud Providers (for example, a location requirement in the virtual
machine requirement set in the user CAMEL model)

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud providers

Expected results 1. Two virtual machine instances should be created using the selected
Cloud Providers.

2. The application should be installed on those VM instances
3. The application should run properly which actually involves that

proper communication between application components has been
established (for example, the WordPress initial page can be loaded
and displayed to the user from the underlying database).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 29

Table 9 Test scenario 1.7

Test scenario Id 1.7

Name Installation and deployment of a two-component application, where one
component is installed in a Docker container and another on a normal VM
on two different Cloud Providers – application presenting records from
database.

Scenario group Initial deployment

Components to be tested CP generator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least two cloud providers integrated with Melodic platform, where
the user has provided his/her own credentials for both of them.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to given Cloud Providers.

Input data 1. Complete CAMEL model of the two-component application (which
includes the definition of these two components and their
installation/lifecycle management scripts). One application
component will be installed as a Docker container, the other as a
Unix process. Each component is to be deployed on different cloud
providers.

2. Two CAMEL models of two Cloud Providers prepared and registered
in the Melodic platform with at least one virtual machine offer
provided.

3. There should be requirement in the application to use different Cloud
Providers (for example, by specifying a location requirement and
referencing it in the virtual machine requirement set)

Steps to execute scenario Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 30

Actions performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud providers

Expected results 1. Two virtual machine instances should be created using the selected
Cloud Provider.

2. The application should be installed on those VM instances (one
business logic component instance should be installed on the first
VM instance and the database component instance should be
installed on the second VM instance within a container)

3. The application should run properly which actually involves that
proper communication between application components has been
established.

Table 10 Test scenario 1.8

Test scenario Id 1.8

Name Testing of deployment requirements enforcement.

Scenario group Initial deployment

Components to be tested CP generator/Rule Processor
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least one cloud provider integrated with the Melodic platform; the
user credentials for this provider should also have been supplied.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to the given Cloud Provider

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 31

Input data 1. Complete CAMEL model of a two-component application (which
includes the definition of these two components and their
installation/maintenance scripts). One component can map to the
main business logic of the application and the other to the
underlying database used. An example application could be
WordPress which also includes an underlying MySQL database. In
the CAMEL model there should be features defined which need to be
tested (local/remote communication, specific metrics, different OS
images and so on). For each tested feature a separate test case
should be created.

2. CAMEL model of given Cloud Provider prepared with at least one
virtual machine offer provided.

Steps to execute scenario Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.

Expected results 1. The specific feature/deployment requirement defined in the input
CAMEL model is properly applied.

2. One or two virtual machine instances (of the same VM
flavour/offering) should be created using one or two selected cloud
providers, respectively (depending on the deployment requirements
posed).

3. The application should be installed on this VM instance or those VM
instances (in case of 2 VM instances one business logic component
instance should be installed on the first VM instance and the
database component instance should be installed on the second VM
instance)

4. The application should run properly which actually involves that
proper communication between application components has been
established (for example, the WordPress initial page can be loaded
and displayed to the user from the underlying database).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 32

Table 11 Test scenario 1.9

Test scenario Id 1.9

Name Installation and deployment of a two-component application on two
different Cloud Providers with more advanced set of requirements, like non-
functional ones – application presenting records from database.

Scenario group Initial deployment

Components to be tested CP Generator
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB
 BPM
 Cloudiator
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least two cloud providers integrated with Melodic platform for
which the user has supplied his/her credentials.

3. Meta Solver configured in order to use the CP Solver for given case.
4. Cloudiator properly connected to given Cloud Providers.

Input data 1. Complete CAMEL model of a two-component application (which
includes the definition of the two components and their
installation/maintenance scripts). The first component represents
the core application logic while the second the underlying database.
An example application could be WordPress which exploits an
underlying MySQL database.

2. CAMEL model of each Cloud Provider is prepared with at least one
virtual machine offering included.

3. In the application's CAMEL model there should be a set of
requirements described in the table with reference data for this test
scenario (see the row below).

Steps to execute scenario Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 33

Actions performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.

Expected results 5. The specific feature/deployment requirement defined in the input
CAMEL model is properly applied.

1. Two virtual machine instances (of the same VM flavour/offering)
should be created using the selected Cloud Provider(s).

2. The application should be installed on those VM instances (one
business logic component instance should be installed on the first
VM instance and the database component instance should be
installed on the second VM instance as a container)

3. The application should run properly which actually involves that
proper communication between application components has been
established (for example, the WordPress initial page can be loaded
and displayed to the user from the underlying database)

In Table 12, the reference data for the Test scenario 1.9 are provided. The scenario 1.9 should be
executed with all VM offers, constraints, and utility function combinations presented in the table.

Table 12 Reference data for the Test scenario 1.9

Available VM offers Constraints Utility
function

Expected solution

1. Cores=2, RAM=8, loc=EU,
Cost=100, Provider A

2. Cores=4, RAM=16, loc=US,
Cost=200, Provider B

3. Cores=4, RAM=32, loc=EU,
Cost=250, Provider A

4. Cores=8, RAM=32, loc=EU,
Cost=350, Provider A

1. Mem/Cores>7
2. Loc=eu

Min(Cost) Chosen VM: 3, 3

1. Cores=2, RAM=8, loc=EU,
Cost=100, Provider A

2. Cores=4, RAM=16, loc=US,
Cost=200, Provider B

3. Cores=4, RAM=32, loc=EU,
Cost=250, Provider A

1. Mem/Cores>3

Min(Cores) Chosen VM: 1,1

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 34

4. Cores=8, RAM=32, loc=EU,
Cost=350, Provider A

1. Cores=2, RAM=8, loc=EU,
Cost=100, Provider A

2. Cores=4, RAM=16, loc=US,
Cost=200, Provider B

3. Cores=4, RAM=32, loc=EU,
Cost=250, Provider A

4. Cores=8, RAM=32, loc=EU,
Cost=300, Provider A

1. VM.1.Cores*Cost>
2400

2. VM.2.Mem<32
3. VM.2.Mem>8
4. Loc in (EU, US)

Min(Cost) Chosen VM: 4,2

3.2 Metric management testing scenarios

This section presents scenarios related to the Metric Management scenario group. Metric
management means the collection, processing (aggregation), storage and delivery of raw and
composite metrics as well as CAMEL events based on these metrics. For this scenario group, the
Executionware modules are most tested elements (e.g., Metric Collector), but due to the installation
of an application – which has also a definition of corresponding metrics and events – the key
modules of the Upperware and Executionware are tested too.

Table 13 Test scenario 2.1

Test scenario Id 2.1

Name Built-in raw metrics collection

Scenario group Metric management testing scenarios

Components to be
tested

 Meta Solver
 Metric Collector
 Cloudiator
 CDO Server
 REST CLIENT

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least one cloud provider is integrated with Melodic platform for
which the user has supplied the respective credentials.

3. Cloudiator is properly connected to given Cloud Provider(s).

Input data 1. CAMEL model of a simple application (as described in test scenario 1.1)
with definition of raw system/built-in metrics. The raw metrics to test
are defined in reference data Table 14 for this test scenario (see below).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 35

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by
the system

The following actions should be executed in the system:
1. Actions executed in scenario 1.1

2. Measurement for the raw metrics of given type (see the table with data
for this test scenario) should be generated and collected by
Executionware (i.e., stored in the Time Series Database (TSDB) of the
respective application nodes). These measurements might also be
stored in CDO (model repository), depending on whether they refer to
metrics which are mapped to SLOs or other objects defined in CAMEL
and respective subscribers might be informed about them.

Expected results 1. Values of the raw built-in metric(s) of the given type(s) should be stored

in TSDB(s) situated in those VMs on which the respective component of
the application to be measured resides.

2. These measurements/values are possibly stored in the CDO and some
subscribers (Meta Solver) might be informed about them.

In the Table 14, the reference data for the Test scenario 2.1 are provided. In particular, the scenario
2.1 should be executed with the metrics presented in that table.

Table 14 Reference data for the Test scenario 2.1

Raw metric name Metric description Metric unit

RawCPUUsage Current raw CPU usage. Real value, percentage of
usage.

MemoryUsageSensor Current raw memory usage. Real value, MB.

DiskIoReadSensor Disk IO read transfer per second. Real value, MB per second.

DiskIoWriteSensor Disk IO write transfer per second. Real value, MB per second.

FreeDiskSpaceSensor Current free disk space. Real value, MB.

RxBytesSensor Network read transfer per second. Real value, MB/sec.

TxBytesSensor Network write transfer per second. Real value, MB/sec.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 36

Table 15 Test scenario 2.2

Test scenario Id 2.2

Name Custom raw metrics collection

Scenario group Metric management testing scenarios

Components to be
tested

 Meta Solver
 Metric Collector
 Cloudiator
 CDO Server
 REST CLIENT

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least one cloud provider is integrated with Melodic platform for
which the user has provided his/her credentials

3. Cloudiator is properly connected to given Cloud Providers.

Input data 1. CAMEL model of simple application (described in test scenario 1.1)
which includes the definition of the custom raw metrics. The raw
metrics to test are defined in reference data Table 16 for this test
scenario (see below).

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by
the system

The following actions should be executed in the system:
1. Steps from scenario 1.1
2. Measurements for the raw metrics of given type (see the table with data

for this test scenario) should be generated and collected by
Executionware (i.e., stored in the TSDB on the nodes where the
application component is deployed). These measurements may also be
stored in the CDO and respective subscribers might be informed about
them. Such raw measurements should be stored in CDO only when they
map to SLOs or other relevant objects defined in CAMEL.

Expected results 1. Values of the given type raw metric(s) should be stored in TS
database(s) on those VMs/nodes on which the respective component of
the application to be measured resides.

2. These measurements/values are possibly stored in the CDO and some
subscribers (Meta Solver) might be informed about them.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 37

In Table 16, the reference data for Test scenario 2.2 are provided. The scenario 2.2 should be
executed with metrics presented in that table.

Table 16 Reference data for the Test scenario 2.2

Custom metric name Metric description Metric unit

Number of users Custom metric measuring the
current number of users.

Number of (something) unit which will be
mapped in the end to a certain dimension.
Integer value.

Raw Response time Custom metric measuring the
response time for the last request
made

Integer value, millisecond.

Table 17 Test scenario 2.3

Test scenario Id 2.3

Name Composite metric collection

Scenario group Metric management testing scenarios

Components to be
tested

 Meta Solver
 Metric Collector
 Cloudiator
 CDO Server
 REST CLIENT

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least one cloud provider is integrated with Melodic platform for
which the user has supplied his/her credentials.

3. Cloudiator is properly connected to given Cloud Providers

Input data 1. CAMEL model of simple application (described in test scenario 1.1)
which includes the definition of composite metrics. The composite
metrics to test are defined in reference data Table 18 for this test
scenario. The needed raw metrics for the scenario (based on which
the composite metrics are computed) should also be defined in the
CAMEL model.

Steps to execute
scenario

Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 38

Actions performed by
the system

The following actions should be executed in the system:
1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider
7. Measurements for the composite metrics of given type (see the table

with data for this test scenario) should be generated and collected by
Executionware (i.e., stored in the TSDB on respective node where the
application component is deployed). These measurements may be
stored in the CDO and respective subscribers might be informed about
them via the Metric Collector. Such measurements should be stored
in CDO only when they map to SLOs or other relevant objects defined
in CAMEL.

Expected results 1. The measurements of the considered (raw and composite) metrics
should be properly and correctly calculated (by, e.g., considering the
measurement schedule and window), according to input parameters
for the given test case.

2. These measurements should be stored in the TS database(s) on those
VMs in which the respective component of the application to be
measured resides.

3. Such measurements are possibly stored in the CDO and some
subscribers (e.g., Meta Solver) might be informed about them.

In the Table 18, the reference data for the Test scenario 2.3 are provided. The scenario 2.3 should be
executed with the metrics presented in that table. Also, more specific use case application metrics
could be used, like number of users or response time. Such metrics will participate in the detailed
description of the respective test cases which will be prepared in JIRA.

Table 18 Reference data for the Test scenario 2.3

Composite metric name Metric description Metric unit

AverageCpuUsage Average CPU usage in 5 minutes window. Real value, percent of usage.

AverageMemoryUsage Average memory usage in 5 minutes
window.

Real value, MB.

AverageDiskIoRead Average Disk IO read transfer per second in
5 minutes window.

Real value, MB per second.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 39

AverageDiskIoWrite Average Disk IO write transfer per second in
5 minutes window.

Real value, MB per second.

AverageFreeDiskSpace Average free disk space in 5 minutes
window.

Real value, MB.

AverageRxBytes Average Network read transfer per second
in 5 minutes window.

Real value, MB.

AverageTxBytes Average Network write transfer per second
in 5 minutes window.

Real value, MB/second.

Table 19 Test scenario 2.4

Test scenario Id 2.4

Name Event generation

Scenario group Metric management testing scenarios

Components to be tested Meta Solver
 Metric Collector
 Cloudiator
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application
related artefacts.

2. At least one cloud provider is integrated with the Melodic platform
for which the user providers his/her credentials.

3. Cloudiator properly connected to given Cloud Providers

Input data 1. CAMEL model of simple application (described in test scenario 1.1)
which includes the definition of events mapping to conditions on
metrics which are also specified in this model. The events to test
are defined in data Table 20 for this test scenario (see below).

Steps to execute scenario Using appropriate tool (possibly REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start the application deployment

For each step, the status of the executed action should be positive.

Actions performed by the
system

The following actions should be executed in the system:
1. Upload of the Provider Model into CDO

2. Upload of the Application model

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 40

3. Profiling execution

4. Reasoning execution using CP Solver

5. Adaptation execution

6. Deployment to the selected cloud provider

7. Events of given types (see the table with data for this test scenario)
should be generated by Executionware and collected by Metric
Collector.

Expected results 1. Events should be generated and provided to Meta Solver. Also, they
should be stored in database.

In the Table 20, the reference data for the Test scenario 2.4 are provided. The scenario 2.4 should
be executed with the events presented in that table. The detailed parameter of the window size will
be provided in each test cases, depends on use case application and testing conditions.

Table 20 Reference data for the Test scenario 2.4

Id. Event name Event description

A AverageCpuUsage above 70% Average CPU usage in X minutes window above 70%.

B AverageMemoryUsage above
85%

Average memory usage in X minutes window above 85%.

C AverageCpuUsage below 50% Average CPU usage in X minutes window below 50%.

D AverageMemoryUsage below
65%

Average memory usage in X minutes window below 65%.

E High usage Conjunction of events A and B which should cause application
scaling out.

F Low usage Conjunction of events C and D which should cause application
scale-in.

3.3 Local reconfiguration testing scenarios

This section presents scenarios related to the local reconfiguration scenario group. Local
reconfiguration means that reconfiguration of the application or its parts occurs in a certain cloud
and is based on the scalability rules defined in SRL in the CAMEL model of the application. For this
type of scenario, the selected modules of Upperware and Executionware are tested (SRL adapter,
Cloudiator). Before the execution of the scenarios listed below, the scenarios described in section
3.2 should be executed with positive outcome.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 41

Table 21 Test scenario 3.1

Test scenario Id 3.1

Name Scale out application

Scenario group Local reconfiguration testing scenarios

Components to be
tested

 SRL adapter
 Cloudiator

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider is integrated with the Melodic platform for
which the user has provided his/her credentials.

3. Cloudiator properly connected to given Cloud Provider(s).
4. Application with SRL rules of scaling out and in (application components)

in CAMEL is configured and installed properly via the Melodic platform
(using for example Test Scenario 1.1 with proper CAMEL SRL configuration).
The scale-out SRL rule has been defined as follows: if average CPU usage on
all deployed nodes in a 5-minute windows interval is more than 70%, then
one additional node of the sole application component is added to current
application configuration.

Input data 1. No input data, see Prerequisites, Point 4.

Steps to execute
scenario

1. It is possible to execute this scenario in two ways: either generate artificial
CPU usage on given/all nodes via script invocation or stress the (sole)
component of the application.

Actions performed
by the system

1. Collection of raw measurements over CPU usage.
2. Composite metric with average CPU usage in 5-minute window should be

generated by the Executionware based on the raw CPU utilisation
measurements collected.

3. The event to scale should be generated by Cloudiator.
4. SRL Adapter should receive event to scale out the application.
5. Executionware API should be invoked by the SRL Adapter to scale the

application.
6. One node of application on a separate virtual machine instance should be

added.

Expected results 1. One new application component instance on a separate virtual machine
(instance) should be periodically added every 5 minutes.

2. Up to 4 application component instances should be added in around 20
minutes.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 42

Table 22 Test scenario 3.2

Test scenario Id 3.2

Name Scale in application

Scenario group Local reconfiguration testing scenarios

Components to be
tested

 SRL adapter
 Cloudiator

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider integrated with Melodic platform for which the
user has supplied his/her credentials.

3. Cloudiator is properly connected to given Cloud Providers.

Input data 1. Application with SRL rules of scaling out and in (application components)
in CAMEL is configured and installed properly on Melodic platform (using
for example Test Scenario 1.1 with proper CAMEL SRL configuration). A SRL
rule in CAMEL is defined as remove 1 instance of sole component of the
application, down to 1 instance, if average CPU usage on all deployed nodes
in 5 minutes window is less than 50% (this rule should be already defined in
deployed CAMEL).

Steps to execute
scenario

1. Execute scenario 3.1 to deploy 4 nodes via scaling out rules.

Actions
performed by the
system

1. Measurements over raw CPU usage should be generated by Executionware
and collected by Metric Collector.

2. Measurements over mean CPU usage should be generated by
Executionware and collected by Metric Collector.

3. The event for scaling should be generated by Executionware.
4. SRL adapter should receive event to scale in the application.
5. SRL adapter should invoke Executionware API to remove one application

component instance.
6. One application component instance on a separate virtual machine

(instance) should be removed by the Executionware.

Expected results 1. One previously deployed application component instance should be
removed each time (i.e., each time the SRL rule of scale in is triggered).

2. Finally, all application instances except one should be removed.

3.4 Global reconfiguration testing scenarios

This section presents scenarios related to the global reconfiguration scenario group. Global
reconfiguration is the reconfiguration of the application at a global scope where a new solution is

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 43

applied globally for the whole application and not only its specific Clouds (in contrast to local
reconfiguration). Such a reconfiguration is applied mainly by the Upperware component group and
especially the solvers in the presence of a contextual change (for example, new metric
measurements, provider offering modifications, etc.).

Table 23 Test scenario 4.1

Test scenario Id 4.1

Name Attributes of used VM offerings changed

Scenario group Global reconfiguration testing scenarios

Components to be
tested

 CP Generator
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider integrated with Melodic platform for which the
respective user credentials have been supplied.

3. Cloudiator properly connected to given Cloud Providers.
4. There exists at least one cloud provider with at least one offering

satisfying the requirements posed by the user.
5. CAMEL model of each Cloud Provider prepared and uploaded to the

platform with at least two virtual machine offerings provided each with
different cost parameter.

6. Complete CAMEL model of a simple application (which includes the
definition of one component and its installation/maintenance scripts). The
sole application is installed as a Unix process (no container) in one virtual
machine. An example application could be the Apache web server
deployed using standard installation commands. The CAMEL model
should include an optimisation requirement which states that the overall
application cost should be minimized.

7. Application with the definition of optimization requirement is installed by
executing test scenario 1.1. The virtual machine offering with the smallest
cost should be chosen.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 44

Input data 1. The updated CAMEL model of one cloud provider with changed cost
parameter per virtual machine offer concerned. The changed VM offering
cost should cause the production of a new optimal solution of the
application to be validated and enforced by the adapter.

Steps to execute
scenario

1. Upload of the updated CAMEL model of cloud provider.

Actions performed
by the system

1. The change in CAMEL model requires to start the deployment/Upperware
flow from the beginning in order to modify the CP model considered with
the exception that we do not deal with a totally new deployment solution,
but a reconfiguration of an existing one.

2. Finding of the new solution should be performed.
3. Reconfiguration of the application should be executed in order to be

deployed on the newly selected type of virtual machine.
Expected results 1. Application should be reconfigured to use a different type of virtual

machine according to newly founded deployment and optimization plan.
The previous virtual machine (instance) should be terminated.

2. Application should work properly; this means that its web page should be
properly displayed (continuing the previous example with an Apache web
server).

Table 24 Test scenario 4.2

Test scenario Id 4.2

Name Global reconfiguration testing

Scenario group Global reconfiguration testing scenario

Components to be
tested

 CP Generator
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 Cloudiator
 ESB
 BPM
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider integrated with Melodic platform for which the
respective user credentials have been supplied.

3. Cloudiator properly connected to given Cloud Providers.
4. There exists at least one cloud provider with at least two offering

satisfying the requirements posed by the user.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 45

5. CAMEL model of each Cloud Provider prepared and uploaded to the
platform with at least two virtual machine offers provided with different
cost parameter.

Input data 1. Complete CAMEL model of a simple application (which includes the
definition of one component and its installation/maintenance scripts). The
sole application is installed as a Unix process (no container) in one virtual
machine. An example application could be the Apache web server
deployed using standard installation commands. The CAMEL model
should include definition of events and metrics needed to execute the
particular test case.

Steps to execute
scenario

This is generic reconfiguration scenario. There should be defined detailed test
cases in JIRA for different reconfiguration tests, according to the use case
applications needs.
Steps to execute scenario:
1. Upload updated CAMEL model.
2. Execute actions needed to generate reconfiguration event (for example

extra load generated on the deployed VM).
Actions performed
by the system

1. Reconfiguration of application should be executed according to defined
events and metrics.

Expected results 1. Application should be reconfigured according to defined SLOs.
2. Application should work properly; this means that its web page should be

properly displayed (continuing the previous example with an Apache web
server).

3.5 Reasoning related testing scenarios

This section presents scenarios related to the reasoning scenario group. Reasoning maps to the
capability to find an optimal deployment solution for the application at hand based on the
requirements that have been posed for it. The test scenarios are focused on isolated tests of each
particular solver. For this scenario type, mostly the Upperware modules are tested (CP generator,
Meta Solver, CP Solver, MILP Solver, LA Solver).

Table 25 Test scenario 5.1

Test scenario Id 5.1

Name Linear constraints and optimization solving – CP Solver

Scenario group Reasoning

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 46

Components to be
tested

CP Solver

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data 1. CP model of given optimization problem – as described in Table 28 with
reference data (see below) for a two-component application. CP model
should be uploaded to CDO.

Steps to execute
scenario

Using SOAP UI tool, execute the following step:

1. Invoke CP Solver REST API exposed on ESB and pass prepared CDO path to
CP model as an input parameter.

Method invocation result should be positive.

Actions performed
by the system

The following actions should be executed in the system:
1. CP Solver solves the given problem.

Expected results 1. The optimal solution is produced.
2. The CP model is updated in CDO
3. In CP Solver log, the main constraint problem and its optimal solution

found should be logged.

Table 26 Test scenario 5.2

Test scenario Id 5.2

Name Linear constraints and optimization solving – MILP Solver

Scenario group Reasoning

Components to be
tested

MILP Solver

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data 1. CP model of given optimization problem – as described in the Table 28
with reference data. Model should be uploaded to CDO.

Steps to execute
scenario

Using SOAP UI tool, execute the following step:

1. Invoke MILP Solver REST API exposed on ESB and pass prepared CDO path
to CP model as parameters.

Method invocation result should be positive.

Actions performed
by the system

The following actions should be executed in the system:
1. MILP Solver solves the problem.

Expected results 1. Optimal solution is found
2. CP model is updated in CDO.
3. In MILP Solver log, the constraint problem and its solution derived are

logged.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 47

Table 27 Test scenario 5.3

Test scenario Id 5.3

Name Linear constraints and optimization solving – LA Solver

Scenario group Reasoning

Components to be
tested

LA Solver (LA Orchestrator)

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data 1. CP model of given optimization problem – as described in the Table 28
with reference data.

Steps to execute
scenario

Using SOAP UI tool, execute the following step:

1. Invoke LA Orchestrator REST API exposed on ESB and pass prepared CP
model as parameters.

Method invocation result should be positive.

Actions performed
by the system

The following actions should be executed in the system:
1. LA Solver should find the optimal solution for the given problem.

Expected results 1. Optimal solution is found
2. CP model is updated in CDO.
3. In LA Solver log, the main constraint problem and its optimal solution

found should be logged.

In the Table 28, the reference data for the Test scenarios 5.1, 5.2, and 5.3 are provided. The scenarios
5.1, 5.2 and 5.3 should be executed with the respective VM offers, constraints, and utility function
combinations presented in the table.

Table 28 Reference data for the Test scenarios 5.1, 5.2, and 5.3

Available VM offers Constraints Utility
function

Expected solution

1. Cores=2, RAM=8, loc=EU,
Cost=130, Provider A

2. Cores=4, RAM=16, loc=US,
Cost=200, Provider B

3. Cores=4, RAM=32, loc=EU,
Cost=250, Provider A

4. Cores=8, RAM=32, loc=EU,
Cost=350, Provider A

1. Cores>2
2. Loc=eu

Min(Cost) Chosen VMs: 3, 3

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 48

1. Cores=2, RAM=8, loc=EU,
Cost=100, Provider A

2. Cores=4, RAM=16, loc=US,
Cost=200, Provider B

3. Cores=4, RAM=32, loc=EU,
Cost=250, Provider A

4. Cores=8, RAM=32, loc=EU,
Cost=350, Provider A

1. Mem>4

Min(Cores) Chosen VMs: 1,1

1. Cores=2, RAM=8, loc=EU,
Cost=100, Provider A

2. Cores=4, RAM=16, loc=US,
Cost=200, Provider B

3. Cores=4, RAM=32, loc=EU,
Cost=250, Provider A

4. Cores=8, RAM=32, loc=EU,
Cost=310, Provider A

1. VM.1.Cores>4
2. VM.2.Mem<32
3. VM.2.Mem>8
4. Loc in (EU, US)

Min(Cost) Chosen VMs: 4,2

Table 29 Test scenario 5.4

Test scenario Id 5.4

Name Non-linear constraints and optimization solving – CP Solver

Scenario group Reasoning

Components to be
tested

CP Solver

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data 1. CP model of given non-linear optimization problem – as described in
Table 31 with reference data (see below).

Steps to execute
scenario

Using SOAP UI tool, execute the following step:

1. Invoke CP Solver REST API exposed on ESB and pass prepared CP model
as parameters.

Method invocation result should be positive.

Actions performed
by the system

The following actions should be executed in the system:
1. CP Solver should find the optimal solution for the given problem.

Expected results 1. Optimal solution is found
2. CP model is updated in CDO.
3. In CP Solver log, the constraint problem and its derived solution are logged

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 49

Table 30 Test scenario 5.5

Test scenario Id 5.5

Name Non-linear constraints and optimization solving – LA Solver

Scenario group Reasoning

Components to be
tested

LA Solver (LA Orchestrator)

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data 1. CP model of given non-linear optimization problem – as described in Table
31 with reference data (see below).

Steps to execute
scenario

Using SOAP UI tool, execute the following step:

1. Invoke LA Orchestrator REST API exposed on ESB and pass prepared CP
model as parameters.

Method invocation result should be positive.

Actions performed
by the system

The following actions should be executed in the system:
1. LA Solver should find the optimal solution for the given problem.

Expected results 1. Optimal solution is found
2. CP model is updated in CDO.
3. In LA Solver log the solution for the problem.

In Table 31, the reference data for the Test scenarios 5.4 and 5.5 are provided. The scenarios 5.4 and
5.5 should be executed with all VM offers, constraints, and utility function combinations presented
in the table.

Table 31 Reference data for the Test scenarios 5.4 and 5.5

Available VM offers Constraints Utility
function

Expected solution

1. Cores=2, RAM=8, loc=EU, Cost=100,
Provider A

2. Cores=4, RAM=16, loc=US, Cost=200,
Provider B

3. Cores=4, RAM=32, loc=EU, Cost=250,
Provider A

4. Cores=8, RAM=32, loc=EU, Cost=350,
Provider A

Mem/Cores>7

Loc=eu

Min(Cost) Chosen VMs: 3,3

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 50

1. Cores=2, RAM=8, loc=EU, Cost=100,
Provider A

2. Cores=4, RAM=16, loc=US, Cost=200,
Provider B

3. Cores=4, RAM=32, loc=EU, Cost=250,
Provider A

4. Cores=8, RAM=32, loc=EU, Cost=350,
Provider A

Mem/Cores>3

Min(Cores) Chosen VMs: 1,1

1. Cores=2, RAM=8, loc=EU, Cost=100,
Provider A

2. Cores=4, RAM=16, loc=US, Cost=200,
Provider B

3. Cores=4, RAM=32, loc=EU, Cost=250,
Provider A

4. Cores=8, RAM=32, loc=EU, Cost=300,
Provider A

VM.1.Cores*Cost>2400

VM.2.Mem<32

VM.2.Mem>8

Loc in (EU, US)

Min(Cost) Chosen VMs: 4,2

3.6 API testing scenarios

In this section, we present test scenarios related to the API Testing scenario group. In this group,
only the APIs exposed by the Melodic system to the external modules and systems are tested. This
implies that there are no tests of internal methods of components, which are not exposed on ESB.
Due to the nature of the API tests, the simplified presentation of the test scenarios has been
prepared. It allows for a more comprehensive and compact presentation of the test scenarios (as
such scenarios usually execute just one step – the call to the respective API method of just one
component – thus it is trivial to represent this step in a very detailed manner). Additional methods
might be exposed to the API in case the use case demonstrators face this need.

Table 32 Test scenarios related to the API Testing scenario group

API Method Prerequisites Input parameters Expected results

Camel model upload Melodic platform installed Valid CAMEL Provider model CAMEL Provider Model
uploaded into CDO

Camel model upload Melodic platform installed Non-valid CAMEL Provider
model

Error “Invalid model”
raised

Camel model upload Melodic platform installed

CAMEL Provider model(s)
uploaded

Valid CAMEL Application
model

CAMEL Application Model
uploaded into CDO

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 51

Camel model upload Melodic platform installed

CAMEL Provider model(s)
uploaded

Invalid CAMEL Application
model

Error “Invalid model”
raised

Initiate deployment
process

Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Name of existing application
(i.e., mapping to the CAMEL
Application model uploaded)
was supplied.

Application deployed.

Initiate deployment
process

Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Invalid application name Error “Non-existing
application” raised.

Initiate deployment
process

Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Application deployed.

Valid application name Error “Application already
deployed” raised.

Get application status Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Valid application name Status “Application model
uploaded” received.

Get application status Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Reasoning finished

Application deployed

Valid application name Status “Application
deployed” received.

Get application status Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

MELODIC platform's
deployment workflow in
progress

Valid application name Status “Application
deployment in progress:
Reasoning” or “Application
deployment in progress:
Deploying” received.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 52

Get application status Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Application deployed.

Invalid application name Status “Inexistent
application” received.

Get application status Melodic platform installed

CAMEL Provider model(s)
uploaded

CAMEL Application model
uploaded

Application deployed.

Invalid application name Status “Inexistent
application” received.

3.7 UI testing scenarios

In this section, test scenarios at the User Interface (UI) level are presented. The following User
Interfaces (UIs) for Melodic will be considered at this moment:

 Web based UI dedicated to present a read-only view of the CAMEL model of an application
and its deployment status.

 Eclipse10 based editor and Web based editor of CAMEL, which supports the editing of the
CAMEL model.

Current features of the existing UIs are covered by test scenarios. Moreover, the UI related
requirements described in D5.02 “Updates to OSS frameworks” are also covered. Based on these
scenarios, test cases for the UIs should be prepared. Furthermore, it is planned to extend and unify
different UI components. To this end, the test cases for this unification can be completed once the
respective unified UI component becomes available and its detailed functionality is known.

Due to the nature of the UI tests and the currently not fully specified requirements, a simplified
presentation of the UI test scenarios has been prepared, following the same simplified table
structure used for the description of the API testing scenarios above. Such a structure allows for a
comprehensive and compact presentation of the test scenarios.

10 https://www.eclipse.org/

http://www.melodic.cloud/
https://www.eclipse.org/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 53

Table 33 Web based UI for application view:

Operation/view Prerequisites Input parameters Expected results

Application view Melodic platform installed

CAMEL Application model uploaded

CAMEL Provider model(s) uploaded

Logged user

None The view of all relevant
elements of the
application are
presented. Application
is not deployed to any
Cloud Provider.

Deployment view Melodic platform installed

CAMEL Application model uploaded

CAMEL Provider model uploaded

Application deployed to Cloud
Providers

Logged user

None The view of all relevant
elements of the
application are
presented with
deployed location.
Application is deployed
to Cloud Provider.

Table 34 Eclipse based editor of the CAMEL:

Operation/view Prerequisites Input parameters Expected results

CAMEL Model
validation

Eclipse editor properly configured and
run.

Valid CAMEL
Application model
with suitable
models/elements of
the CAMEL language.

There should not be
any syntax error
highlighted. The XMI
file should be properly
generated once the
user presses Ctrl-S.

CAMEL Model
validation

Eclipse editor properly configured and
run.

Invalid CAMEL
Application model

For each invalid
element of CAMEL, the
appropriate syntax
error with proper
message should be
presented.

The XMI file should not
be generated
irrespectively of how
many times Ctrl-S is
pressed.

Syntax completion Eclipse editor properly configured and
run.

Valid CAMEL
Application model

For each element, input
completion should be
presented according to
the CAMEL
specification.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 54

3.8 Data Management Testing Scenarios

Big data applications and data management are key elements of the Melodic system. The test
scenarios will cover the following topics:

 Big data application deployment optimization
 Big data application deployment execution
 Big data application monitoring and reconfiguration
 Data locality awareness – features related to data locality and data movement.

4 Non-functional testing requirements

This chapter specifies testing requirements collected using the methodology described in section
1.5.2, related to the non-functional requirements of Melodic in form of non-functional testing
scenarios. The description of each scenario includes the scope of testing, the requirements for
testing and the expected results from the scenario execution.

Similar to the case of the functional testing scenarios, the non-functional testing scenarios are
divided into scenario groups. Each scenario group contains scenarios related to a particular type
of non-functional tests, for which the described non-functional requirements should be fulfilled.

The description of each scenario is similar to the scenarios related to functional testing
requirements and includes the prerequisites, input data, steps to execute each scenario and the
expected results.

4.1 Fault handling testing scenarios

This section presents scenarios related to the Fault handling scenario group. Fault handling maps
to the reliability of the system and the ability to properly handle technical failures, crashes and
external system inaccessibility. The group's test scenarios present the most common situations
and focus on the verification of the (application) deployment process, the global and local
reconfiguration as well as the deployment reasoning, thus involving and focusing on all
components of the Melodic system.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 55

Table 35 Test scenario 6.1

Test scenario Id 6.1

Name Temporary unavailability of Melodic platform components
Scenario group Fault handling
Components to be
tested

 CP Generator
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB
 BPM
 Cloudiator
 REST CLIENT
 CDO Server

Prerequisites Installed and configured Melodic platform, without any application related
artefacts.

 At least one cloud provider has been integrated with the Melodic platform,
and a user has supplied respective credentials for this provider.

 Meta Solver configured to use CP Solver for that case.
 Cloudiator properly connected to given Cloud Provider

Input data Complete CAMEL model of a simple application (which includes the
definition of one component and its installation/lifecycle management
scripts). The simple, one-component application is installed as a UNIX
process (no container) in one VM. An example application would be the
Apache web server installed using a standard installation command.

 CAMEL model of given Cloud Provider prepared with at least one virtual
machine offer included.

Steps to execute
scenario

For each execution of the scenario, one of the following components (scenario
should be executed once per each stopped component) is stopped manually to
simulate component unavailability:

 CP Generator
 Meta Solver
 CP Solver
 LA Solver
 Solver to deployment
 Adapter/Plan Generator
 Metric Collector
 SRL adapter
 Cloudiator

After manually stopping the respective component, the following steps can be
executed using appropriate tools (for example REST client), where the

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 56

placement/order of Step 4 depends on which component in the Melodic platform is
affected (e.g., it is the 4th step, if it concerns a component of the Upperware
module):

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start manually stopped component
5. Start application deployment

For each step, the status of the executed action should be positive.
Actions
performed by the
system

The following actions should be executed in the system, where the actions are not
listed in exact order of occurrence as this also depends on the placement of the
affected (i.e., stopped and restarted) component in the Melodic architecture and its
actual order of execution in the deployment workflow. In particular, the action to
restart a component takes place in between a pair of stated actions and requires the
re-execution of the first step in the action pair. For instance, if the Profiler fails, then
we detect this when it is called (i.e., at step 3 and before step 4 is executed thus
mapping to the action pair mentioned in previous sentence), we restart the
component and then we re-execute the profiling execution action (i.e., step 3) before
moving to the reasoning execution one.

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider

Proper retrying handling should be performed, meaning that the operation of
invoking stopped component should be retried after the manual start of the
component.

Expected results The following results are to be produced:
 Second attempt to invoke stopped components should be successful.
 Proper error message with information about stopped component

inaccessibility should be logged.
 A VM (instance) on the selected Cloud Provider should be created
 The simple application should be installed on that VM (instance)
 The application should be run properly (for example, the web server's web

page should be displayed properly)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 57

Table 36 Test scenario 6.2

Test scenario Id 6.2

Name Temporary unavailability of BPM - verifying proper system behaviour after BPM
recovery.

Scenario group Fault handling

Components to be
tested

 CP Generator
 Meta Solver
 CP Solver
 LA Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB
 BPM
 Metric Collector
 SRL adapter
 Cloudiator
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider has been integrated with Melodic platform,
while the user has supplied his/her credentials for this provider.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to given Cloud Provider
5. BPM component is stopped

Input data 1. Complete CAMEL model of a simple application (which includes the
definition of one component and its installation/maintenance scripts). The
simple, one-component application should be installed as a Unix process
(no container) in one VM. An example application would be the Apache web
server installed using a standard installation command.

Steps to execute
scenario

The goal of the scenario is to verify the situation when the BPM component is
down and then it is recovered. The system should return to normal behaviour and
the process of deployment of application should be resumed.

Using appropriate tool (for example REST CLIENT), the following steps are executed:

1. Ensure that the BPM component is down. Upload Cloud Provider definition
2. Upload Application model
3. Start overall application deployment process
4. Start BPM
5. Start reasoning process
6. Start deploying of the one-component application

For each step, the status of the executed action should be positive.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 58

Actions
performed by the
system

The following actions should be executed in the system:

1. Upload of the Provider Model
2. Upload of the CAMEL Application model
3. Proper retrying handling should be done, the process should start after

starting the BPM component, all further steps of process should be
executed as described below.

4. Offer filtering and deployment optimisation model generation
5. Deployment Plan reasoning
6. Deployment Plan-based application reconfiguration.
7. Deployment to the selected cloud provider

Expected results 1. Proper error message with information about BPM inaccessibility should be
logged. Proper message with the availability of BPM should be logged.

2. A VM (instance) on the selected Cloud Provider should be created
3. The simple application should be installed on that VM (instance)
4. The application should be run properly (for example, the web server's web

page should be displayed properly)

Table 37 Test scenario 6.3

Test scenario Id 6.3

Name Temporary unavailability of Cloud Provider

Scenario group Fault handling

Components to be
tested

 CP Generator
 Meta Solver
 CP Solver
 LA Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB
 BPM
 Metric Collector
 SRL adapter
 Cloudiator
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. One cloud provider has been integrated with Melodic platform, while the
user has supplied his/her credentials for this provider.

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly configured with given Cloud Provider

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 59

5. No network connection to the Cloud Provider - the lack of network
connection will be simulated by changes of routing table or firewall rules
configuration on the machine where Cloudiator is installed.

Input data 1. Complete CAMEL model of a simple application (which includes the
definition of one component and its installation/maintenance scripts). The
simple, one-component application should be installed as a Unix process
(no container) in one VM. An example application could be an Apache web
server installed using a standard installation command.

2. CAMEL model of given Cloud Provider has been prepared with at least one
virtual machine offering included.

3. There should be a proper configuration of the virtual machine both in
Camel Provider model and on the Cloud Provider side

Steps to execute
scenario

Using appropriate tool (for example REST CLIENT), execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start deploying of application
5. Check in logs that Adapter starts to invoke Executionware.
6. Resume the network connection to the Cloud Provider after first

deployment attempt on the cloud of this provider has failed

For each step, the status of the executed action should be positive.

Actions performed
by the system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider
7. Proper retrying handling should be done (one or more times), the

deployment to the Cloud Provider should be executed after resuming
connection with Cloud Provider.

Expected results 1. Proper error message with information about Cloud Provider
inaccessibility should be logged. After that proper message about
availability of Cloud Provider should be logged.

2. A VM (instance) on the selected Cloud Provider should be created
3. The simple application should be installed on that VM (instance)
4. The application should be run properly (for example, Apache web server's

web page should be displayed properly)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 60

Table 38 Test scenario 6.4

Test scenario Id 6.4

Name High Availability Component configuration

Scenario group Fault handling

Components to be
tested

 CP Generator
 Meta Solver
 CP Solver
 LA Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB
 BPM
 Metric Collector
 SRL adapter
 Cloudiator
 REST CLIENT
 CDO Server

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. High Availability (HA) configuration of key components of the Melodic
platform (see requirement with Id 1, ‘High Reliability’ in Table 1, section 2.2);
each of the following components should be installed with two instances,
with HA configuration on ESB:
 CP Generator
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator
 ESB

3. At least one cloud provider has been integrated with the Melodic platform
while the user has supplied his/her credentials for this provider.

4. Meta Solver has been configured to use the CP solver for that case.
5. Cloudiator properly connected to given Cloud Provider

Input data Complete CAMEL model of a simple application (which includes the definition of
one component and its installation/maintenance scripts). The simple, one
component application should be installed as a Unix process (no container) in one
virtual machine. An example application could be an Apache web server installed
using a standard installation command.

CAMEL model of given Cloud Provider prepared with at least one virtual machine
offering included.

There should be a proper configuration of the virtual machine both in the Camel
Provider model and on the Cloud Provider side

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 61

Steps to execute
scenario

For each execution of the scenario, one of the instances of the listed component
should be stopped:

 CP Generator
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter/Plan Generator

After stopping the respective component, the appropriate tools (for example REST
CLIENT) should be used to execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model
3. Start reasoning process
4. Start stopped component
5. Start deploying of application

For each step, the status of the executed action should be positive.

Actions
performed by the
system

The following actions should be executed in the system (the actions are not listed
in order of occurrence, due to stopping various components it is not possible to
present them in order of occurrence):

1. Uploading of the Provider Model
2. Uploading of the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider
7. Proper retrying handling should be done, the operation of invoking stopped

component should be retried after the start of the component. The actions
are listed more or less in order of occurrence with the exception that the
action to restart a component takes place in between a pair of stated
actions and requires the re-execution of the first step in the action pair. For
instance, if the Profiler fails, then we detect this when it is called, we restart
the component and then we re-execute the profiling execution action
before moving to the reasoning execution one.

Expected results 1. Proper error message with information about fall-back due to component
inaccessibility should be logged. After that, proper message about
availability of the component should be logged.

2. A VM (instance) on the selected Cloud Provider should be created
3. The simple application should be installed on that VM (instance)
4. The application should be run properly (for example the web server's web

page should be displayed properly).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 62

4.2 Performance testing scenarios

To perform the Melodic middleware testing, it is required to understand the whole Melodic eco-
system aiming at improving the users’ existing Cloud experience. During performance measuring
scenarios, the Melodic business objectives related to performance are primarily given priority. In
general, performance testing of Cloud-applications is done similarly to web applications. In
performance testing of a web application, it is up to the tester to decide the performance related
parameters (mainly latency and throughput), based on specific user provided requirements.
However, it must be kept in mind that application performance is dependent on user’s perception
(e.g., for a latency sensitive web-application, a lower response time is desirable). As the types of
such web applications are different, the user requirements could also be differentiated. For
instance, throughput can be measured based on the application category: e.g., for a certain type of
application, throughput could be the number of jobs processed in a unit time, or for a service-based
application, throughput could also be the number of user requests processed per unit of time. In
general, some common testing parameters are:

 user serving capacity
 number of user jobs processed in a unit time (throughput testing),
 application robustness,
 system availability.

During the middleware performance testing phase, most of the above-mentioned scenarios are
valid, and the impact of scalability on performance should be verified. It should be done by
executing the same test benchmarks on the system using the given configuration while scaling
the resources. The performance tests should cover the complete application deployment process
on a general level as well as its related components on the component's level. For Cloud
environments, support for dynamic scaling is also an important issue because offering “less
elasticity” could pose a direct threat to the user data integrity (data loss or data destroyed could
happen). During the workload test, it is always recommended to load the entire system realistically,
so that the real-time usage scenario could be reproduced. The whole measurement process is
conceived in a way so that the Melodic platform can work efficiently regardless of application
types.

Finally, this section presents all scenarios related to the Melodic middleware platform testing.
Based on the above analysis, we will focus on:

a. performance of core components while solving complex optimization problems,

b. dynamic scaling of the system,

c. resources required to run a single Melodic instance.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 63

Table 39 Test scenario 6.5

Test scenario Id 6.5

Name Response time while solving complex optimization problems

Scenario group Performance Testing

Components to be
tested

 CP-Generator
 CDO Server
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter

Prerequisites 1. Installed and configured Melodic without any application related artefacts.
2. Meta Solver has been configured to use the CP solver.
3. One public cloud service provider (CSP) has been integrated with the

Melodic platform.
4. Cloudiator is also connected to the given CSP

Input data 1. Complete CAMEL model of an application (such application needs a number
of components, potentially with individual VM requirements) which has a
huge number of VM requirements of different VM types while satisfying
various amount of user given constraints to minimize the overall
deployment related cost.

2. CAMEL model of given Cloud Service provider prepared with few VMs
offering included.

Steps to execute
scenario

For each execution of the scenario, one of the instances of the following
components should be executed: CP Generator, Meta Solver, CP Solver, Solver to
deployment, Adapter.

Next, the following steps should be completed without any error:

1. Upload CSP definition and also Application model.
2. Deploy application on selected VMs

3. Proper logging mechanism (such as execution time) for each Melodic
component involved in the testing phase.

Actions
performed by the
system

The following actions should be executed:

1. Uploading of the Provider model and Application model.
2. Offer filtering and CP model generation.
3. Deployment Plan Reasoning.

Expected results 1. It is needed to log the total response time of the Upperware with the
information related to the optimised problem instance. The relevant
information related to the optimisation problem could for example be size
of the problem instance (such as total number of variables, constraints).

2. It is also needed to log the execution time of all core components so that if
any bottleneck exists, they could be identified.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 64

Table 40 Test scenario 6.6

Test scenario Id 6.6

Name Dynamic scalability within one Cloud - verification of the execution time

Scenario group Performance Testing

Components to be
tested

 CP-Generator,
 CDO Server,
 Meta Solver,
 CP Solver,
 Solver to deployment,
 Adapter (SRL adapter),
 ESB, BPM,
 Metric Collector,
 Cloudiator,
 REST CLIENT.

Prerequisites 1. Installed and configured Melodic without any application related artefacts.
2. Meta Solver has been configured to use the CP solver.
3. One public cloud service provider (CSP) has been integrated with the

Melodic platform.
4. Cloudiator is also connected to the given CSP.

Input data 1. Complete CAMEL model of an application that frequently changes its VM
requirements.

2. CAMEL model of given Cloud provider prepared with at least one virtual
machine offering included.

3. There should be a proper configuration of the virtual machine both in
Camel provider model and on the Cloud provider side.

Steps to execute
scenario

The goal of the scenario is to verify the execution times of each component while
scaling the application within one Cloud Provider.

For each execution of the scenario, one of the instances of the following
components should be executed: CP Generator, Meta Solver, CP Solver, Solver to
deployment, Adapter.

Next, the following steps should be completed without any error:

1. Upload CSP definition and Application model.
2. Deploy application on selected VMs

3. Proper logging mechanism (such as execution time) for each Melodic
component involved in the testing phase.

4. Log the information related to generated/used VMs (optional).

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 65

Actions
performed by the
system

The following actions should be executed:
1. Upload the Provider Model
2. Upload the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider

Expected results 1. The application should come to completion successfully with proper
logging (including the errors) information.

2. The execution time of each Melodic component involved has been logged.
3. Another file printing the ID-list of all used VMs including their IPs, VM

triggering time by the Cloud provider, and VM boot time (time taken by CSP
to start a VM). This information can help to compare the VM generation
speed by other Cloud service providers.

Table 41 Test scenario 6.7

Test scenario Id 6.7

Name Dynamic scalability testing for multi-Cloud feature (using two different locations)

Scenario group Performance Testing

Components to be
tested

 CP-Generator
 CDO Server
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter (SRL adapter)
 ESB
 BPM
 Metric Collector
 Cloudiator
 REST client.

Prerequisites 1. Installed and configured Melodic without any application related artefacts.
2. Meta Solver has been configured to use the CP solver.
3. One public cloud service provider (CSP) has been integrated with the

Melodic platform.
4. Cloudiator is also connected to the given CSP.

Input data 1. Complete CAMEL model of an application (such application might need a
number of components with VM requirements each).

2. CAMEL model of given CSP prepared with few VM offerings included.
3. There should be a proper configuration of the virtual machine, both in

Camel provider model and on the Cloud provider side.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 66

Steps to execute
scenario

For each execution of the scenario, one of the instances of the following
components should be executed: CP Generator, Meta Solver, CP Solver, Solver to
deployment, Adapter.

Next, the following steps should be completed without any error:

1. Upload CSP definition and Application model.
2. Deploy application on selected VMs

3. Proper logging mechanism (such as execution time) for each Melodic
component involved in the testing phase.

4. Log the information related to generated/used VMs (optional).

Actions
performed by the
system

The following actions should be executed:

1. Upload the Provider Model
2. Upload the Application model
3. Offer filtering and deployment optimisation model generation
4. Deployment Plan reasoning
5. Deployment Plan-based application reconfiguration.
6. Deployment to the selected cloud provider

Expected results 1. The application should come to completion successfully with proper error
logging information.

2. (Optional) It would also be good to log the execution time of each Melodic
component involved.

3. (Optional) Another sample file printing the ID-list of all used VMs including
their IPs, VM triggering time by the Cloud provider, and VM boot time (time
taken by CSP to start a VM). This information can help to compare the VM
generation speed by other Cloud service providers.

Table 42 Test scenario 6.8

Test scenario Id 6.8

Name Counting Compute Resource Overhead of Melodic introduced over its host
machine

Scenario group Performance Testing

Components to be
tested

 CP-Generator
 CDO Server
 Meta Solver
 CP Solver
 Solver to deployment
 Adapter (SRL adapter)
 ESB
 BPM
 Metric Collector
 Cloudiator
 REST client

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 67

Prerequisites 1. Installed and configured Melodic without any application related artefacts.
2. Meta Solver has been configured to use the CP solver
3. Both Upperware components and Cloudiator will be tested.

Input data 1. Complete CAMEL model of a simple one component application in one VM.
2. CAMEL model of given CSP prepared with at least one VM offering

included.
3. There should be a proper configuration of the VM both in the Camel

provider model and on the CSP side

Steps to execute
scenario

For each execution of the scenario, one of the instances of the following
components should be executed: CP Generator, Meta Solver, CP Solver, Solver to
deployment, Adapter.

Next, the following steps should be completed without any error:

1. Upload CSP definition and Application model.
2. Deploy application on selected VMs

3. For both scenarios, a proper logging mechanism (such as execution time)
for each Melodic component involved in the testing phase.

Actions performed
by the system

The following actions should be executed in two steps to quantify the extra
resource consumption by running a Melodic instance:

Step1:

1. Uploading of the Provider model and Application model.
2. Offer filtering and deployment of optimized model.
3. Performing plan reasoning, plan-based application reconfiguration
4. Deployment to selected cloud providers.

Step2:

In this scenario, now manually deploy the same user application in
another VM (same size, type).

Using both the steps, it should be possible to quantify the extra overhead
introduced by MELODIC over the second user VM.

Expected results 1. Both the user applications should come to completion successfully with
proper error logging information.

2. A log file should print the CPU usage, memory usage, and network/disk I/O
usage for comparison purpose. For both cases, a separate log file should be
created.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 68

4.3 Security testing scenarios

This section presents scenarios related to testing security in the Melodic system and in
communication with external systems. Security, for the purpose of these tests, means
authentication as well as authorization of methods invocation between components, especially
methods exposed on ESB, and usage of secure, cryptographically protected communications
protocols. In this chapter, only the basic security related test scenarios are described. The
authentication could be different for different ways of component method invocation, but
authorization should use a unified, common mechanism. The security topic, requirements, design
and testing scenarios related to advanced security will be covered in more detail in deliverable
D5.03 "Security requirements & design".

This group contains fundamental scenarios related to Security testing on the Melodic platform.

For the first release of Melodic, security is handled by different components (user related by the
Cloudiator UI, intercomponent security by the ESB); for the second and third release, a unified way
of handling security is planned. It will be reported in deliverable D5.3 “Security requirements &
design”.

Table 43 Test scenario 7.1

Test scenario Id 7.1

Name Method invocation by programmatic access – Successful Authentication

Scenario group Security Testing

Components to be
tested

 Security (Authentication) Service8
 ESB
 Upperware, Executionware

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts. Among others this involves:

a. the provisioning of security related configuration data
b. ESB configuration to require authentication (e.g. OAuth2.0)
c. ESB connected to a properly configured directory service (e.g.

OpenLDAP)
2. At least one cloud provider has been integrated with the Melodic platform;

the user credentials for this provider should have also been supplied.
3. Cloudiator properly connected to the relevant Cloud Provider(s)
4. Valid credentials per component

Input data 1. Complete CAMEL model of simple application comprising the definition of
one application component and its installation/lifecycle management
scripts which should be installed as a Unix process (no container) in one
virtual machine.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 69

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer being provided.

Steps to execute
scenario

Using appropriate tool to execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model in CAMEL
3. Start reasoning process
4. Start the application deployment

For each step, the corresponding component should be successfully authenticated
and the status of the executed action should be positive in order to be able to move
to the next step.

Actions
performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model in CAMEL
3. Reasoning
4. Execute deployment plan
5. Deploy new solution

Every action involves first the successful authentication of the respective
component.

Expected results 1. Authentication success per component is logged
2. A certain virtual machine on the selected Cloud Provider should be created
3. The sole component (e.g., web server) of the simple application should be

installed on that virtual machine
4. The application should be run properly (for example, the root web page of a

web server should be displayed properly)

Table 44 Test scenario 7.2

Test scenario Id 7.2

Name Unsuccessful authentication

Scenario group Security Testing

Components to be
tested

 ESB
 Security (Authentication) Service
 Upperware

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts. Among others this involves:

a. the provisioning of credentials per MELODIC component
b. provisioned credentials for Adapter are invalid
c. ESB configuration to require authentication (e.g. OAuth2.0)
d. ESB connected to a properly configured directory service (e.g.,

OpenLDAP)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 70

2. At least one cloud provider has been integrated with the Melodic platform;
the user credentials for this provider should have also been supplied.

3. Cloudiator properly connected to the relevant Cloud Provider(s)

Input data 1. Complete CAMEL model of simple application comprising the definition of
one application component and its installation/lifecycle management
scripts which should be installed as a Unix process (no container) in one
virtual machine.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer being provided.

3. Scenario should be repeatedly executed with a different component each
time having invalid credentials.

Steps to execute
scenario

Using appropriate tool to execute the following steps:

1. Upload Cloud Provider definition
2. Upload Application model in CAMEL
3. Start reasoning process
4. Receive authentication failure

For each step, the corresponding components should be successfully authenticated
(except the one with invalid credentials) and the status of the executed action
should be positive in order to move to the next step/component in the flow. For the
component with invalid credentials, authentication to Security Service fails and the
deployment workflow terminates after having reported the failure.

Actions
performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model in CAMEL
3. Deployment workflow:

a. Components before component with invalid credentials are
authenticated and successfully connected to ESB

b. The attempt of the component with invalid credentials to connect to
ESB fails

4. Report authentication failure

Expected results 1. Authentication success per component (except the component with invalid
credentials) is logged

2. Authentication failure for component with invalid credentials is logged
3. No virtual machine should be created

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 71

Table 45 Test scenario 7.3

Test scenario Id 7.3

Name Successful Authorisation Request

Scenario group Security Testing

Components to be
tested

 Authorisation service
 Adapter
 ESB

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider has been integrated with the Melodic platform;
the user credentials for this provider should have also been supplied.

3. An XACML policy template, allowing the application deployment
(corresponds to Adapter authorisation) when current time is after a
parametric threshold.

4. Cloudiator properly connected to the relevant Cloud Provider(s)

Input data 1. Complete CAMEL model of simple application comprising the definition of
one application component and its installation/lifecycle management
scripts which should be installed as a Unix process (no container) in one
virtual machine.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer being provided.

Steps to execute
scenario

Using appropriate tool to execute the following steps:

1. Generate a concrete XACML policy using as time threshold the current time
minus 20 minutes (since the policy dictates that the request time should be
after the time threshold, this step will guarantee that the Adapter will
receive an authorisation permit result).

2. Load XACML policy into authorisation service policy repository.
3. Upload Cloud Provider definition
4. Upload Application model in CAMEL
5. Start reasoning process
6. Start the application deployment (since this was automatically authorized,

by the respective service, based on the current time that is subsequent to
the time threshold of the policy)

For each step, the status of the executed action should be positive in order to move
to the next step of the process.

Actions
performed by the
system

The following actions should be executed in the system:

1. Uploading of the Provider Model
2. Uploading of the Application model in CAMEL

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 72

3. Loading and activation of XACML policy
4. Reasoning
5. Action graph generation (in Adapter)
6. Policy-based action graph elements’ authorisation.

a. Each action graph element is checked against authorization policy
b. Each one of them is successfully authorised (i.e., has a permit result)

7. Report authorisation permit
8. Trigger Cloudiator execution
9. Deploy new solution

Expected results 1. PERMIT authorisation decision is logged
2. An authorization permit event (produced by Security Service/Authorisation)

sent to ESB
3. A certain virtual machine on the selected Cloud Provider should be created
4. The sole component (e.g., web server) of the simple application should be

installed on that virtual machine
5. The application should be run properly (for example, the root web page of a

web server should be displayed properly)

Table 46 Test scenario 7.4

Test scenario Id 7.4

Name Unsuccessful authorisation request

Scenario group Security Testing

Components to be
tested

 Security Service/Authentication
 Adapter
 ESB

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. At least one cloud provider has been integrated with the Melodic platform
3. An XACML policy template, allowing the application deployment

(corresponds to Adapter authorisation) when current time is after a
parametric threshold.

4. Cloudiator properly connected to the relevant Cloud Provider(s)

Input data 1. Complete CAMEL model of simple application comprising the definition of
one application component and its installation/lifecycle management
scripts which should be installed as a Unix process (no container) in one
virtual machine.

2. CAMEL model of given Cloud Provider prepared and registered in the
Melodic platform with at least one virtual machine offer being provided.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 73

Steps to execute
scenario

Using appropriate tool to execute the following steps:

1. Generate a concrete XACML policy using as time threshold the current time
plus 20 minutes ahead in time (since the policy dictates that the request
time should be after the time threshold, this step will guarantee that the
Adapter will receive an authorisation deny result).

2. Load XACML policy into authorization service policy repository.
3. Upload Cloud Provider definition
4. Upload Application model in CAMEL
5. Start reasoning process

For each step, the status of the executed action should be positive. In order to move
to the next step of the process. In this testing scenario, the process ends with a
successful reasoning that it doesn’t result in the initiation of the deployment
actions since these failed to be authorised (since the deployment actions were
about to be performed before the time threshold set in the policy).

Actions performed
by the system

The following actions should be executed in the system:

1. Loading and activation of XACML policy
2. Uploading of the Provider Model
3. Uploading of the Application model in CAMEL
4. Reasoning
5. Action graph generation (in Adapter)
6. Policy-based action graph elements’ authorisation.

a. Each action graph element is checked against authorisation policy
b. At least one such authorisation fails (i.e. deny result) since the

deployment action was about to be performed before the time threshold
set in the policy.

7. Report authorisation deny

Expected results 1. DENY decision is logged
2. An authorisation deny event is sent to ESB
3. No virtual machine should be created

Table 47 Test scenario 7.5

Test scenario Id 7.5

Name Unsuccessful user authorisation with administrator privileges

Scenario group Logging testing scenarios

Components to be
tested

 MELODIC platform administration

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 74

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data

Steps to execute
scenario

1. Log into the MELODIC administration platform as administrator
2. Provide a new user profile with all mandatory information and without

administration rights
3. Submit the new user
4. Get temporary password
5. Try to log in administration platform with new user profile

Actions performed
by the system

1. Add new user
2. Generate temporary password

Expected results 1. Access denied to the new user due to lack of administration privileges.

Table 48 Test scenario 7.6

Test scenario Id 7.6

Name Logging within MELODIC platform

Scenario group Unified administration procedures testing scenarios

Components to be
tested

MELODIC platform administration

Prerequisites 1. Installed Melodic platform, with or without any application related artefacts.
2. Cloudiator properly connected to the given Cloud Provider

Input data 1. Component name

Steps to execute
scenario

1. Login as administrator of the MELODIC installation
2. Find logs for relevant components in the corresponding area

Actions performed
by the system

1. Maintain logs
2. Create viewable or downloadable text

Expected results 1. All relevant logs can be accessed

4.4 Other non-functional testing scenarios

This section presents further testing scenarios for non-functional requirements that are not
covered by the testing scenarios described in scenario groups from section 4.1 to 4.3, like backup
and recovery, platform user addition/removal, monitoring, logging, administration and
maintenance tasks – aspects which are relevant to guarantee the reliability and recoverability of
the system as well as the overall administration. The test scenarios from this group are described

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 75

in tables which have the same format as most of the previously described scenarios (for example
scenarios in section 4.1). For the first Melodic release only the Cloudiator UI is available, so the
testing of user management in this release is limited to the Cloudiator UI. For the next releases of
Melodic, the method of user authentication and authorisation will be implemented (as it will be
designed in D5.3 “Security requirements & design”). It will replace Cloudiator UI in the context of
user management.

Table 49 Test scenario 8.1

Test scenario Id 8.1

Name Adding user

Scenario group User management testing scenarios

Components to be
tested

 Melodic platform
 Security Services (in the 1st release user management will be handled by

Cloudiator; for further releases by a dedicated Security Component and ESB)

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data

Steps to execute
scenario

1. Log into the Melodic platform as administrator
2. Provide new user information (login, attributes, role) according to MELODIC

management rules
3. Submit the new user

Actions performed
by the system

1. User addition
2. Temporary password generation

Expected results 1. New user profile should be active and according to role
2. Temporary password generated

Table 50 Test scenario 8.2

Test scenario Id 8.2

Name Removing user

Scenario group User management testing scenarios

Components to be
tested

 Melodic platform
 Security Services (in the 1st release user management will be handled by

Cloudiator; for further releases by a dedicated Security Component and ESB)

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 76

Input data 1. One user id or user email

Steps to execute
scenario

1. Log in as administrator
2. Select one user to be removed
3. Delete this user

Actions performed
by the system

1. User deletion

Expected results 1. User profile should be deleted

Table 51 Test scenario 8.3

Test scenario Id 8.3

Name Updating user password

Scenario group User management testing scenarios (in the 1st release user management will be
handled by Cloudiator; for further releases by a dedicated Security Component and
ESB)

Components to be
tested

 Melodic platform
 Security Services

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

Input data One user id or user email

Steps to execute
scenario

1. Log in as administrator
2. Select one user
3. Generate new temporary password

Actions
performed by the
system

1. Update user password with new temporary one

Expected results 1. New temporary password

Table 52 Test scenario 8.4

Test scenario Id 8.4

Name Updating user profile

Scenario group User management testing scenarios (in the 1st release user management will be
handled by Cloudiator; for further releases by a dedicated Security Component and
ESB)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 77

Components to be
tested

 Melodic platform
 Security Services

Prerequisites Installed and configured Melodic platform, without any application related
artefacts.

Input data 1. User profile data

Steps to execute
scenario

1. Log in as administrator
2. Select one user
3. Select information to be updated (email, first name, last name, role etc.)
4. Provide updated information
5. Submit information update

Actions
performed by the
system

1. Update user profile information

Expected results 1. User profile information should be updated

Table 53 Test scenario 8.5

Test scenario Id 8.5

Name Unified starting, stopping and restarting of MELODIC platform

Scenario group Unified administration procedures testing scenarios.

Components to be
tested

 CP-Generator,
 CDO Server,
 Meta Solver,
 CP Solver,
 Solver to deployment,
 Adapter (SRL adapter),
 ESB, BPM,
 Metric Collector,
 Cloudiator,

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. Application is configured and installed properly on Melodic platform (using
for example Test Scenario 1.1 (Table 3) with proper CAMEL SRL configuration).

3. Meta Solver configured to use CP solver for that case.
4. Cloudiator properly connected to the given Cloud Provider
5. Virtual machine on the selected Cloud Provider should be created
6. The sole component (e.g., web server) of the simple application should be

installed on that machine
7. The application should be run properly (for example the root web page of a

web server should be displayed properly)

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 78

Input data

Steps to execute
scenario

1. Start the Melodic platform.
2. Deploy application
3. Stop the Melodic platform
4. Restart Melodic platform
5. Get the status of deployed application

Actions
performed by the
system

1. Components of the Melodic platform are restarted.

Expected results All Melodic components should always have the same status (STARTED) as a
final outcome of the scenario.

 Status is STARTED (after starting or restarting platform). The retrieved status
of the deployment should indicate that the deployment continues as planned.

Table 54 Test scenario 8.6

Test scenario Id 8.6

Name Configuring backup

Scenario group Unified administration procedures testing scenarios

Components to be
tested

Melodic platform

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. Application is configured and installed properly on Melodic platform (using
for example Test Scenario 1.1 (Table 3) with proper CAMEL SRL configuration).

Input data

Steps to execute
scenario

1. Login as administrator of the MELODIC installation
2. Select suitable drive for backup
3. Select backup components
4. Configure schedule for backup

Actions
performed by the
system

1. Store drive information
2. Store component selection
3. Store backup schedule

Expected results Backup configuration is stored

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 79

Table 55 Test scenario 8.7

Test scenario Id 8.7

Name Executing backup

Scenario group Unified administration procedures testing scenarios

Components to
be tested

Melodic platform

Prerequisites 1. Installed and configured Melodic platform, without any application related
artefacts.

2. Application is configured and installed properly on Melodic platform (using
for example Test Scenario 1.1 (Table 3) with proper CAMEL SRL
configuration).

3. Execution of 8.6 test scenario.

Input data

Steps to execute
scenario

1. Login as administrator of the MELODIC installation
2. Start backup process

Actions
performed by the
system

1. Execute backup periodically

Expected results 1. Backup is properly performed according to the right schedule. Backup files
stored according to the backup configuration

Table 56 Test scenario 8.8

Test scenario Id 8.8

Name Recover Melodic platform

Scenario group Unified administration procedures testing scenarios

Components to
be tested

Melodic platform

Prerequisites 1. Freshly installed Melodic platform, without any application related artefacts.
2. Meta Solver configured to use CP solver for that case.
3. Cloudiator properly connected to the given Cloud Provider
4. Virtual machine on the selected Cloud Provider should be created
5. The sole component (e.g., web server) of the simple application should be

installed on that machine
6. The application should be run properly (for example the root web page of a

web server should be displayed properly)
7. Execution of the test scenarios 8.6 and 8.7

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 80

Input data 1. Backup files of first fully configured installation (the result of execution of the
8.7 test scenario).

Steps to execute
scenario

1. Stop first Melodic installation
2. Install Melodic platform on a new VM, without any application related

artefacts.
3. Start recovery process with previously stored back up files of initial platform

configuration/deployment/installation.
4. Start the new Melodic platform.
5. Log in as administrator of the new Melodic platform
6. Monitor deployed application

Actions
performed by the
system

1. Stop first Melodic installation
2. Install a second Melodic platform on a new VM
3. Execute recovery process with backup files on this second platform
4. Start the second Melodic platform.

Expected results 1. New Melodic platform is equivalent to original one and has control over the
already deployed application

Table 57 Test scenario 8.9

Test scenario Id 8.9

Name Monitor Melodic platform

Scenario group Unified administration procedures testing scenarios

Components to
be tested

Melodic platform

Prerequisites 1. First installed Melodic platform, with or without any application related
artefacts.

2. Cloudiator properly connected to the given Cloud Provider

Input data

Steps to execute
scenario

1. Login as administrator of the MELODIC installation
2. Access monitored system parameters

Actions
performed by the
system

1. Monitor system health
2. Aggregate and deliver monitoring results

Expected results 1. Monitoring results can be accessed

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 81

5 Summary

Integration is the process of combining different parts of a software system. The term itself is
overused and can refer to very different notions, such as:

a. integrating the changes from different developers in the same code base as used for
instance in Continuous Integration11

b. integrating various executable software artefacts in one larger system as used in Enterprise
Integration Patterns [3].

This document presented detailed requirements for integrating the various components of the
Melodic platform. It has based its outcome on the system specification supplied in D2.1 “System
specification". This has led to the identification of 13 integration requirements for the Data and the
Control Flow Plane, and three requirements for the Monitoring Plane which were collected based
on a specific methodology. The methodology of collecting integration requirements is described
in section 1.3.2.

Testing is the process of verifying that a system is working as intended and expected. Testing
usually occurs on several levels of the system, ranging from unit tests to acceptance tests. Based
on the requirements collected using the methodologies described in section 1.4.2 and section 1.5.2,
this deliverable defines a series of testing requirements for functional and non-functional testing.
They are specified in the form of testing scenarios. Such scenarios cover:

 initial application deployment (functional, nine sub-scenarios),
 global reconfiguration (functional, two sub-scenarios),
 local reconfiguration (functional, two sub-scenarios),
 metric management (functional, four sub-scenarios),
 reasoning-related (functional, five sub-scenarios),
 APIs (functional, eleven sub-scenarios),
 user interfaces (functional, seven sub-scenarios),
 fault-handling (non-functional, four sub-scenarios),
 performance (non-functional, eight sub-scenarios),
 security (non-functional, four sub-scenarios),
 other (non-functional, seven sub-scenarios).

Scenarios described in the deliverable could be further extended according to new features which
will be introduced to the platform. Correspondingly, new test cases will evolve and expand in
conjunction with the evolution of the Melodic platform.

11 http://searchsoftwarequality.techtarget.com/definition/continuous-integration

http://www.melodic.cloud/
http://searchsoftwarequality.techtarget.com/definition/continuous-integration

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 82

Based on this deliverable, all Melodic releases will be tested (including the integration release
(D5.07), the platform prototype release (D5.08), and the final release (D5.09)). In addition, the
integration requirements of this deliverable will influence the Melodic final framework to be
described in deliverable D2.3 “Final framework and external APIs”.

The test scenarios designated in this deliverable will be updated during the project lifetime and
enriched with new test cases such that, in the end, a very robust and complete framework will be
delivered.

http://www.melodic.cloud/

Editor(s):
Paweł Skrzypek

Deliverable reference:
D5.04

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

www.melodic.cloud 83

6 References:
[1] Liqiang Chen, “Integrating Cloud Computing Services Using Enterprise Service Bus (ESB)”. Business

and Mgmt. Res. Vol. 1, No. 1, 2012, http://sciedu.ca/journal/index.php/bmr/article/download/674/387

[2] Mehdi Bahrami and Mukesh Singhal, “The Role of Cloud Computing Architecture in Big Data”, Chapter

13 in “Information Granularity, Big Data, and Computational Intelligence”, W. Pedrycz and S.- M. Chen

(eds.) Vol. 8, Springer, 2015

[3] Gregor Hohpe and Bobby Woolf, “Enterprise Integration Patterns”, 11st Edition, ISBN: 978-0321200686,

Addison-Wesley. 2004.

http://www.melodic.cloud/
http://sciedu.ca/journal/index.php/bmr/article/download/674/387

