
http://www.melodic.cloud/
http://www.sec_bridge.eu/
http://www.melodic.cloud/deliverables/D2.2%20Architecture
http://www.melodic.cloud/deliverables/D2.2%20Architecture
http://www.melodic.cloud/deliverables/D2.2%20Architecture

www.melodic.cloud 2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

 Document

Period Covered M1-14

Deliverable No. D2.2

Deliverable Title
Architecture and Initial Feature
Definitions

Editor(s) Feroz Zahid

Author(s)

Yiannis Verginadis, Geir Horn,
Kyriakos Kritikos, Feroz Zahid,
Daniel Baur, Paweł Skrzypek,
Daniel Seybold, Marcin Prusiński,
Somnath Mazumdar

Reviewer(s) Antonia Schwichtenberg, Daniel Baur,
Amir Taherkordi

Work Package No. 2

Work Package Title Architecture and Data Management

Lead Beneficiary Simula Research Laboratory

Distribution PU

Version 1.0

Draft/Final Final

Total No. of Pages 78

http://www.melodic.cloud/

www.melodic.cloud 3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Table of Contents

1 Introduction .. 6

1.1 Scope of the Document .. 8

1.2 Structure of the Document ... 9

2 Architecture Overview ... 10

2.1 Component Integration .. 11

2.2 Application and Data Modelling ... 11

 Application Modelling .. 13

 Data Modelling .. 14

 Models Repository ... 15

2.3 Melodic Interfaces to the End-Users .. 16

3 Upperware ... 20

3.1 Upperware Components ... 21

 CP Generator .. 21

 Utility Generator ... 21

 Metasolver .. 23

 CP Solver .. 25

 LA Solver .. 26

 Solver-To-Deployment ... 28

 Adapter ... 28

 Event Processing Management ... 29

 Event Probes Manager ... 31

3.2 Data Lifecycle Management System (DLMS) .. 31

3.3 Upperware Interfaces & Workflows .. 34

4 Executionware .. 52

4.1 Cloud Orchestration .. 53

4.2 Resource Management .. 54

4.3 Data Processing Layer .. 56

5 Auxiliary Services .. 58

http://www.melodic.cloud/

www.melodic.cloud 4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

5.1 Security Services .. 58

5.2 Status and Event Service .. 59

6 Initial Feature Definitions... 60

6.1 Planned Software Releases .. 60

6.2 High-Level Melodic Capabilities and Salient Features ... 62

6.3 Features corresponding to the use-case requirements ... 64

6.4 Features corresponding to the non-functional requirements ... 72

7 Conclusions .. 75

References ... 76

http://www.melodic.cloud/

www.melodic.cloud 5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

List of Figures

Figure 1: Melodic enables an automatic DevOps system for Cross-Cloud application deployment
and adaptation ... 7

Figure 2: Overview of the Melodic architecture .. 10

Figure 3: An Overview of the CAMEL modelling and the models@runtime approach taken by the
Melodic platform ... 12

Figure 4: A snapshot of the CAMEL deployment meta-model focusing on the data-intensive
application modelling extension .. 14

Figure 5: The data meta-model in CAMEL .. 15

Figure 6: A screenshot of the textual CAMEL editor ... 17

Figure 7: A screenshot of web-based CAMEL editor ... 18

Figure 8: A screenshot of the web-based Melodic metadata schema editor ... 19

Figure 9: Overview of the Upperware Components ... 20

Figure 10: An overview of the data life-cycle management system ... 33

Figure 11: Upperware BPMN diagram (initial placement) – outline (enlarged by Figure 12 to Figure
15) ... 35

Figure 12: Upperware BPMN diagram (initial placement) – enlarged, part I of IV 36

Figure 13: Upperware BPMN diagram (initial placement) – enlarged, part II of IV 37

Figure 14: Upperware BPMN diagram (initial placement) – enlarged, part III of IV 38

Figure 15: Upperware BPMN diagram (initial placement) – enlarged, part IV of IV 39

Figure 16: Upperware BPMN diagram (reconfiguration) – outline (enlarged by Figure 17 to Figure
20) .. 41

Figure 17: Upperware BPMN diagram (reconfiguration) – enlarged, part I of IV42

Figure 18: Upperware BPMN diagram (reconfiguration) – enlarged, part II of IV 43

Figure 19: Upperware BPMN diagram (reconfiguration) – enlarged, part III of IV 44

Figure 20: Upperware BPMN diagram (reconfiguration) – enlarged, part IV of IV 45

Figure 21: Upperware UML Component Diagram .. 46

Figure 22: Upperware UML Sequence Diagram .. 48

Figure 23: Upperware UML Sequence Diagram in parts (1/3) ... 49

Figure 24: Upperware UML Sequence Diagram in parts (2/3) .. 50

Figure 25: Upperware UML Sequence Diagram in parts (3/3) .. 51

Figure 26: High-level Executionware Architecture ... 52

Figure 27: Cloudiator Executable Entity Terminology ... 53

Figure 28: Executionware Deployment BPMN ... 54

Figure 29: Cloudiator Architecture ... 55

Figure 30: Executionware deployment sequence diagram .. 57

Figure 31: Updated release timeline for the Melodic middleware platform .. 61

http://www.melodic.cloud/

www.melodic.cloud 6

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

1 Introduction

Modern enterprises increasingly rely on hybrid Cloud solutions to meet their computational
demands by acquiring additional resources from public Clouds dynamically as per their needs.
International Data Corporation (IDC), which is a leading market-research firm, in its CloudView
Survey 20171, reported that 87% of Cloud users have adapted a hybrid cloud strategy and 56% of
the users use more than one type of Cloud deployment. In general, Cloud federation [1] enables
end users to integrate segregated resources from different Cloud systems. Federated Clouds
offer more freedom to the Cloud users and increase the granularity of choices in the application
deployment. The key objective of the Melodic project is to provide a middleware platform that
enables data-aware application deployment on geographically distributed and federated Cloud
infrastructures. The lack of data-awareness in Cross-Cloud deployments, in particular, leads to
non-optimal application performance as well as hinders the full potential utilisation of the
acquired resources from the Cloud infrastructures [2]. The Melodic middleware platform aims to
act as an automatic DevOps solution for data-intensive Cloud applications covering modelling,
deployment, configuration, and autonomic adaptation of such applications in distributed,
heterogeneous, and dynamic Cross-Cloud environments.

In this document, we present the architecture of the Melodic middleware software platform and
its key components. As also described in the Melodic System Specification Document [3] , the
Melodic project reuses technology, components, and research results from selected open-source
projects. The components of the selected open-source projects were evaluated carefully to
assess their integrability in the Melodic, and the evaluation results are summarised in the
System Specification Document. In particular, the architecture of the Melodic platform is greatly
influenced by that of the PaaSage project [4] to ensure that the available components from
PaaSage are utilised to the extent possible, and the target of the new developments in the
Melodic project remains the unique requirements arising from the needs of data-intensive
applications in Cross-Cloud environments. The PaaSage project lacked Cross-Cloud data
management and data-aware application deployments limiting its use for the data-intensive
applications in the Cloud, and data-aware deployments and processing in general. The Melodic
project adds new components needed for satisfying requirements of data-aware Cross-Cloud
deployments, introduces consistent and modular component integration, and rectifies design
issues based on the lessons learned from the PaaSage project.

1 https://www.idc.com/getdoc.jsp?containerId=prUS42878417

http://www.melodic.cloud/
https://www.idc.com/getdoc.jsp?containerId=prUS42878417

www.melodic.cloud 7

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 1: Melodic enables an automatic DevOps system for Cross-Cloud application deployment
and adaptation

Cross-Cloud2 application deployments comprise of resources acquired from multiple
administrative domains, ranging from locally deployed private Cloud infrastructures to
externally managed public Cloud offerings [5]. A data-intensive application, like any other Cloud
application, corresponds to a specific component deployment topology, and has certain
application- and user-specific deployment requirements, such as hardware/OS requirements,
security and Quality-of-Service (QoS) constraints, allocated Cloud budget, and scalability policies
and rules. The same goes for the data sources. The user data, for instance, may need to adhere to
specific location constraints and confidentiality policies in place. Following a Model-driven
Engineering (MDE) approach [6], before a given data-intensive application and corresponding
data sources are ready to be deployed by the Melodic middleware platform onto dynamically
acquired Cross-Cloud resources, they are modelled so that the aforementioned requirements
and constraints can be formally specified, and hence utilised by the deployment reasoning
process. As depicted in Figure 1, modelling of an application is the first step of the automated
DevOps system offered by the Melodic middleware platform for data-intensive applications.

After applications has been modelled, the reasoning part of the Melodic middleware finds out
most effective placement of the applications onto Cross-Cloud resources. Furthermore, to cater
for performance unpredictability and dynamicity challenges in the Cloud, applications deployed
through Melodic are continuously monitored and adapted, to make sure that the current
deployment corresponds to the best possible configuration according to the current Cloud

2 We use the term Cross-Cloud to refer to application deployments where multiple Cloud platforms are
simultaneously used to deploy application components. The term Multi-Cloud is also popular, though. We
differentiate Multi-Cloud scenarios from Cross-Clouds – in Multi-Clouds, applications are capable of being
deployed on different Cloud platforms, but one at a time, contrary to the Cross-Cloud deployments of application
components on segregated Cloud platforms at the same time.

http://www.melodic.cloud/

www.melodic.cloud 8

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

resource availability, reliability, and performance, user requirements, constraints, and the
execution context. The Melodic middleware platform implements a self-adaptive3 deployment
and reconfiguration system through a feedback-driven control loop. As shown in Figure 1, the
feedback loop in Melodic is implemented through a Monitor-Analyse-Plan-Execute (MAPE4) [8]
based adaptation loop. Application deployments are continuously monitored and analysed, and
if the current deployment is no longer optimal, a new deployment solution is calculated, and the
adaptation is planned and enforced. Thanks to the adaptation mechanism implemented by
Melodic, data-intensive applications are both optimally deployed over Cross-Cloud resources
and are also kept optimised when the application or Cloud context changes. In addition to
applications deployment, data management is also performed in an intelligent way to cater for
the unique Cross-Cloud needs. For large-scale distributed applications, optimisation of the
complete data lifecycle, comprising of distinct phases including data acquisition, preparation,
analysis, integration, aggregation, and its final representation, becomes complex and multi-
dimensional [9]. Solutions targeting individual phases often yield contradictory management
decisions. Moreover, as application deployment decisions are affected by data placement and
migration methodologies in effect, and vice versa, it is important to couple data and
computation modelling together. The Melodic platform enables the holistic management of
complete data life-cycle by complementing the middleware platform with the holistic Cross-
Cloud data life-cycle management solution.

1.1 Scope of the Document

This document presents the final Melodic architecture and its initial feature definitions. The
document details key Melodic components, their internal architecture, key functionalities, and
inter-component interactions and corresponding interfaces. A list of features targeted by
Melodic, at different releases during the project tenure, are also provided. This document is
intended for the general audience interested in learning about the architecture of the Melodic
platform and its salient features. Parts of the document requires basic understanding of how
Cloud computing systems and distributed applications work. The document, at places, refer to
the System Specification Document, the Melodic project deliverable D2.1, System Specification
Document [3], however, such references are clearly identified wherever possible.

3 Self-adaptivity is defined as the property of a system to autonomously evaluate and change its behaviour in
response to a changing environment [7].
4 MAPE is also more precisely referred to as MAPE-K loop, with K representing the shared knowledge-based
required to implement all stages of the monitor, plan, and execute sequence.

http://www.melodic.cloud/

www.melodic.cloud 9

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

1.2 Structure of the Document

The rest of this document is structured as follows. In chapter 2, an overview of the Melodic
architecture and its main components is provided together with an overview of the application
and data modelling interfaces. The detailed architecture of the two core component groups of
Melodic, the Upperware and the Executionware, is provided in chapter 3 and chapter 4,
respectively. In chapter 5, we briefly analyse auxiliary services used by the Melodic components.
In chapter 6, we list the main Melodic capabilities and provide its salient features together with
a summary of the roadmap for the Melodic software releases. We conclude in chapter 7.

http://www.melodic.cloud/

www.melodic.cloud 10

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

2 Architecture Overview

Figure 2: Overview of the Melodic architecture

The Melodic platform is conceptually divided into three main component groups, the Melodic
interfaces to the end users, the Upperware, and the Executionware. The Melodic interfaces to the
end users include tools and interfaces used by the Melodic users to model their applications and
datasets and interact with the Melodic platform. The Melodic modelling interfaces, through the
CAMEL modelling language [10], provide a rich set of domain-specific languages (DSLs) which
cover different modelling aspects, spanning both the design and the runtime of a Cloud
application as well as data modelling traits. Applications and data models created through the
modelling interfaces, in the form of CAMEL, are given as input to the Melodic Upperware. The
job of the Upperware is to calculate the optimal data placements and application deployments
on dynamically acquired Cross-Cloud resources in accordance with the specified application
and data models in CAMEL as well as in consideration of the current Cloud performance,
workload situation, and costs. The actual Cloud deployments are carried out through the
Executionware. The Executionware is capable of managing and orchestrating diverse Cloud
resources, and it also enables support of cross-cloud monitoring of the deployed applications.
Besides the three main component groups, two auxiliary services, for enabling unified and
integrated event notification mechanism and to warrant secure operations with the Melodic
platform, respectively, are also designed. An overview of the Melodic architecture is given in
Figure 2.

http://www.melodic.cloud/

http://www.melodic.cloud/

www.melodic.cloud 12

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 3: An Overview of the CAMEL modelling and the models@runtime approach taken by the
Melodic platform

The PaaSage project created CAMEL, a domain-specific language that captures a rich set of
design-time and runtime aspects like application deployment requirements, service-level
objectives, scalability rules, and security considerations in Cross-Cloud deployments. CAMEL is
similar to the Topology and Orchestration Specification for Cloud Applications (TOSCA) [14],
which allows users to specify the components comprising the topology of Cloud-based
applications along with the processes for their orchestration. However, a key difference between
TOSCA and CAMEL is that while TOSCA can only be used at design-time as it supports
specification of types of templates only, CAMEL can be used at both design-time and run-time
because of its support of the specification of instances too. In the context of the Melodic project,
CAMEL is being extended in order to support modelling of both data-intensive applications and
datasets as well as the modelling of non-functional terms (properties or metrics) for both data
and data-intensive applications. As depicted in Figure 3, CAMEL is a super-DSL which includes
multiple DSLs, each focusing on a particular aspect. CAMEL has been designed based on EMF
Ecore5 and Object Constraint Language (OCL). EMF Ecore enables the specification of UML-
based meta-models, while OCL constraints accompany such meta-model specification with the
coverage of additional domain semantics. Using the provided Melodic interfaces to the end-
users that includes a CAMEL editor, application developers create a CAMEL model which is

5 http://www.eclipse.org/modeling/emf/downloads/

http://www.melodic.cloud/
http://www.eclipse.org/modeling/emf/downloads/

http://www.melodic.cloud/
http://camel-dsl.org/

http://www.melodic.cloud/

www.melodic.cloud 15

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

features (i.e., new elements generated at the model level) or attributes (extra from those covered
by the data meta-model in CAMEL) that come from the meta-data schema [16]. The coverage of
the data aspect in CAMEL has led to the generation of a new meta-model, Data, a snapshot of
which depicted in Figure 5.

Figure 5: The data meta-model in CAMEL

 Models Repository

The Models Repository is part of the Upperware but is being presented in this section to
emphasise its connection with the modelling part of the Melodic platform. The Models
Repository stores the models manipulated by the Upperware components. The Melodic user-
interfaces, in particular the editors, exploit this repository in order to store the models
graphically generated by the users in order to enable their further processing by the core of the
Melodic platform. The Models Repository mainly relies on an internal component called
CDOServer which represents the server part in this repository enabling the storage and retrieval

http://www.melodic.cloud/

www.melodic.cloud 16

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

of models. The realisation of CDOServer is based on the Eclipse CDO technology7 which enables
the robust persistence of the manipulated models in the underlying storage which can take the
form of a relational or a hibernate database. The technology also comes with additional features
like the lazy loading of models and the support for transactionality. At the client side of this
repository, the CDOClient lies offering an interface that enables users or programs acting on
behalf of them to perform various actions over models, including in-memory loading as well as
storing in the Models Repository, in cooperation with the CDOServer. The CDOClient is currently
exploited by various components in the Upperware which require interaction with the models
repository.

2.3 Melodic Interfaces to the End-Users

The users of the Melodic interact with the Melodic platform in two ways. First, application
developers need to model their applications and data via an appropriate interface that enables
valid CAMEL formal specifications utilisable by the Upperware components for reasoning
application deployments. Second, the CAMEL language may itself need extensions based on the
requirements of the Melodic adopters, and a formal way to enable defining extensions is
required.

For modelling applications and data, two CAMEL editors are developed, a textual CAMEL editor
and a web-based CAMEL editor. The textual CAMEL editor is based on Eclipse IDE and allows
Create-Read-Update-Delete (CRUD) operations over the main CAMEL elements for describing,
among others, the decomposition of the Cloud application into its components and for defining
placement and scalability requirements that follow the required service level objectives (SLOs).
Moreover, data sets are also modelled via the same editor. A screenshot of the textual editor is
given in Figure 6.

7 https://wiki.eclipse.org/CDO

http://www.melodic.cloud/
https://wiki.eclipse.org/CDO

www.melodic.cloud 17

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 6: A screenshot of the textual CAMEL editor

The web-based CAMEL editor, as shown in Figure 7, provides a user-friendly way to edit CAMEL
models through a form-based web interface.

http://www.melodic.cloud/

http://www.melodic.cloud/

www.melodic.cloud 19

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731664

Editor(s):
Feroz Zahid

Deliverable reference:
D2.2

Figure 8: A screenshot of the web-based Melodic metadata schema editor

http://www.melodic.cloud/

